2017H5^ ADVANCES IN MATHEMATICS (CHINA) May, 2017

Σχετικά έγγραφα
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

a~ 1.1 [4] x, y X. x + λy x, λ C, Ifi x 4 y Φ Birkhoff MIß, a~ 1.2 [8] ε [0, 1), x, y X. x + λy 2 x 2 2ε x λy, λ C, Ifi x 4

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Solutions - Chapter 4

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Prey-Taxis Holling-Tanner

Homomorphism in Intuitionistic Fuzzy Automata

Single-value extension property for anti-diagonal operator matrices and their square

Congruence Classes of Invertible Matrices of Order 3 over F 2

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

On the Galois Group of Linear Difference-Differential Equations

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Tridiagonal matrices. Gérard MEURANT. October, 2008

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Numerical Analysis FMN011

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

MATRIX INVERSE EIGENVALUE PROBLEM

d 2 y dt 2 xdy dt + d2 x

Reminders: linear functions

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

On a four-dimensional hyperbolic manifold with finite volume

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

The ε-pseudospectrum of a Matrix

On Numerical Radius of Some Matrices

On Inclusion Relation of Absolute Summability

Matrices and Determinants

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE 468: Digital Image Processing. Lecture 8

Approximation of distance between locations on earth given by latitude and longitude

Spherical Coordinates

Intuitionistic Fuzzy Ideals of Near Rings

A research on the influence of dummy activity on float in an AOA network and its amendments

Homework 3 Solutions

Math221: HW# 1 solutions

D Alembert s Solution to the Wave Equation

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Commutative Monoids in Intuitionistic Fuzzy Sets

High order interpolation function for surface contact problem

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Statistical Inference I Locally most powerful tests

A Note on Intuitionistic Fuzzy. Equivalence Relation

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

F19MC2 Solutions 9 Complex Analysis

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

SPECIAL FUNCTIONS and POLYNOMIALS

2 Composition. Invertible Mappings

CRASH COURSE IN PRECALCULUS

Heisenberg Uniqueness pairs

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Cyclic or elementary abelian Covers of K 4

New bounds for spherical two-distance sets and equiangular lines

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

The k-α-exponential Function

Laplace s Equation in Spherical Polar Coördinates

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

w o = R 1 p. (1) R = p =. = 1

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

SOME PROPERTIES OF FUZZY REAL NUMBERS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

A summation formula ramified with hypergeometric function and involving recurrence relation

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

On Generating Relations of Some Triple. Hypergeometric Functions

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

n=2 In the present paper, we introduce and investigate the following two more generalized

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Risk! " #$%&'() *!'+,'''## -. / # $

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

A General Note on δ-quasi Monotone and Increasing Sequence

Strain gauge and rosettes

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Quick algorithm f or computing core attribute

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Wishart α-determinant, α-hafnian

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

Durbin-Levinson recursive method

, Snowdon. . Frahm.

Transcript:

