Διδακτική των Μαθηματικών

Σχετικά έγγραφα
Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα:

8. Σύνθεση και ανάλυση δυνάμεων

Α Γυμνασίου, Μέρο Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία

ΣΧΕΔΙΟ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ

ΕΝΟΤΗΤΑ 3 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ»

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;

ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10. Αρ2.7 Ανακαλύπτουν, διατυπώνουν και εφαρμόζουν τα κριτήρια διαιρετότητας του 2, 5 και του 10.

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση


ραστηριότητες στο Επίπεδο 1.

ΜΑΘΗΜΑ 5: ΑΝΑΚΛΑΣΗ (συνέχεια)

Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά.

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

Βασικές Γεωμετρικές έννοιες

5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ )


ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

τα βιβλία των επιτυχιών

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΝΟΤΗΤΑ 5 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

π x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

2ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ. ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ 2ο ΓΕΛ ΣΥΚΕΩΝ

Xenia Xistouri, University of Cyprus. Επισκόπηση άρθρου Κων/νος Κακαβάς,

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Φύλλο εργασίας Νο1. Ορθοκανονικό Σύστημα Ημιαξόνων, Συντεταγμένες Σημείου. Το ορθοκανονικό σύστημα αποτελείται από δύο ημιευθείεςοχ και Οy ώστε:

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

Ευθύγραμμες Κινήσεις

Σχεδίαση τομών Συνήθη σφάλματα και Παραδείγματα. Πότε;

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

Σχολείο: 25 ο Δημ. Σχ. Βόλου Τάξη: Γ Διδακτική Ενότητα: 24 η. Ημερομηνία:19/11/09 Αριθμός Μαθητών: 18 Διδακτική ώρα: 1 η

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

3 + 5 = 23 : = 23

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ευκλείδεια Γεωμετρία

Σχέδιο μαθήματος στα μαθηματικά

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

4. Σχέδιο Μαθήματος. Ένα άλλο κεφάλαιο που έχει συναφή σχέση με το αυτό του 25 είναι το 26:

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

Μελέτη της συνάρτησης ψ = α χ 2

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

κατασκευής ενός τριγώνου, με υπολογισμό του εμβαδού του τριγώνου,,με την σχέση που υπάρχει μεταξύ του ύψους και του εμβαδού του, τη

ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

Διαγράμματα. Νίκος Σκουλίδης, Σημειώσεις Φυσικής Α` Γυμνασίου, , Διαγράμματα_1_0.docx

ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ )

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

ΕΝΟΤΗΤΑ 4 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

1 ο Πρότυπο Πειραματικό Γυμνάσιο Σημειώσεις στη Γεωμετρία Α Γυμνασίου

1.11 ΚΥΚΛΟΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΤΟΥ ΚΥΚΛΟΥ

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ

ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Γεωμετρικά σχήματα - Η περίμετρος. Ενότητα 8. β τεύχος

Mαθηματικά Δ Δημοτικού

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα :

v a v av a, τότε να αποδείξετε ότι ν <4.

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

Stroke.

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ

2.3 ΜΕΣΟΚΑΘΕΤΟΣ ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ

Γ ΓΥΜΝΑΣΙΟΥ. Εισαγωγή : Λόγοι που επιβάλλουν τη διδασκαλία της ομοιοθεσίας

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

Η κατασκευή με τις δύο πινέζες και το νήμα

ΔΙΑΣΤΑΣΕΙΣ. Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Διδακτικό υλικό. Μέσα διδασκαλίας: Παιχνίδι Ναυμαχίας (είτε εμπορίου είτε σε φύλλο εργασίας), φύλλα εργασίας, υδρόγειος σφαίρα, internet.

