ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Μαθηματικά προσανατολισμού Β Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

Αγαπητοί μαθητές, Κάθε κεφάλαιο περιέχει :

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a.

Επαναληπτικές Ασκήσεις

Φυλλάδιο Ασκήσεων 1 Διανύσματα

α και γ και να 3. Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= 2ΟΑ αποδείξετε ότι ΓΑ = 2ΕΔ ΛΥΣΗ Έχουμε: ΓΑ = ΓΟ + ΟΑ = γ + α

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

Διανύσματα ΚΑΤΗΓΟΡΙΑ 6. Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Ασκήσεις προς λύση Παράλληλα διανύσµατα. Οµόρροπα διανύσµατα.

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

Σημειώσεις Μαθηματικών 1

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014)

1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι:

Φυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3

1.3 Εσωτερικό Γινόμενο

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ. Επιμέλεια Αυγερινός Βασίλης

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

Μαθηματικά Θετικής και Τεχνολογικής κατεύθυνσης Διανύσματα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

Ασκήσεις Πράξεις ιανυσµάτων

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50

Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση:

ΙΑΝΥΣΜΑΤΑ. Σ Λ + α = α

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

= π 3 και a = 2, β =2 2. a, β

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΥΚΛΟΣ

1.2 Συντεταγμένες στο Επίπεδο

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Να χαρακτηρίσετε κάθε μία από τις παρακάτω προτάσεις ως Σωστή ή Λανθασμένη: Πράξεις διανυσμάτων

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

τα βιβλία των επιτυχιών

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

Πολλαπλασιασμός αριθμού με διάνυσμα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

1 η δεκάδα θεµάτων επανάληψης

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

Μαθηματικά προσανατολισμού Β Λυκείου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ α φάση. Διανύσματα

!! viii) Αν λ α = μα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

Β Λυκείου- Μαθηματικά Κατεύθυνσης. Μέρος Α Θεωρία. (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις)

Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι :

1,y 1) είναι η C : xx yy 0.

(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10)

Τάξη A Μάθημα: Γεωμετρία

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται:

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ [TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ] (Μονάδες 13) β) Να δείξετε ότι τα διανύσματα ΔΕ και BΓ είναι παράλληλα.

λύσεις των ασκήσεων Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Ομάδας Προσανατολισμού Θετικών Σπουδών ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

ΔΙΑΝΥΣΜΑΤΑ Ερωτήσεις πολλαπλής επιλογής - Σ Λ - αντιστοίχησης

Παρατήρηση. 1. Το άθροισμα των διανυσμάτων και είναι ανεξάρτητο από το σημείο. 2. Το άθροισμα των διανυσμάτων και μπορεί να βρεθεί να βρεθεί και με

Λέγεται κάθε προσανατολισμένη ευθεία x x στην οποία ορίζουμε ως αρχή ένα σημείο. Ο και το μοναδιαίο διάνυσμα i ( i = 1)

1 x και y = - λx είναι κάθετες

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ. Επανάληψη Επιμέλεια Αυγερινός Βασίλης. Επιμέλεια : Αυγερινός Βασίλης

ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

Μαθηματικά. Β'Λυκείου. Προσανατολισµού Θετικών Σπουδών. Μαρίνος Παπαδόπουλος

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Transcript:

