Reflection Models. Reflection Models

Σχετικά έγγραφα
CS348B Lecture 10 Pat Hanrahan, Spring 2002

Ανάκλαση και Διάθλαση Ηλεκτρομαγνητικών Κυμάτων

Example 1: THE ELECTRIC DIPOLE

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II

Tutorial Note - Week 09 - Solution

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Συμπλήρωμα 1 2 ος νόμος του Νεύτωνα σε 3 διαστάσεις

The one-dimensional periodic Schrödinger equation

.. (1,2).

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Ενδεικτικές Λύσεις Θεµάτων Εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

2-REGULARITY AND 2-NORMALITY CONDITIONS FOR SYSTEMS WITH IMPULSIVE CONTROLS

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Note: Please use the actual date you accessed this material in your citation.

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

fysikoblog.blogspot.com

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field


Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Α Ρ Ι Θ Μ Ο Σ : 6.913

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Γενική Φυσική. Ενότητα 1: Κινητική. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων

Solutions - Chapter 4

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Laplace s Equation in Spherical Polar Coördinates

On homeomorphisms and C 1 maps

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

9ο Μάθημα Μοντέλα και Αλγόριθμοι Φωτισμού

Answer sheet: Third Midterm for Math 2339

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

ECE 222b Applied Electromagnetics Notes Set 3b

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Chapter 15 Identifying Failure & Repair Distributions

New symmetries of Black-Scholes equation

Lifting Entry (continued)

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ANTENNAS and WAVE PROPAGATION. Solution Manual

Accelerator Physics. G. A. Krafft, A. Bogacz, and H. Sayed Jefferson Lab Old Dominion University Lecture 9

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

Notes 6 Coordinate Systems

Dynamic models models with variables dated in different periods

Homework 8 Model Solution Section

( ) ρ ρ + + = + d dt. ME 309 Formula Sheet. dp g dz = ρ. = f +ΣΚ and HS. +α + z = +α + z. δ =δ = δ =θ= τ =ρ =ρ. Page 1 of 7. Basic Equations.

Το ασύρματο περιβάλλον στις κινητές επικοινωνίες

FORMULAE SHEET for STATISTICS II

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

A 1 A 2 A 3 B 1 B 2 B 3

Διανύσματα 1. Διανύσματα Πρόσθεση Διανυσμάτων Φυσική ποσότητα που περιγράφεται μόνο από ένα αριθμό ονομάζεται βαθμωτή.

Review of Single-Phase AC Circuits

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

Εφαρμοσμένα Μαθηματικά ΙΙ 2ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος

Electromagnetic Engineering MAPTele

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.

Το ασύρματο περιβάλλον

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Section 8.3 Trigonometric Equations

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ. Το ασύρματο περιβάλλον στις κινητές επικοινωνίες

Fundamental Equations of Fluid Mechanics

Matrix Hartree-Fock Equations for a Closed Shell System

α & β spatial orbitals in

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

Inflation and Reheating in Spontaneously Generated Gravity

Spherical Coordinates


One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

m i N 1 F i = j i F ij + F x

Section 7.6 Double and Half Angle Formulas

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. HΛEKTPIKO ΦOPTIO: είναι το αίτιο των ηλεκτρικών δυνάµεων (εµπειρική αντίληψη).

ΦΥΛΛΑΔΙΟ 2 ΑΝΑΛΥΣΗΣ/ ΥΠΟΛΟΓΙΣΜΟΣ ΑΟΡΙΣΤΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ., (γ) sin 5xdx sin x cos x. x + x + 1 dx.. 2x 1 2 2

Chapter 1 Fundamentals in Elasticity

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Curvilinear Systems of Coordinates

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Every set of first-order formulas is equivalent to an independent set

Trigonometric Formula Sheet

Φθίνουσες ταλαντώσεις

Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής

Galatia SIL Keyboard Information

ΠΑΡΑΡΤΗΜΑ Β. υποθέτουμε ότι ένα σωματίδιο είναι μέσα σε ένα μεγάλο (ενεργειακή κβαντοποίηση) αλλά πεπερασμένο κουτί (φρεάτιο δυναμικού):

Lecture: P1_Wk1_L5 Inter-Molecular Forces: Keesom Force. Ron Reifenberger Birck Nanotechnology Center Purdue University 2012

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Transcript:

Reflecon Models Today Types of eflecon models The BRDF and eflecance The eflecon equaon Ideal eflecon and efacon Fesnel effec Ideal dffuse Thusday Glossy and specula eflecon models Rough sufaces and mcofaces Self-shadowng Ansoopc eflecon models Reflecon Models Defnon: Reflecon s he pocess by whch lgh ncden on a suface neacs wh he suface such ha leaves on he ncden sde whou change n fequency. Popees Speca and Colo [Moon Speca] Polazaon Deconal dsbuon Theoes Phenomenologcal Physcal Page 1

Types of Reflecon Funcons Ideal Specula Reflecon Law Mo Ideal Dffuse Lambe s Law Mae Specula Glossy Deconal dffuse Maeals Plasc Meal Mae Souce: Apodaca and Gz, Advanced RendeMan Page

The BRDF Bdeconal Reflecance-Dsbuon Funcon (BRDF dl( ω ω dl( ω ω 1 f( ω ω = de L ( ω cosθ dω s Gonoeflecomee Page 3