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

Σελίδα 5: Α Γυμνασίου, Μέρος Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία

ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο

ΤΑΞΗ: ΣΤ. Προτείνεται να μην αξιοποιηθούν διδακτικά από το Βιβλίο Μαθητή τα παρακάτω: 1 ο σελ. 7, 4 η άσκηση, σελ. 8, 2 ο πρόβλημα

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων

6 Γεωμετρικές κατασκευές

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

y x y x+2y=

Transcript:

Διδακτική των Μαθηματικών Ονοματεπώνυμο : Μαμτζέλλη Χρυσούλα Τάξη : Γ Δημοτικού Κεφάλαιο 43 : Η συμμετρία Πρόκειται για ένα εισαγωγικό μάθημα στην αξονική συμμετρία. Οι μαθητές θα μάθουν πότε δύο σχήματα ή δύο μέρη του ίδιου σχήματος αποκαλούνται συμμετρικά, αλλά και ότι η ευθεία γραμμή που τα χωρίζει ονομάζεται άξονας συμμετρίας. Άλλωστε στις προηγούμενες τάξεις εμπειρικά και διαισθητικά είχαν ασχοληθεί με αυτές τις έννοιες, όμως, για πρώτη φορά έρχονται αντιμέτωποι με αυτούς τους δύο όρους. Στόχοι του μαθήματος Οι μαθητές θα είναι ικανοί: Να αναγνωρίζουν αν ένα ή δύο διαφορετικά σχήματα είναι συμμετρικά ή όχι. Να εντοπίζουν τον άξονα συμμετρίας αρχικά με τη δίπλωση και στη συνέχεια να φαντάζονται τη δίπλωση (νοερά), για να ελέγχουν αν δεδομένα σχήματα είναι συμμετρικά. Να ανακαλύπτουν και να χαράσσουν τον ή τους άξονες συμμετρίας ενός σχήματος. Να σχεδιάζουν οι ίδιοι το συμμετρικό ενός σχήματος που τους δίνεται. Ενότητα 1 (Βιώνοντας το γνωστό)

Τι παρατηρείς στις παραπάνω εικόνες; Συζήτησε με τους συμμαθητές σου γι αυτές και επισημάνετε το κοινό τους σημείο. Αν στις παραπάνω εικόνες διπλώσεις το χαρτί στα δύο σύμφωνα με την κόκκινη γραμμή, τι θα παρατηρήσεις; Ο δάσκαλος έχει ειδοποιήσει τους μαθητές απ την προηγούμενη μέρα να φέρουν μικρούς καθρέφτες, για να πειραματιστούν μ αυτούς και να ανακαλύψουν μόνοι τους τα συμμετρικά διαφόρων σχημάτων. Έτσι, λοιπόν, ζητάει απ τα παιδιά να δουλέψουν εταιρικά (ανά δύο) και να τοποθετήσουν μπροστά απ τον καθρέφτη αντικείμενα, ώστε να φαίνεται μέσα σ αυτόν η εικόνα τους που είναι συμμετρική με το αντικείμενο. Ουσιαστικά, πρόκειται για μια βιωματική εφαρμογή των όσων παρατήρησαν παραπάνω. Ενότητα 2 (Βιώνοντας το νέο) Χώρισε καθεμία απ τις παρακάτω εικόνες με μία ευθεία γραμμή, έτσι ώστε όταν θα τις διπλώσεις κατά μήκος της γραμμής να ταυτιστούν τα δύο μέρη της κάθε εικόνας.

Χρωμάτισε τα υπόλοιπα κουτάκια που βρίσκονται κάτω από την κόκκινη γραμμή, έτσι ώστε το πάνω σχέδιο να είναι όμοιο με το κάτω. Δραστηριότητα 3 (Εννοιολόγηση με ονοματοποίηση) Φαντάσου ότι διπλώνεις το χαρτί κατά μήκος της κόκκινης γραμμής. Ποια σχήματα θα ταυτιστούν; α)