2 ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΠΙΜΕΛΕΙΑ ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΔΙΑΝΥΣΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Διάνυσμα λέγεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα. Το πρώτο άκρο λέγεται αρχή και το δεύτερο τέλος ή αλλιώς πέρας. Το διάνυσμα με αρχή το σημείο Α και πέρας το σημείο Β συμβολίζεται ΑΒ. Όταν η αρχή και το πέρας ενός διανύσματος συμπίπτουν (ταυτίζονται) τότε το διάνυσμα λέγεται μηδενικό διάνυσμα και συμβολίζεται 0. Μέτρο ή μήκος του διανύσματος ΑΒ λέγεται η απόσταση των άκρων του, δηλαδή το μήκος του ευθύγραμμου τμήματος ΑΒ. Το μέτρο του διανύσματος ΑΒ συμβολίζεται ΑΒ. Ειδικά όταν είναι ΑΒ = 1 τότε το ΑΒ λέγεται μοναδιαίο διάνυσμα. Φορέας ενός μη μηδενικού διανύσματος λέγεται η ευθεία πάνω στην οποία βρίσκεται το διάνυσμα. ( για ένα μηδενικό διάνυσμα ΑΑ ως φορέα μπορούμε να θεωρήσουμε οποιαδήποτε ευθεία διέρχεται από το Α) Δύο μη μηδενικά διανύσματα ΑΒ, Γ λέγονται παράλληλά ή αλλιώς συγγραμμικά όταν έχουν τον ίδιο φορέα ή παράλληλους φορείς. Στην περίπτωση αυτή λέμε ότι τα διανύσματα έχουν την ίδια διεύθυνση. Συμβολίζονται ΑΒ / / Γ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 1

Δύο μη μηδενικά διανύσματα λέγονται ίσα όταν έχουν την ίδια κατεύθυνση (φορά και διεύθυνση) και ίσα μέτρα. Δηλαδή ΑΒ Γ ΑΒ=Γ και ΑΒ = Γ Ειδικά όταν ΑΒ=Γ και τα διανύσματα βρίσκονται σε παράλληλους φορείς, τότε το τετράπλευρο ΑΒΔΓ είναι παραλληλόγραμμο! Αν είναι Μ το μέσον του ευθύγραμμου τμήματος ΑΒ τότε ΑΜ=ΜΒ Δύο μη μηδενικά διανύσματα λέγονται αντίθετα όταν έχουν αντίθετη κατεύθυνση και ίσα μέτρα. Αν τα διανύσματα ΑΒ, Γ είναι αντίθετα τότε γράφουμε ΑΒ = Γ ή Γ = ΑΒ ΓΩΝΙΑ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 2

( ) Όταν είναι α, β 0 και θ = α, β τότε ισχύουν τα παρακάτω: α β θ = 0 ο α β θ = π (180 ) π ο α β θ = (90 ), τότε τα διανύσματα λέγονται ορθογώνια 2 Γενικά η γωνία θ δύο διανυσμάτων μπορεί να πάρει τιμές 0 θ π ΠΡΟΣΘΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ Με τον κανόνα των διαδοχικών διανυσμάτων: Με τον κανόνα του παραλληλογράμμου: ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 3

ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ Η διαφορά του διανύσματοςβ από το διάνυσμα α ορίζεται ως το άθροισμα των διανυσμάτων α και β α β = α + β. Δηλαδή είναι ( ) Διάνυσμα θέσης ή διανυσματική ακτίνα Κάθε διάνυσμα στο χώρο είναι ίσο με τη διανυσματική ακτίνα του πέρατος μείον τη διανυσματική ακτίνα της αρχής. Έστω Ο σημείο αναφοράς, τότε για ένα διάνυσμα ΑΒ ισχύει : ΑΒ=ΟΒ ΟΑ Μέτρο αθροίσματος διανυσμάτων Για δύο οποιαδήποτε διανύσματα α, β ισχύει: α β α+ β α + β (τριγωνική ανισότητα) Ειδικές περιπτώσεις: α+ β = α + β α β ή α = 0 ή β = 0 α+ β = α β α β ή α = 0 ή β = 0 ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 4

Πολλαπλασιασμός αριθμού με διάνυσμα. Ιδιότητες πολλαπλασιασμού αριθμού με διάνυσμα 1. λ ( α+ β) = λ α+ λ β 2. ( λ + µ ) α = λ α + µ β λ µ α = λ µ α 3. ( ) ( ) Ισχύει η ισοδυναμία: λ α = 0 λ = 0 ή α = 0 Αν λ α = λ β τότε Αν λ α = µ α τότε Συνθήκη παραλληλίας διανυσμάτων. Για δύο διανύσματα α, β µε β 0 ισχύει η ισοδυναμία α / / β α = λ β, λ R α β α = λ β, λ 0 α β α = λ β, λ 0 ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 5