246fi23L < f Vol. 46, No. 3 2017H5^ ADVANCES IN MATHEMATICS (CHINA) May, 2017 0 1, F (3) *ο»ff(+fiμ2χ ]w< (f^ma; ;ffi, f^, ff, 334000) doi: 10.11845/sxjz.2015122b 3-: 9rjt d^kjg=qdl_, [ az±~raksbcb^ F (3) yytexv zlψd;ufz, @HVg^eq`iYTEXvzlΨ:pIfΛ ΦmO>D9±Ξ, ΩP ;ufzcb^ E (3) YT Tingley sn> D? ou, Πh}McxDWN. Ω: EXvzlΨ; ;ufz; F (3) yyt MR(2010) 7!fflß: 46A22; 46B20 / 6"fflß : O177.3 $& ψfl: A $4± : 1000-0917(2017)03-0424-05 20 r 30 G" Banach ff/ß*$,8n, -ρ += FvMY%2 +Yfl μtvb+0μ. Banach `ν# [1] uqρ3$ c e+-ρ (%2) 0q. %, $ +ßΦ@z0q#6O(MxeΠ2Fv-ρ +"zff"0q..ad»iu$ -ρ% 2?hY9z f (MYW} q+ff"0q dωkφνi A, M"z0q9 A T A = AA T = E), fifi_+l@ff YE*Iu$ H 2- @z ΠT+Es2t. tg 6E*WßΦ+H 2- @z2t FWl@eyfi8? S D, DPDΛ+ß*kd»H@$ -ρ +"zff"0qtae?!, hpο TxW8H@$ +@zπ2ymxe2t v"zfiv+yfltsk"+,fl, 6DC>, a_fw[6$ +%2-ρ +0q, 8χ y+ Tingley ο +flflott!ξx. ffi 1987 G Tingley `ν# [9] u±ρ3#μv>-ρ> ο F), 6Z]FvCfiG- 37:R?2 ffa2+tλ, *'3»4H p- @z$ #μv>9-ρ +ff"0qk"+fi_ (Ξ [3 4, 6]), ffi;q±flfl3'n+x4 Banach $ e+ Tingley ο [5]. $t, ν [5] ucπfiqρ, 8WEßΦH@+DΛ+ Banach $, sffl T!+ d, wp8w 2» +H@$, Cl;T#6+nψpg?.. fiο +1D'Dt, `;TßΦH@0q+U& χ,.als8 2»+H@$, ß=CgD8M#μV (>) 1TKWο flfl+±t?y pgf (T$) +Ξ8, s:}mtyw[38»ffi+. ν/-`ν [2] u8 T$» $, M# μv>0a :>Φ +ΠxU& 13Ξ8, *'3D,b+gTP=IJ+fi_. ν [7 8] u `@zyw#μqßt8»2d#52-2t+ωπχ, *'3DΛH@$ E (2) d E A (n) +% 2-ρ +0q. ß=wψDν [7 8] 6J3 F (Γ) $, h-;t 6ßΦ+H@0q, ffit'8ν [7 8], Λ cmωπrbw@ztywbω @qß8»2, *'3 F (3) $ %2-ρ +ff"0q. vo`l: 2015-06-18. 5MOv(`L: 2015-09-05. rffi)c: ^ ~]ψ;rffi (No. 11161039, No. 11461056). E-mail: liangxiaobin2004@126.com