β) Επιχειρώντας να διπλώσει κάποιος το παραπάνω χαρτί κατά μήκος της κόκκινης γραμμής, θα διαπιστώσει ότι άλλα σχήματα θα ταυτιστούν και άλλα όχι. Γενικά, όταν ένα σχήμα μπορεί να χωριστεί με μία ευθεία γραμμή σε δύο τμήματα, έτσι ώστε το ένα τμήμα να είναι αντανάκλαση του άλλου, τότε το σχήμα αυτό είναι συμμετρικό ως προς την ευθεία αυτή. Η ευθεία γραμμή που χωρίζει το σχήμα αυτό σε δύο ίσα τμήματα ονομάζεται άξονας συμμετρίας. Επομένως, τα σχήματα που ταυτίζονται λέγονται συμμετρικά με άξονα συμμετρίας την ευθεία δίπλωσης. Δύο σχήματα λέμε ότι είναι συμμετρικά όταν κάθε σημείο τους απέχει ίση απόσταση από τον άξονα συμμετρίας τους (συχνή παρανόηση των μαθητών) και ταυτόχρονα υπάρχει ακριβής αντιστοιχία στο μέγεθος και το σχήμα. Για να δημιουργήσει κάποιος το συμμετρικό ενός σχήματος α) σε ένα τετραγωνισμένο χαρτί, θα υπολογίσει την απόσταση κάθε σημείου του σχήματος από τον άξονα συμμετρίας με βάση τα τετραγωνάκια, ενώ β) σε ένα λευκό χαρτί, θα υπολογίσει την ίδια απόσταση με βάση το χάρακα. Ένα σχήμα μπορεί να έχει έναν ή περισσότερους άξονες συμμετρίας. Κάποια συμμετρικά έχουν άξονα συμμετρίας που τα τέμνει, ενώ άλλα είναι συμμετρικά ως προς άξονα συμμετρίας που βρίσκεται έξω από αυτά. Όσο αφορά την παραπάνω άσκηση, η κόκκινη γραμμή αποτελεί τον άξονα συμμετρίας των σχημάτων που ταυτίζονται. Στην (α) περίπτωση, όμως, ο άξονας συμμετρίας βρίσκεται έξω από τα συμμετρικά, ενώ στη (β) περίπτωση τα τέμνει. Ενότητα 4 (Άμεση Εφαρμογή) Φτιάξε στο τετραγωνισμένο χαρτί το συμμετρικό της παρακάτω εικόνας.

Φτιάξε στο γεωπίνακα το συμμετρικό της παρακάτω εικόνας. Ενότητα 5 Φτιάξε το συμμετρικό των δύο παρακάτω εικόνων με τη βοήθεια του χάρακα σου. Κάθετος άξονας συμμετρίας

Οριζόντιος άξονας συμμετρίας Βρες και χάραξε τους άξονες συμμετρίας των συμμετρικών κεφαλαίων γραμμάτων του ελληνικού αλφαβήτου που δίνονται παρακάτω.

Α Θ Ε Κ Δ Ψ Ξ Μ Χ Ενότητα 6 (Κριτική Ανάλυση) Βρες ποιες από τις παρακάτω εικόνες είναι συμμετρικές και ποιες όχι και στη συνέχεια χάραξε τους άξονες συμμετρίας των συμμετρικών εικόνων.

α) Στα παρακάτω γεωμετρικά σχήματα τράβηξε τους άξονες συμμετρίας. β) Σχεδίασε δύο άλλα συμμετρικά γεωμετρικά σχήματα και χάραξε τους άξονες συμμετρίας τους. γ)

Ο κύκλος είναι συμμετρικό γεωμετρικό σχήμα; Αν είναι, χάραξε έναν άξονα συμμετρίας. Ο άξονας συμμετρίας που σχεδίασες είναι ίδιος με αυτόν που σχεδίασαν οι υπόλοιποι συμμαθητές σου; Τι παρατηρείς; Μπορείς να βγάλεις ένα γενικό συμπέρασμα για τους άξονες συμμετρίας του κύκλου; α) Ποιον αριθμό από το 1 έως το 10 σου θυμίζει ο αριθμός 6; β) Φτιάξε το συμμετρικό του 6 ως προς τον κάθετο άξονα. 6 γ) Αφού φτιάξεις το συμμετρικό του 6 ως προς τον κάθετο άξονα (έστω x), φτιάξε το συμμετρικό του x ως προς τον οριζόντιο άξονα. Συμμετρικό του 6 (x) Συμμετρικό του x δ) Το νέο συμμετρικό που προέκυψε συμπίπτει με τον αριθμό που απάντησες στο (α) ερώτημα;