Διανυσματική ακτίνα του μέσου. Αν είναι Μ το μέσον του τμήματος ΑΒ και Ο σημείο αναφοράς τότε 1 ΟΜ= ( ΟΑ+ΟΒ ) 2 ΑΠΟΔΕΙΞΗ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΣ 1 Η Πως αποδεικνύουμε μια διανυσματική ισότητα. Για να δείξουμε μια διανυσματική ισότητα συνήθως θεωρούμε ένα σημείο ως σημείο αναφοράς και εκφράζουμε όλα τα διανύσματα της ισότητας με αρχή το σημείο αυτό. Εφαρμόζουμε δηλαδή την πρόταση: κάθε διάνυσμα στο χώρο ισούται με τη διανυσματική ακτίνα του πέρατος μείον τη διανυσματική ακτίνα της αρχής. ( ΑΒ=ΟΒ ΟΑ ) ΠΑΡΑΔΕΙΓΜΑ Για οποιαδήποτε σημεία Α,Β,Γ,Δ,Ε να αποδειχθεί ότι ΑΒ Γ =ΕΒ Ε +ΑΓ ΜΕΘΟΔΟΣ 2 Η Πως δείχνουμε ότι δύο σημεία ταυτίζονται Για να δείξουμε ότι δύο σημεία Α, Β ταυτίζονται ( Α Β ) αρκεί να δείξουμε ότι σχηματίζουν μηδενικό διάνυσμα. Δηλαδή ΑΒ= 0 ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 6

ΠΑΡΑΔΕΙΓΜΑ Αν ισχύει Ε+ΓΚ =ΓΕ Α +ΒΚ, να αποδειχθεί ότι τα σημεία Α και Β ταυτίζονται. ΜΕΘΟΔΟΣ 3 Η Πως δείχνουμε ότι ένα τετράπλευρο είναι παραλληλόγραμμο. Για να δείξουμε ότι τέσσερα σημεία μη συνευθειακά ανά τρία, σχηματίζουν παραλληλόγραμμο αρκεί να δείξουμε ότι έχει δύο απέναντι πλευρές ίσες και παράλληλες. Άρα το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο αν και μόνο αν ισχύει ΑΒ =Γ ή ισοδύναμα ΑΒ= Γ ΠΑΡΑΔΕΙΓΜΑ Έστω Α,Β,Γ,Δ σημεία μη συνευθειακά ανά τρία για τα οποία ισχύει ΑΕ Ζ=ΖΒ ΕΒ ΓΒ, όπου Ε,Ζ δύο τυχαία σημεία του επιπέδου. Να αποδειχθεί ότι το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο. ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 7

ΜΕΘΟΔΟΣ 4 Η Πως προσδιορίζουμε τη θέση ενός σημείου. Για να προσδιορίσουμε τη θέση ενός σημείου πχ Μ που ικανοποιεί μια διανυσματική ισότητα, τότε με κατάλληλους μετασχηματισμούς προσπαθούμε να φτάσουμε σε μια νέα σχέση από την οποία να προσδιορίζεται η θέση του Μ. Αν φτάσουμε στη σχέση ΑΜ= 0 τότε Μ Α Αν φτάσουμε στη σχέση ΑΜ=ΑΒ τότε Μ Β Αν φτάσουμε στη σχέση ΑΜ=ΜΒ τότε Μ µ έσον του ΑΒ. ΠΑΡΑΔΕΙΓΜΑ Δίνεται τρίγωνο ΑΒΓ. Αν ισχύει ΑΒ=ΜΒ+ΜΓ ΒΓ να προσδιοριστεί η θέση του σημείου Μ. ΜΕΘΟΔΟΣ 5 Η Πως δείχνουμε ότι δύο διανύσματα είναι ομόρροπα ή αντίρροπα. Κριτήριο για ομόρροπα: α β α+ β= α+ β Κριτήριο για αντίρροπα: α β α+ β= α β ΠΑΡΑΔΕΙΓΜΑ Δίνονται τρία μη μηδενικά διανύσματα α, β, γ για τα οποία ισχύουν: α β γ α + β + γ = 0 και = =. Να αποδειχθεί ότι α β, γ β 7 4 3 ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 8