3L 0+fl: F (3) /%,&3.ffQi 425 1 Πffi/ fl. 2.1 j Γ={1, 2,,n} tdpqωu, aχ` {e s } n s=1 t Banach $ X +D # μq, π Γ Γ DDPh, x X, z s Γ x(s)e s, T (I) s Γ x(s)e s = s Γ x(s) e s = s Γ x(s)e π(s). ß=»9 fiωπ+ X F (n).$ (Γ tρ$uc!t+~+6j). F (n).$ t' %[B+, soe, MΠ(Iu$ H p- d@zt$»$ B,H sup, max @zt$»$ --. 6, g:ff>eχo)e F (n).+$, M±tZlt (pg}!fzk ) F (n). $. a: j X =span{e i } n, x = n x ie i, H x =( n λ i x i p ) 1 p, λi > 0, p 1, pg H x =(λ n x i p +(1 λ)max{ x 1 p, x 2 p,, x n p }) 1 p, p 2, 0 <λ<1. a_$ X l9 : (II) b y X, 8<P s Γ, T x(s) y(s), c x X T x y. bχ` s N, p x(s N ) < y(s N ), c x < y. (III) b x =1, s Γ (x(s))2 =1%T % x(s) rtdgffl 5.»fio Banach $ E (n).$, {e s } n s=1 t fi$ +Ω @q. (a_ (III) L : (A)b x(s) sg1gffl 5, x =1, c s Γ (x(s))2 < 1. pg (B) b x(s) sg1gffl 5, x =1, c s Γ (x(s))2 > 1. ha+ E (n).$ Ffi» E A (n) p EB (n).$.) ν [7 8] +wbfi_tyw E (2) d E A (n).$ +. ±ν%2-ρ +ff"0qt` F (3).$ e*'+, ;TC>C Yfflfi. 2 1ff ffiff 0ρ 2.1 [8] j V t F (n).$ H'fi@ X, Y n +o-ρ%2, {e k } n k=1, {γ k} n k=1 Ffit X, Y $ +Ω @q, (V (e 1 ),V(e 2 ),,V(e n )) T = A(γ 1,γ 2,,γ n ) T, A =(a ij ) t n ΩoCi, c A +ΠjR+A 1. 5ffi ν [8] u+l@t` E (n).$ e 1+, ;Mρ64L8 F (n) Ct /+. 0ρ 2.2 b A =(a ij ) t n ΩoCi, λe A = λ n + b 1 λ n 1 + + b n 1 λ + b n, Mu b k -W A +DS k Ωw q (w:b A + i 1 i 2 i k 1Tt i 1 i 2 i k 4+ TZ [8μ V +14q) ndμf ( 1) k. z A[i 1 i 2 i k ] A + i 1 i 2 i k 1Fv4V + k Ωw q, i 1i 2 i k A[i 1 i 2 i k ] νi A + T k Ωw qnd, c b k =( 1) k i 1i 2 i k A[i 1 i 2 i k ]. 8 1 b A =(a ij ) F (n).$ H'fi@ X, Y n +o-ρ%2, {e k } n k=1, {γ k} n k=1 Ffit X, Y $ +Ω @q, (V (e 1 ),V(e 2 ),,V(e n )) T = A(γ 1,γ 2,,γ n ) T. L F (n). $ T2t (I),!m n n n n n x i y i e i = x i e i y i e i = ((x k y k )a ki )γ i k=1 n n = ((x k y k )(a ki )) γ π(i) k=1 n n = ((x k y k )( a ki ))γ π(i), k=1 ffldχρ, νi A +_I4 (pg1) e TZ Ψ}JcE t-ρ%2, νi A _IΦ

426 ; e 46fi m14 (pg11) *'+-νiht-ρ%2. Fχß=z A νi A V +14q, z A ij t A +1 i 11 j 4Z +X q (w A jx1 i 11 j 4Z V +14q). flρ 2.1 j V t1ph'fi@z+ F (3).$ X, Y n +-ρ%2, c V YWΩ @q+"zff"0q dωkφνi. 5ffi j (V (e 1 ),V(e 2 ),V(e 3 )) T = A(γ 1,γ 2,γ 3 ) T, A =(a ij ) t 3 ΩoCi, {e k } 3 k=1, {γ k} 3 k=1 Ffit X, Y $ +Ω @q. V t1ph'fi@z+ F (3).$ X, Y n +-ρ%2. (i) SM, 2.1, A +ΠjR+A 1,!j A = θ, θ = ±1, L A NzΩi, csgtdr 1 pg 1, Gm A TΠjR θ. GcpgdR θ, pgdr θ 61RUΞ, 7Y A = θ :9. Wtß=T θe A =0. SM, 2.2 T θ 3 +( 1)θ 2 i 1 A[i 1 ]+( 1) 2 θ i 1i 2 A[i 1 i 2 ]+( 1) 3 A =0. S A[1] = a 11,A[2] = a 22, A[3] = a 33 Fv A[12] = A 33, A[13] = A 22,A[23] = A 11, wt θ (a 11 + a 22 + a 33 )+θ(a 11 + A 22 + A 33 ) θ =0. (1) z A (1) A +1 1 4ΨJc *νi. S A (1) H -ρ%2, c A (1) H 6TΠj R+ 1 p 1, yi' A (1) = θ, fia0!m A (1) TΠjR θ. z i 1i 2 i k A (1) [i 1 i 2 i k ] νi A (1) + k Ωw qnd, SM, 2.2, VT θ i 1 A (1) [i 1 ] θ i 1i 2 A (1) [i 1 i 2 ]+θ =0. (2) yi' A (1) [1] = a 11, A (1) [2] = a 22, A (1) [3] = a 33, A (1) [12] = A 33, A (1) [13] = A 22, A (1) [23] = A 11. (3) S (2) (3) T S (1) (4)!* θ ( a 11 + a 22 + a 33 ) θ(a 11 A 22 A 33 )+θ =0. (4) a 11 = θa 11. (5) S A = θ!m, b A -ρ%2, c T a 11 = A A 11. (ii) b8νi A +1 i 1d i 1 1Φm*'-νi, hf*'+-νi+1 i 1 1d i 2 1Φm, EflχX, os± A +1 i 1Φm'1D1; fia0eflφm4, ±1 j 4Φm' 1D4; hap* a ij μw h-νi+1d11d4, ß=z h+-νi A i,j. A i,j H t-ρ%2. T A i,j =( 1) i+j θ, F A i,j ToΠjR ( 1) i+j θ. 8νi A i,j viafi A +Ξ8. E (5) q, ß=T a ij =( 1) i+j θa i,j 11, ;Rο*' A i,j +ΨmC>,! A i,j 11 = A ij. LfiwT a ij =( 1) i+j A A ij, F A T A = AA T = E. w V + "zff"0q dωkφνi.

