SPECTRUM, TRACE AND OSCILLATION OF A STURM-LIOUVILLE TYPE RETARDED DIFFERENTIAL OPERATOR WITH INTERFACE CONDITIONS ERDOĞAN ŞEN arxiv:7.789v math.ca 6 Oct 7 Abstract. I this study, a formula for regularized sums of eigevalues of a Sturm-Liouville problem with retarded argumet at the poit of discotiuity is obtaied. Moreover, oscillatio properties of the related problem is ivestigated. Mathematics Subject Classificatio. 344, 47A, 47A55. Keywords ad phrases. Differetial equatio with retarded argumet; iterface coditios; spectrum; regularized trace; odal poits; oscillatio.. Itroductio I this paper, we cosider the boudary value problem for the differetial equatio with retarded argumet pxy x+qxyx x+ yx =, o,,, with boudary coditios a y+a y =, 3 y +dy = ad iterface coditios 4 γ y δ y + =, 5 γ y δ y + =, where px = p for x, ad px = p for x, ; the realvalued fuctio qx is cotiuous i,, ad has fiite limits q ± = lim x ± qx, the real-valued fuctio x is cotiuous i,, has fiite limits ± = lim x ± x, if x, thex x ; if x, thex x ;isaspectralparameter; p i,a i,d,γ i,δ i i =, are arbitrary real umbers such that p i a i d i =,. Differetial equatios with retarded argumet appeared as far back as the eighteeth cetury i coectio with the solutio of the problem of Euler o the ivestigatio of the geeral form of curves similar to their ow evolutes. Differetial equatios with retarded argumet arise i may applicatio of mathematical modellig: for example, combustio i the chamber of a liquid propellat rocket egie, ad vibratios of the hammer i a electromagetic circuit breaker 3,4.
ERDOĞAN ŞEN oudary value problems with iterface coditios arise i varied assortmet of physical trasfer problems see 5. Also, some problems with iterface coditios arise i thermal coductio problems for a thi lamiated plate i.e., a plate composed by materials with differet characteristics piled i the thickess. I this class of problems, iterface coditios across the iterfaces should be added sice the plate is lamiated. The study of the structure of the solutio i the matchig regio of the layer with the basis solutio i the plate leads to cosideratio of a eigevalue problem for a secod-order differetial operator with piecewise cotiuous coefficiets ad iterface coditios 6. The asymptotic formulas for eigevalues of boudary value problems with retarded argumet obtaied i 7-7. I 7, the pricipal term of asymptotic distributio of eigevalues of the problem -5 was obtaied up to O. ut we eed sharper asymptotic formulas. Therefore, we improve this formula up to O. 3 The theory of regularized traces of Sturm-Liouville operators stems from the paper 8 of Gelfad ad Levita. Trace formulas for the Sturm- Liouville equatio with a complex valued potetial ad with two poit boudary coditios obtaied i 9. Regularized trace of the Sturm- Liouville problem with irregular boudary coditios ivestigated i. A regularized trace formula for the matrix Sturm-Liouville operator foud i. The first regularized traces of boudary value problems with ubouded operator coefficiet i a fiite iterval obtaied i -4. The secod regularized trace of a differetial operator with bouded operator coefficiet ad with the mixed boudary coditios ca be foud i 5. For a comprehesive review of traces of Schrödiger operators, the iterested reader is referred to 6. As metioed above partly, the literature is about the regularized traces of classic type differetial operators is so rich ad diverse. For a more comprehesive list, oe ca refer to the survey paper 7 ad the paper 8. However, there are oly a few works o regularized traces ad oscillatio properties for differetial operators with retarded argumet. M. Pikula i 8 obtaied trace formula of first order: if τ τ = qϕ τ h +H = ad if τ τ h+h + cosτ = = qϕ τ h +H + b 4 8 τ + h+h qtdt τ τ τ qtdt qτ+q qtdt+ 4 τ qτ