ΜΕΘΟΔΟΣ 6 Η Πως δείχνουμε ότι ένα διάνυσμα είναι ΣΤΑΘΕΡΟ. Έστω διάνυσμα v το οποίο είναι γραμμένο ως γραμμικός συνδυασμός άλλων διανυσμάτων των οποίων ένα ή περισσότερα άκρα τους είναι μεταβλητά σημεία. Για να δείξουμε ότι το διάνυσμα v είναι σταθερό αρκεί με κατάλληλους μετασχηματισμούς να γράψουμε το v ως πράξη διανυσμάτων με άκρα σταθερά σημεία. (συνήθως θεωρούμε σημείο αναφοράς κάποιο από τα σταθερά σημεία) ΠΑΡΑΔΕΙΓΜΑ Δίνεται τρίγωνο ΑΒΓ. Για οποιοδήποτε σημείο Μ να αποδειχθεί ότι το διάνυσμα u= 4 ΜΑ 7 ΜΒ 3 ΓΜ είναι σταθερό. ΜΕΘΟΔΟΣ 7 Η Πως δείχνουμε ότι τρία σημεία είναι συνευθειακά. Για να δείξουμε ότι τα σημεία Α,Β,Γ είναι συνευθειακά αρκεί να δείξουμε ότι δύο από τα διανύσματα ΑΒ, ΑΓ, ΒΓ είναι παράλληλα μέσω της συθήκης παραλληλίας διανυσμάτων. (παράλληλα με κοινό σημείο άρα οι φορείς ταυτίζονται άρα τα σημεία είναι συνευθειακά) ΠΑΡΑΔΕΙΓΜΑ Δίνονται τα σημεία Α,Β,Γ,Κ,Λ για τα οποία ισχύει 5ΑΚ 9ΒΚ ΓΛ= 4ΛΒ+ 3ΑΛ 4ΓΚ Να δειχθεί ότι τα σημεία Α,Β,Γ είναι συνευθειακά. ΑΠΟΔΕΙΞΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 9

ΜΕΘΟΔΟΣ 8 Η Πως δείχνουμε διανυσματικές ισότητες που περιέχουν ένα ή περισσότερα μέσα τμημάτων. Κάνουμε χρήση της διανυσματικής ακτίνας του μέσου. Αν είναι Μ το μέσον του τμήματος ΒΓ τότε: 1 ΑΜ= ΑΒ+ΑΓ 2 2 ΑΜ=ΑΒ+ΑΓ ( ) ή αλλιώς ΠΑΡΑΔΕΙΓΜΑ Αν είναι Κ,Λ,Μ,Ν τα μέσα των πλευρών ΑΒ, ΒΓ,ΓΔ ΔΑ τετραπλεύρου ΑΒΓΔ, και Ρ τυχαίο σημείο του επιπέδου, να δειχθεί ότι : ΡΚ+ΡΛ+ΡΜ+ΡΝ=ΡΑ+ΡΒ+ΡΓ+Ρ ΑΠΟΔΕΙΞΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 10

ΜΕΘΟΔΟΣ 9 Η Επίλυση εξίσωσης ΠΑΡΑΔΕΙΓΜΑ Αν τα σημεία Α, Β είναι διαφορετικά να βρεθεί ο πραγματικός αριθμός x για τον οποίο ισχύει x Α 3 ΑΓ= x Β 3 ΒΓ ΜΕΘΟΔΟΣ 10 Η Γραμμικός συνδυασμός ΠΑΡΑΔΕΙΓΜΑ Δίνεται τρίγωνο ΑΒΓ και σημείο Μ τέτοιο ώστε ΒΜ+ 3 ΓΜ= 0 Α) Να γραφεί το διάνυσμα ΑΜ ως γραμμικός συνδυασμός των διανυσμάτων ΑΒ, ΑΓ Β) Να βρεθούν οι πραγματικοί αριθμοί α και β ώστε: 8 ΑΜ 6 ΑΒ= α ΒΓ β ΑΓ ΛΥΣΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 11