3L 0+fl: F (3) /%,&3.ffQi 427 #fi 2.1 a_ V td»iu$ R 3 e+o%2-ρ, c V YW} q+"zff" 0q dωkφνi. 8 2 YW%2-ρ +=, ±)t flfl Tingley ο. "`ß==", 6, 2.1 fi 8+IJ, /+K sg7!f}, h-qρ3dpffle*wd»iu$ Es2t;*'M %2-ρ +ff"0q?hy9z f hpfi8+dpy-l@, Tfil@C>'% ff, %, fic>8nz»u0nkttp=2+ (fin A +ΠjR+A 1, c A TΠjR +1 pg 1), $»z]n, fld+l@c>y 2μΠfi!TI_, 6 Jz»U0χ A ρfi 2t, l@μ ffl'fi. `»4+ν#pgΨ u, ß=m)Iu$ u%2-ρ YW} q+ff"0qtkφνi (A T A = AA T = E), Λ+l@t YE*WEs2t (pg}ts Es U&ρ)+ßΦ+ 2 @z), C;T_eν#TM l>pg±'l@uesωπte B+. "`ffiß=6, 2.1 +fi8!fχρ, BΩΠ!FΛc d»$ χ`h@8»q (w F (n).$ +2t (I), ;d»iu$! 9 fi), hctxwß=sk"0,fl%2-ρ dkφνi+yflfvh@8»q2t+λr. Iu$ o%2-ρ kφνi,?`), a IkΦνi7V fi$ YW} q+%2-ρ,!fl@fi$ Iu$, h!ft8iu$ +DP"i. ffifχffl 8ß=!Fχ' E (n) +.$ (ΠaH p, p 2 d@z H sup, max @zt$»$ -) μ ρ>ff` 9zΨm *'ßT'fiH@0qYp+-q. %, Cχ`M +T$»H@$, ffi[qλbd 9z *'ßT'fiH@0qYp+-q..a<»$ Fk Φ0 #μv> > +H@$. #fi 2.2 a_ V t1ph'fi@z+ E (3).$ X, Y +o%2-ρ, {e k } 3 k=1, {γ k } 3 k=1 Ffit X, Y $ +Ω @q, c V 0q : V (e i)=θ i γ π(i), θ i = ±1, i =1, 2, 3. Mu π D {1, 2, 3} {1, 2, 3} +DDPh. 5ffi j (V (e 1 ),V(e 2 ),V(e 3 )) = (γ 1,γ 2,γ 3 )A T, c 1= V (e 1 ) = a 1j γ j, j=1 ; A T A = AA T = E, T (a 1j ) 2 =1. j=1 yi' E (3).$ T2t (III), F%T %QTDgffi8p 1 n /. M 1fi,!l. Lfi, ffl8*l. flρ 2.2 a_ V 0 t1ph'fi@z+ E (3).$ X, Y #μv> +o-ρ, {e k } 3 k=1, {γ k} 3 Ffit k=1 X, Y $ +Ω @q, c V 0!> Y$ +-ρ%2 V 0 +0q : V 0 (e i )=θ i γ π(i), θ i = ±1,, 2, 3, Mu π D {1, 2, 3} {1, 2, 3} +DDP h. T x S(X), x= 3 x ie i,v 0 (x) = 3 θ ix i γ π(i). 5ffi B2. ~6 V 0 F> Y$ +%2 V, Sffl8 2.2, T V 0 (e i )=V (e i )=θ i γ π(i), θ i = ±1,, 2, 3,