ON A DISCONTINUOUS RETARDED DIFFERENTIAL OPERATOR 3 for the boudary-value problem of secod order with retarded argumet: y +qxyx τ = y, y hy = y +Hy =, yx τ = yϕx τ, x τ, ϕ =. C-F. Yag i obtaied formula of the first regularized trace, oscillatios of the eigefuctios ad the solutios of iverse odal problem for discotiuous boudary value problems with retarded argumet ad with iterface coditios at the oe poit of discotiuity. F. Hira i 4 obtaied a formula for regularized sums of eigevalues for a Sturm-Liouville problem with retarded argumet at the oe poit of discotiuity which cotais a spectral parameter i the boudary coditios ad as a most recet study i this topic, Şe studied regularized trace formula ad oscillatio of eigefuctios of a Sturm-Liouville operator with retarded argumet at two poits of discotiuity 6. The goals of this article are to calculate the regularized trace ad to fid the odal poits of eigefuctios for the problem -5. We poit out that our results are extesio ad/or geeralizatio to those i 7-, 7-8, 8, 3, 3. For example, if the retardatio fuctio i ad px,δ =,γ = we have the formula of the first regularized trace for the classical Sturm-Liouville operator which is called Gelfad-Levita formula see 9.. The spectrum Let ω x, be a solutio of Eq. o,, satisfyig the iitial coditios 6 ω, = a ad ω, = a. The coditios 6 defie a uique solutio of Eq. o, see 7,7. After defiigtheabove solutio, thewe will defiethesolutio ω x, of Eq. o, by meas of the solutio ω x, usig the iitial coditios 7 ω, = γ δ ω, ad ω, = γ δ ω,. The coditios 7 defie a uique solutio of Eq. o, see 7. Cosequetly, the fuctio ωx, is defied o,, by the equality ωx, = { ω x,, x,, ω x,, x, is a solutio of o,,, which satisfies oe of the boudary coditios ad the iterface coditios 4-5 The the followig itegral equatios hold: 8 ω x, = a cos x a p p si x p qτsi x τω τ τ,dτ, p p
4 ERDOĞAN ŞEN 9 ω x, = γ ω δ, cos x p p + γ p ω, si x δ p qτsi p x τω τ τ,dτ. Solvig the equatios 8-9 by the method of successive approximatio, we obtai the followig asymptotic equalities for : ω x, = a cos p x a p si p x a p a p qτsi p x τdτ qτsi x τ τdτ p. Differetiatig with respect to x, we get ω x, = a si x a cos x a p p p p qτcos x τdτ p a p Usig the fact that, O = qτcos p x τ τdτ. x qτsi p τ τdτ, x, ; x qτcos p τ τdτ, x, ; x x see 9, ad we have ω x, = γ a δ cos p γ a p +p δ p p qτsi p τ τdτ, x, ; qτcos p τ τdτ, x, p p p γ a p δ si p p p p {, +Dx, si p p p p + A, +Cx, cos } p p p p.
Here, ON A DISCONTINUOUS RETARDED DIFFERENTIAL OPERATOR 5 Ax, = x, = Cx, = Dx, = qτsi τ dτ x, ; p qτcos τ dτ x, ; p qτsi τ dτ, x p, ; qτcos τ dτ, x p,. Differetiatig with respect to x, we get ω x, = γ a si p p γ a p cos p p δ p p p δ p p p γ { a p +p δ p p, +Dx, cos p p p p 3 A, +Cx, si p p p p }. The solutio ωx, defied above is a otrivial solutio of satisfyig coditios ad 4-5. Puttig ωx, ito 3, we get the characteristic equatio 4 Θ ω,+dω,. The set of eigevalues of boudary value problem -5 coicides with the set of the squares of roots of 4, ad eigevalues are simple see 7. From, 3 ad 4, we obtai p p γ a p cos p p δ p p γ { a p +p δ p p, +D, cos p p p p A, +C, si } p p p p + dγ a cos p p. δ p p Θ γ a δ p si p p p Defie Θ γ a si p p. δ p p p Deote by = p p p +p, Z, zeros of the fuctio Θ. It is simple algebraically except for ± ad we have
6 ERDOĞAN ŞEN 5. Deote by C the circle of radius, < ε <, cetered at the origi ad by Γ N the couterclockwise square cotours with four vertices K = N +ε+n i, L = N ε+n i, M = N ε N i,, N = N +ε N i, where i = ad N is a atural umber. Obviously, if C or Γ N, the Θ M e Im M > by usig a similar method i, 3. Thus, o C or Γ N, we have { Θ p p p p Θ = + cot a p p, +D, cot p p p p dp cot } p p p p. Expadig l Θ Θ A, +C, by the Maclauri formula, we fid that l Θ Θ = { a p p, +D, dp cot p p p +p } A p p p p, +C, { a p cot p a p p p p p 4p p + p +p p p a p p A, +C, cot p, +D, dp A, +C,, +D, dp } p p p Usig the well-kow Rouche Theorem, we get that Θ has the same umber of zeros iside Γ N as Θ see. Usig the residue theorem, we have = l i C Θ Θ d = cot i a p p, +D, dp C + p +p d A i p p, +C, C 3. p p p p d