ΑΣΚΗΣΗ 1 Η ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ Δίνεται τρίγωνο ΑΒΓ με Ε το μέσο της ΑΓ. Θεωρούμε επίσης τα σημεία Δ και Ζ τέτοια ώστε: Β= 2Α και ΓΖ=ΒΓ 1 Α) Να δειχθεί ότι Α = ΑΒ 3 Β) Να γραφεί το διάνυσμα Ε ως γραμμικός συνδυασμός των διανυσμάτων ΑΒ και ΑΓ Γ) Να δειχθεί ότι τα σημεία Δ, Ε, Ζ είναι συνευθειακά. ΑΣΚΗΣΗ 2 Η Έστω α, β, γ τα διανύσματα θέσης των σημείων Α, Β, Γ αντίστοιχα ως προς ένα σημείο Ο. Έστω επίσης τα σημεία Κ, Λ, Μ για τα οποία ισχύουν 5 8 ΑΒ= 3 ΒΚ, ΛΓ= ΛΒ, ΑΜ= ΑΓ 2 3 Α) Να γραφούν τα διανύσματα ΟΚ, ΟΛ, ΟΜ ως γραμμικός συνδυασμός των διανυσμάτων α, β, γ. Β) Να δειχθεί ότι τα σημεία Κ, Λ, Μ είναι συνευθειακά. ΑΣΚΗΣΗ 3 Η Στο διπλανό σχήμα είναι Ο =α, ΟΓ =β και ΟΑ = 3Ο. Αν είναι Γ το μέσον της ΟΒ τότε: Α) Να γραφούν τα διανύσματα Β, ΑΓ, Γ ως γραμμικός συνδυασμός των διανυσμάτων α, β. Β) Αν Μ= µ Β, ΓΜ= λ ΓΑ, να βρεθούν οι αριθμοί μ και λ. ΑΣΚΗΣΗ 4 Η Δίνεται τετράπλευρο ΑΒΓΔ και Κ, Λ τα μέσα των ΑΒ και ΓΔ αντίστοιχα. Α) Να δειχθεί ότι ΚΛ= 1 ( Α +ΒΓ ) 2 Β) Να δειχθεί ότι ΛΑ+ΛΒ+ΚΓ+Κ = 0 ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 12

ΑΣΚΗΣΗ 5 Η Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ,Ε,Ζ τέτοια ώστε 2 4 Α = ΑΒ, ΑΖ= ΑΓ, ΓΕ=ΒΓ 3 5 Α) Να γραφούν τα διανύσματα Ε και Ζ ως γραμμικός συνδυασμός των διανυσμάτων ΑΒ και ΑΓ Β) Να δειχθεί ότι τα σημεία Δ,Ε,Ζ είναι συνευθειακά. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ή ΛΑΘΟΣ Α/Α ΠΡΟΤΑΣΗ ΣΩΣΤΟ ΛΑΘΟΣ 1 Αν ισχύει λ α = λ β τότε α = β 2 Ισχύει : ΚΛ=ΟΚ ΟΛ 3 Αν ισχύει λ α = µ α τότε λ = µ 4 Ισχύει ότι ΑΒ=ΟΑ+ΒΟ 5 Τα αντίρροπα διανύσματα έχουν αντίθετη διεύθυνση. 6 Όταν δύο διανύσματα είναι αντίθετα έχουν ίσα μέτρα. 7 Αν είναι : α + β = 7, α = 5, β = 12 τότε α β τότε τα διανύσματα α και β είναι αντίρροπα. 8 2 Αν ισχύει ΑΒ= ΒΓ τότε τα σημείο Α βρίσκεται 3 μεταξύ των σημείων Β και Γ. 9 Ισχύει ότι: α + β = α + β α β 10 Αν είναι ΑΒ= 0 τότε τα σημεία Α και Β αναγκαστικά συμπίπτουν. 11 1 Το διάνυσμα α α είναι μοναδιαίο. ( α 0) 12 1 1 Ο φορέας του διανύσματος γ = α+ β α β διχοτομεί τη γωνία των φορέων των διανυσμάτων α και β. ( α 0 και β 0) 13 Αν για τα διανύσματα α και β ισχύει α = α β τότε αναγκαστικά είναι α= 0. 14 Ο φορέας του διανύσματος γ = β α+ α β διχοτομεί τη γωνία των φορέων των διανυσμάτων α και β. ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 13