The Reflecon Equaon L ( x, ω L( x, ω θ dω L ( x, ω = f ( x, ω ω L( x, ω cosθ dω H Noe: Pon and dsan lgh souces ae dela funcons Popees of BRDF s 1. Lneay Souce: Sllon, Avo, Wesn, Geenbeg. Recpocy pncple f ( ω ω = f ( ω ω Page 4

Popees of BRDF s 3. Isoopc vs. ansoopc f ( θ, ϕ ; θ, ϕ = f ( θ, θ, ϕ ϕ Recpocy and soopy f ( θ, θ, ϕ ϕ = f ( θ, θ, ϕ ϕ = f ( θ, θ, ϕ ϕ 4. Enegy consevaon The Reflecance Defnon: A eflecance s a ao of efleced o ncden powe L( ωcosθ dω dφ Ω ρ( Ω Ω = dφ L( ω cosθ dω Devaon assumes unfom ncden adance Expemens measue eflecances Consevaon of enegy: 0 < <1vs.0< f < Ω Ω Ω Uns: ρ [dmensonless], f [1/seadans] = f ( ω ω cosθ dω cosθ dω Ω cosθ dω Page 5

Law of Reflecon Î θ Nˆ θ Rˆ ϕ ϕ θ = θ ϕ = ϕ ± π Rˆ + ( Iˆ = cosθ Nˆ = ( Iˆ Nˆ Nˆ Rˆ = Iˆ ( Iˆ Nˆ Nˆ Ideal Reflecon (Mo L( θ, ϕ L( θ, ϕ θ θ Lm, ( θ, ϕ = L( θ, ϕ ± π f δ(cosθ cos θ ( θ, ϕ ; θ, ϕ = δ ( ϕ ϕ ± π m, cosθ L ( θ, ϕ = f ( θ, ϕ ; θ, ϕ L( θ, ϕ cosθ dcosθ dϕ m, m, δ(cosθ cos θ = δ ( ϕ ϕ ± π L( θ, ϕ cos θ dcos θ d ϕ cosθ = L ( θ, ϕ ± π Page 6

Snell s Law Î ˆN θ ϕ ϕ θ ˆT ϕ = ϕ ± π n snθ = n snθ n Nˆ Tˆ = n Nˆ Iˆ Law of Refacon ˆN Î µ = n / n θ θ ˆT Toal nenal eflecon: ( I N 1 µ (1 ˆ ˆ < 0 Nˆ Tˆ = µ Nˆ Iˆ Nˆ ( Tˆ µ Iˆ = 0 Tˆ = µ Iˆ+ γ Nˆ ˆ ˆ ˆ T = 1= µ + γ + µγ I N { 1 ( 1 ( } 1 { } γ = µ Iˆ Nˆ ± µ Iˆ Nˆ = µ cosθ ± 1 µ sn θ = µ cosθ ± cosθ = µ cosθ cosθ γ = µ 1 1 Page 7

Expemen Reflecons fom a shny floo Souce: Lafoune, Foo, Toance, Geenbeg, SIGGRAPH 97 Fesnel Equaons Deleccs (Two polazaons R T n cosθ n cosθ n cosθ n cosθ = R = n n n n 1 1 1 1 1cosθ1 + cosθ 1cosθ + cosθ1 n cosθ n cosθ = T = n n n n 1 1 1 1 1cosθ1 + cosθ 1cosθ + cosθ1 Meals n+ κ a + b = n (1 κ sn θ a + b acosθ + cos θ R = a b + + a cosθ + cos θ a + b asnθ anθ + sn θ an θ T = R a + b + asnθ anθ + sn θ an θ Page 8

Fesnel Equaons Nomal ncdence Deleccs R n n 1 = n1+ n Meals ( n 1 ( n 1 + n κ R = + + n κ Glass: Damond: Slve: Gold: n=1.5 R=0.04 n=.4 R=0.15 n<1, κ=1 R=0.95 n<1, κ=1 R=0.8 Solve fo n gven R a nomal ncdence Cook-Toance Model fo Meals Lgh speca ρ Measued Reflecance π θ = Reflecance of Coppe as a funcon of wavelengh and angle of ncdence Coppe speca λ Appoxmaed Reflecance R( θ R(0 R = R(0 + R( π / R( π / R(0 Schlck appoxmae Fesnel F( θ = F + (1 F (1 cos θ 0 0 5 Page 9

Ideal Dffuse Reflecon Assume lgh s equally lkely o be efleced n any oupu decon (ndependen of npu decon. L ( ω = f L( ω cosθ dω d, d, = fd, L( ωcosθdω = f E d, B = L ( ω cosθ dω = L cosθ dω = π L B ρd = = π f E, d Lambe s Cosne Law B = ρ E = ρ E cosθ d d s s Dffuse Reflecon Theoecal Bougue - Specal mco-face dsbuon Seelge - Subsuface eflecon Mulple suface o subsuface eflecons Expemenal Pessed magnesum oxde powde Almos neve vald a hgh angles of ncdence Pan manufacues aemp o ceae deal dffuse Page 10

Phong Model R(L E N E N R(E L L ( Eˆ R Lˆ Recpocy: ( s ( ˆ ( ˆ s E R L = ( Lˆ R ( Eˆ ( Lˆ R Eˆ s ( s Dsbued lgh souce! Popees of he Phong Model Nomalze Phong Model ( Lˆ R Eˆ ρ( π ω = ( cosθ dω H ( Nˆ H ( Rˆ cos ( Lˆ R Eˆ ( cosθ dω π s+ 1 θdω = s H + s s Page 11