ON A DISCONTINUOUS RETARDED DIFFERENTIAL OPERATOR 7 + cot i a p p, +D, dp C + i C + p +p i p p C p +p 4p p d A, +C, p p p p a p p, +D, dp cot p p A, p p +C, d Thus, usig 5 ad residue calculatio we have prove the followig theorem. Theorem.. The spectrum of the problem -5 has the = a p p, +D, dp + { p +p A p p, a p p, 3 a p p, asymptotic distributio for sufficietly large. +C, 3 +D, dp }. +D, dp 3 3. The regularized trace formula I this sectio, we will get regularized trace formula for the problem - 5. The asymptotic formula 5 for the eigevalues implies that for all sufficietly large N, the umbers with N are iside Γ N, ad the umbers with > N are outside Γ N. It follows that cot p N + + = i Γ = N p p p = i l Γ a p p, +D, d dp d+ p +p A +C, i p p, d Γ + cot i a p p, +D, dp Γ p p p p d d
8 ERDOĞAN ŞEN + i Γ + p +p i p p Γ p +p 4p p a p p A, d +C, cot p p A, p p +C, by calculatios, which implies that + = N N = N p +p p p = N 6 where,, +D, dp d, N N + + = N a p p, +D, dp a p p, +D, dp a p p, +D, dp A, +C, +R a p p, +D, 4p p R = Res = { p +p p p dp A, +C,, N a p p, +D, dp cot p p A, p p +C, Passig to the limit as N i 6, we have { + + = d. + a p p, +D, dp p +p p p a p p, +D, dp A, } +C,
ON A DISCONTINUOUS RETARDED DIFFERENTIAL OPERATOR 9 = a p p, a p p, 7 4p p +D, dp +R +D, dp. A +C,, Theseriesotheleftsideof7 iscalledtheregularizedtraceoftheproblem -5. 4. The oscillatio I this chapter, we will fid odal poits of eigefuctios of the problem -5. Let us rewrite the equatio ad replace by ω x, = a cos x a p si x a si x p p p p + a cos x p p p τ qτsi dτ τ qτcos dτ Let us assume that x j are the odal poits of the eigefuctio ω x,. Takig si x p ito accout for sufficietly large, we get x cot + Ax, = a p + x,. p p a p It follows easily that x 8 ta + p. = a p x, a p. Thus, solvig the equatio 8, oe obtais j 9 x j = p a p x j, a Note that = + ad a + p +p = 3. p p, +D, dp 3 4. p 4 Substitutig ad ito 9 we have j x j = p j a p p a + p +p p p, +D, dp 3
ERDOĞAN ŞEN j a p a p, 3, j =,. Similarly, from, we get δ ω x, = a cos p p a p si p p γ p p p p a { p +p p p, +Dx, si p p p p + A, +Cx, cos } p p p p. For odal poits of ω x,, agai, takig si p p p p ito accout for sufficietly large, we get cot p p A, +Cx, p +p p p p p = a p + p +p, +Dx,. a p p ad thus p p ta + p p = a p p +p, +Dx, a p p Thus, solvig the equatio 3, oe obtais 4 x j = p p p + j p α p p a p +p, +D x j, p 3. Substitutig ad ito 4 we have j a p p a + p +p 5 p +p, x j = p p p + j p. 3 p p, +D, dp 3 α p p a p, p +D j Thus we have prove the followig theorem: 3, j =,. Theorem 4.. For sufficietly large, we have the formulas ad 5 of the odal poits for the problem -5.
ON A DISCONTINUOUS RETARDED DIFFERENTIAL OPERATOR Refereces L. Crocco ad S. Chag, Theory of combustio istability i liquid propellat rocket motors, utterworths, Lodo, 956. J. Kolesovas, D. Svitra, Mathematical modellig of the combustio process i the chamber of a liquid propellat rocket egie, Lithuaia Mathematical Joural, 5 4 975 63-64. 3 K.F. Teodorcik, Self-oscillatory systems, 3rd ed., Gostehizdat, Moscow, 95. Russia. 4 A.A. Harkevic, Auto-oscillatios, Gostehizdat, Moscow, 954. Russia. 5 A. V. Likov, Y. A. Mikhalilov, The Theory of Heat ad Mass Trasfer, Qoseergaizdat, 963 I Russia. 6 I. Titeux, Y. Yakubov, Completeess of root fuctios for thermal coductio i a strip with piecewise cotiuous coefficiets, Math. Models Methods Appl. Sci. 7 7 997 35-5. 7 S.. Norki, Differetial equatios of the secod order with retarded argumet, Traslatios of Mathematical Moographs, AMS, Providece, RI, 97. 8 M. Pikula, Regularized traces of differetial operator of Sturm-Liouville type with retarded argumet, Differetsialye Uraveiya, 6 99 3-9 Russia; Eglish traslatio: Differetial Equatios, 6 99 9-96. 