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΤΥΠΟΛΟΓΙΟ u= x i+ y j= ( x, y) 2 2 u = x + y y λ =, x 0 u x ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Συντεταγμένες διανύσματος με γνωστά άκρα: AB= ( x x, y y ) 2 1 2 1 Συντελεστής διεύθυνσης διανύσματος ευθύγραμμου y2 y1 τμήματοςλ ΑΒ =, x x x x 2 1 1 2 Δεν ορίζεται συντελεστής διεύθυνσης για διανύσματα παράλληλα στον άξονα y y. Αν α / / x x τ τε λ = 0 ό α Μέτρο διανύσματος - μήκος ευθύγραμμου τμήματος AB = AB = x x 2 + y y 2 ( ) ( ) ( ) 2 1 2 1 Συντεταγμένες μέσου τμήματος με γνωστά άκρα x + x, y + x= y= y 2 2 1 2 1 2 ΑΠΟΔΕΙΞΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 14

Παραλληλία διανυσμάτων α= ( x1, y1), β= ( x2, y2) α / / β det α, β = 0 ( ) ΠΡΟΤΑΣΗ Αν α= ( x, y ), β= ( x, y ) 1 1 2 2 διεύθυνσης λ1, λ 2 τότε ισχύει : α / / β λ1 = λ2 ΑΠΟΔΕΙΞΗ 2 2 δύο διανύσματα με συντελεστές x1 y1 α / / β det ( α, β) = 0 = 0 x1 y2 y1 x2 = 0 x y 1 2 1 2 x1 x2 0 x y = y x x 1 y2 y1 x2 x x = x x 1 2 1 2 λ1 = λ2 ΕΦΑΡΜΟΓΗ 1 Η ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 15

ΕΦΑΡΜΟΓΗ 2 Η Αν Α( 2,1 ), Β( 1, 4 ), Γ( 6, 7) τρεις κορυφές του παραλληλογράμμου ΑΒΓΔ να βρεθούν οι συντεταγμένες της κορυφής Δ. ΛΥΣΗ ΕΦΑΡΜΟΓΗ 3 Η Αν είναι ( 3, 1 ), Ε( 5, 3 ), Ζ( 0, 2) τα μέσα των πλευρών ΑΒ, ΑΓ και ΒΓ αντίστοιχα, τριγώνου ΑΒΓ, να βρεθούν οι συντεταγμένες των κορυφών Α,Β,Γ. ΛΥΣΗ Δ μέσο του ΑΒ άρα Ε μέσο του ΑΓ άρα xα+ xβ x = 2 yα+ yβ y = 2 xα+ xγ xε = 2 yα+ yγ yε = 2 xβ + xγ xζ = Ζ μέσο του ΒΓ άρα 2 yβ+ yγ yζ = 2 ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 16