428 ; e 46fi Mu π D {1, 2, 3} {1, 2, 3} +DDPh. b x S(X), x= 3 x ie i, c ( ) V 0 (x) =V (x) =V x i e i = x i V (e i )=x i V 0 (e i )= θ i x i γ π(i). οf2. x E (3), 7 0, x =0, ( ) V (x) = x x V 0, x 0. x! V V 0 +>, S2t (I) d (II) ffld@l V H %2-ρ. Φ) tg8w_i F (n).$ +-ρ%2 7T±ν+fi_? Ψν%' [1] Banach, S., Théorie des Opérations Linéaires, Warszawa: Z Subwencji Funduszu Kultury Narodowej, 1932 (in French). [2] Cheng, L.X. and Dong, Y.B., On a generalized Mazur-Ulam question: extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., 2011, 377(2): 464-470. [3] Ding, G.G., The isometric extension problem in the unit spheres of l p(γ) (p >1) type spaces, Sci. China Math., 2002, 32(11): 991-995. [4] Ding, G.G., The representation of onto isometric mappings between two spheres of l -type spaces and application on isometric extension problem, Sci. Sin. Math., 2004, 34(2): 157-164 (in Chinese). [5] Ding, G.G., On the linearly isometric extension problem, Sci. Sin. Math., 2015, 45(1): 1-8 (in Chinese). [6] Fang, X.N. and Wang, J.H., Extension of isometries on the unit sphere of l p(γ) space, Sci. China Math., 2010, 53(4): 1085-1096. [7] Liang, X.B. and Huang, S.X., On the representation of linear isometries between the E (2) type real spaces, ActaMath.Sci.Ser.AChin.Ed., 2010, 30(4): 1088-1093 (in Chinese). [8] Liang, X.B. and Xie, X.H., On the representation of linear isometries between the En A type real spaces, Pure Appl. Math. (Xi an), 2014, 30(2): 143-148 (in Chinese). [9] Tingley, D., Isometries of the unit sphere, Geom. Dedicata, 1987, 22(3): 271-378. On the Representation of Isometric Linear Operators in the F (3) Type Spaces LIANG Xiaobin (Department of Mathematics, Shangrao University, Shangrao, Jiangxi, 334000, P. R. China) Abstract: In the paper, we introduce the concept of normed symmetric bases. By using its properties and algebraic techniques, we get the representation theorem of isometric linear operators in F (3) type Banach spaces, so as to reveal the nature that the linear isometric operators are the synthesis of reflections and rotations in 3-dimensional Euclidean space. Finally, we also use the representation theorem to obtain a necessary and sufficient condition of Tingley issues in E (3) space, which is a new result. Keywords: isometric linear operators; representation theorem; F (3) type space