9 A. ayramov, S. C. alıṣka ad S. Uslu, Computatio of eigevalues ad eigefuctios of a discotiuous boudary value problem with retarded argumet, Appl. Math. Comput., 9 7 59-6. E. Şe, A. ayramov, Calculatio of eigevalues ad eigefuctios of a discotiuous boudary value problem with retarded argumet which cotais a spectral parameter i the boudary coditio, Math. Comput. Model. 54-39-397. C-F. Yag, Trace ad iverse problem of a discotiuous Sturm-Liouville operator with retarded argumet, J. Math. Aal. Appl., 395 3-4. F.A. Cetikaya, K.R. Mamedov, A boudary value problem with retarded argumet ad discotiuous coefficiet i the differetial equatio, Azerbaija Joural of Mathematics, 7 7 35-45. 3 E. Şe, M. Acikgoz, S. Araci, Spectral problem for Sturm-Liouville operator with retarded argumet which cotais a spectral parameter i the boudary coditio, Ukraiia Mathematical Joural, 68 8 7 63-77. 4 F. Hira, A trace formula for the Sturm-Liouville type equatio with retarded argumet, Commu. Fac. Sci. Uiv. Ak. Ser. A Math. Stat., 66 7 4-3. 5 M. ayramoglu, A. ayramov, E. Şe, A regularized trace formula for a discotiuous Sturm-Liouville operator with delayed argumet, Electroic Joural of Differetial Equatios EJDE, 7 4 7 -. 6 E. Şe, A regularized trace formula ad oscillatio of eigefuctios of a Sturm- Liouville operator with retarded argumet at two poits of discotiuity, Mathematical Methods i the Applied Scieces, doi:./mma.45. 7 E. Şe, A. ayramov, Spectral aalysis of boudary value problems with retarded argumet, Commu. Fac. Sci. Uiv. Ak. Sér. A Math. Stat., 66 7 75-94. 8 I.M. Gelfad,.M. Levita, O a formula for eigevalues of a differetial operator of secod order, Doklady Akademii Nauk SSSR, 88 953 593 596 Russia. 9 A. Maki, Regularized trace of the Sturm-Liouville operator with irregular boudary coditios, Electroic Joural of Differetial Equatios EJDE, 9 7 9-8. A. Maki, Trace formulas for the Sturm-Liouville operator with regular boudary coditios, Doklady Mathematics, 76 7 7-77. C-F. Yag, Trace formula for the matrix Sturm-Liouville operator, Aal. Math. Phys. 66 3 4. F.G. Maksudov, M. ayramoglu, E.E. Adıguzelov, O a regularized traces of the Sturm-Liouville operator o a fiite iterval with the ubouded operator coefficiet, Doklady Akademii Nauk SSSR, 77 4 984; Eglish traslatio: Soviet Math. Dokl., 3 984 69-73.
ERDOĞAN ŞEN 3 E. Adiguzelov, Y. Sezer, The regularized trace of a self adjoit differetial operator of higher order with ubouded operator coefficiet, Appl. Math. Comput., 8 3-. 4 E. Şe, A. ayramov, K. Oruçoğlu; Regularized trace formula for higher order differetial operators with ubouded coefficiets, Electroic Joural of Differetial Equatios EJDE, 6 3 6, -. 5 E. Adiguzelov, Y. Sezer, The secod regularized trace of a self adjoit differetial operator give i a fiite iterval with bouded operator coefficiet, Math. Comput. Model., 53 553-565. 6 F. Gesztesy F., H. Holde, O Trace Formulas for Schrödiger-Type Operators. I: Truhlar D.G., Simo. eds Multiparticle Quatum Scatterig With Applicatios to Nuclear, Atomic ad Molecular Physics. The IMA Volumes i Mathematics ad its Applicatios, vol 89. Spriger, New York, 997. 7 V.A. Sadovichii, V.E. Podolskii, Traces of operators, Uspekhi Mat. Nauk, 6 6 89-56; Eglish traslatio: Russia Math. Surveys 6 6 885-953. 8 C.T. Fulto ad S.A. Pruess, Eigevalue ad eigefuctio asymptotics for regular Sturm-Liouville problems, J. Math. Aal. Appl. 88 994 97-34. 9 L.A. Dikii, Trace formulas for Sturm-Liouville differetial equatios, Uspekhi Mat. Nauk, 3 958-43. 3 C. T. Shieh, V.A. Yurko, Iverse odal ad iverse spectral problems for discotiuous boudary value problem, J. Math. Aal. Appl. 347 8 66 7. 3 Y.H. Cheg, C.K. Law, O the quasi-odal map for the Sturm-Liouville problem, Proc. Soc. Ediburgh, 36A 6 7-86. 3 V.A. Yurko, Iverse Spectral Problems for Differetial Operators ad Their Applicatios, Gordo ad reach, Amsterdam,. Departmet of Mathematics, Namık Kemal Uiversity, 593, Tekirdağ, Turkey E-mail address: erdoga.math@gmail.com