ΕΦΑΡΜΟΓΗ 4 Η Να γραφεί το διάνυσμα α = ( 3,2) β = = ( 1, 4) και γ ( 3, 5) ως γραμμικός συνδυασμός των διανυσμάτων ΛΥΣΗ Αρκεί να βρεθούν κατάλληλοι αριθμοί κ και λ τέτοιοι ώστε : α = κ β + λ γ ΕΦΑΡΜΟΓΗ 5 Η Α 0, 1, Β 2,3, Γ k 1, 4k 7, k R Δίνονται τα σημεία ( ) ( ) ( ) Να βρεθεί για ποια τιμή του k τα σημεία είναι συνευθειακά. ΛΥΣΗ ΑΒ = = ( x x, y y ) B A B A ΑΓ = = ( x x, y y ) Γ A Γ Αφού θέλουμε Α,Β,Γ συνευθειακά αρκεί A ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 17

ΕΦΑΡΜΟΓΗ 6 Η Δίνονται τα σημεία Α( 7,5 ), Β( 1, 3). Α) Να βρεθούν τα σημεία του άξονα x x που απέχουν απόσταση 5 μονάδων από το Β. Β) Να βρεθεί το σημείο του άξονα x x που ισαπέχει από τα Α και Β. ΛΥΣΗ Α) Έστω Μ ( x,0) το ζητούμενο σημείο. 2 2 Πρέπει ( ) ( x x ) ( y y ) ΒΜ = 5 + = 5 Μ Β Μ Β ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 18

ΟΡΙΣΜΟΣ: ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΠΡΟΣΟΧΗ: Το εσωτερικό γινόμενο δύο διανυσμάτων είναι: ΣΥΝΕΠΕΙΕΣ ΟΡΙΣΜΟΥ α β = β α (αντιμεταθετική ιδιότητα) α β α β = 0 α β αɵ, β =... συν αɵ, β =... α β = ( ) ( ) ɵ ɵ ( ) ( ) α β α, β =... συν α, β =... α β = 2 α = α 2 ΑΝΑΛΥΤΙΚΗ ΕΚΦΡΑΣΗ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ Αν είναι α = ( x, y ), β = ( x, y ) 1 1 2 2 ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ( ) = ( ) = ( ), α ( β + γ) = α β + α γ τότε : α β = x1 x2+ y1 y2 α λ β λ α β λ α β λ R (επιμεριστική ιδιότητα) a λ λ = 1, a, β / / y y ΑΠΟΔΕΙΞΗ ΤΗΣ 3 ΗΣ ΙΔΙΟΤΗΤΑΣ α β ΠΡΟΣΟΧΗ ΣΤΙΣ ΠΑΡΑΚΑΤΩ ΠΡΟΤΑΣΕΙΣ 1) α β α β 2) ( α β) 2 α 2 β 2 α β γ α β γ 3) ( ) ( ) (πότε ισχύει η ισότητα;) (πότε ισχύει η ισότητα;) (πότε ισχύει η ισότητα;) ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 19

ΕΥΡΕΣΗ ΤΗΣ ΓΩΝΙΑΣ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ Έστω δύο διανύσματα α, β 0 α β προκύπτει συν( αɵ, β) = α β τότε από τη σχέση α β = α β συν( αɵ, β) Αν είναι α = ( x, y ), β = ( x, y ) 1 1 2 2 ɵ x x + y y 1 2 1 2 τότε : συν( α, β) = x + y x + y 2 2 2 2 1 1 2 2 ΠΡΟΒΟΛΗ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΙΑΝΥΣΜΑ α =ΟΑ, v=ομ ΟΜ = προβ 1 v α Αποδεικνύεται ότι: α v= α προβ α v ΕΦΑΡΜΟΓΗ Δίνονται τα διανύσματα α = ( 3, 2 ), β = ( 2,10) Να βρεθεί η προβολή του διανύσματος α πάνω στο διάνυσμα β ( προβ α ) καθώς και η προβολή του διανύσματος β πάνω στο διάνυσμα α ( προβ β ) ΛΥΣΗ β α ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 20

ΕΦΑΡΜΟΓΗ 1 Η Δίνονται τα διανύσματα α, β ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ Α) να βρεθεί το εσωτερικό γινόμενο α β = 4, = 3,, = 60 ο για τα οποία α β ( αɵ β ) Β) να βρεθεί το μέτρο του διανύσματος γ = 2α β ΛΥΣΗ ΕΦΑΡΜΟΓΗ 2 Η Για δύο οποιαδήποτε διανύσματα α, β να αποδειχθεί ότι ισχύει: α+ β + α β = 2α + 2 β 2 2 2 2 ΑΠΟΔΕΙΞΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 21

ΕΦΑΡΜΟΓΗ 3 Η Δίνονται τα διανύσματα α, β 2 = = = 3 για τα οποία α 2, β 3, συν( αɵ, β ) Να βρεθεί η τιμή του k ώστε ( 8 α k β) ( α 4 β) Να βρεθεί το μέτρο του γ = α 4 β ΛΥΣΗ ΕΦΑΡΜΟΓΗ 4 Η = 1, k, = 3, 4 + k, k R Δίνονται τα διανύσματα α ( ) β ( ) Να βρεθεί η τιμή του k ώστε ( α + β) ( 13 α + 3 β) ΛΥΣΗ α+ β = 13 α+ 3 β = + + ( α β) ( 13 α 3 β) ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 22

ΕΦΑΡΜΟΓΗ 5 Η Δίνονται τα διανύσματα α, β, γ για τα οποία α = 2, β = 3, γ = 5 και 2 α+ β γ = 0. Να υπολογιστεί το εσωτερικό γινόμενο α β. ΛΥΣΗ 2 α+ β γ = 0 γ = 2 α+ β ΕΦΑΡΜΟΓΗ 6 Η Δίνονται τα διανύσματα α, β Α) να βρεθεί το εσωτερικό γινόμενο α β Β) να βρεθεί το εσωτερικό γινόμενο α γ = 3, = 2,, = 60 ο για τα οποία α β ( αɵ β ) Γ) να βρεθεί το μέτρο του διανύσματος γ = 2α 3 β Δ) να βρεθεί η γωνία ( αɵ, γ) ΛΥΣΗ Α) α β = = = Β) α γ α ( 2α 3 β) Γ) Δ) συν( α, γ) Άρα ( α, γ) ɵ α γ = = α γ ɵ = ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 23

ΕΦΑΡΜΟΓΗ 7 Η Δίνονται τα διανύσματα α = ( 3,1 ), β = ( 2, 1).Να βρεθεί η γωνία ( αɵ, β) ΛΥΣΗ α β = x x + y y = 1 2 1 2 2 2 α = x + y = 1 1 2 2 β = x + y = 2 2 συν( α, β) ɵ = Άρα ( α, β) ɵ α β = = α β ΕΦΑΡΜΟΓΗ 7 Η Δίνονται τα διανύσματα α = ( 3,4 ), β = ( 4,7) Να αναλυθεί το διάνυσμα β σε δύο κάθετες συνιστώσες, μια από τις οποίες να είναι παράλληλη στο διάνυσμα α. ΛΥΣΗ β = β + β, µε β / / α και β α Έστω 1 2 1 2 Αφού είναι β / / α 1 άρα: Αφού είναι β 2 α άρα: ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 24

ΑΣΚΗΣΗ 1 Η ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ (ΑΠΟ ΤΡΑΠΕΖΑ ΥΠΟΥΡΓΕΙΟΥ) ΑΣΚΗΣΗ 2 Η ΑΣΚΗΣΗ 3 Η ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 25

ΑΣΚΗΣΗ 4 Η ΑΣΚΗΣΗ 5 Η ΑΣΚΗΣΗ 6 Η ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 26

2ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΑΣΚΗΣΗ 7Η ΑΣΚΗΣΗ 8Η ΑΣΚΗΣΗ 9Η ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 27

2ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΑΣΚΗΣΗ 10Η ΑΣΚΗΣΗ 11Η ΑΣΚΗΣΗ 12Η ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 28

ΑΣΚΗΣΗ 13 Η ΑΣΚΗΣΗ 14 Η ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 Σελίδα 29