IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим.

Σχετικά έγγραφα
Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.

1.2. Сличност троуглова

6.2. Симетрала дужи. Примена

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

Примена првог извода функције

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

10.3. Запремина праве купе

6.5 Површина круга и његових делова

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница.

ПРИЈЕМНИ ИСПИТ. Јун 2003.

Математика Тест 3 Кључ за оцењивање

Министарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC

4.4. Тежиште и ортоцентар троугла

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z

2.3. Решавање линеарних једначина с једном непознатом

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије

5.2. Имплицитни облик линеарне функције

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

МАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

ЈЕДНАКОСТИ У ПРАВИЛНОМ ОСМОУГЛУ

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

МАТЕМАТИКА. Актив наставника математике чине: Милијана Ђорђевић, Горица Пераић, Тијана Златковић (на породиљском одсуству) мења је Виолета Мирчић.

Теорија електричних кола

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

2.1. Права, дуж, полуправа, раван, полураван

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1

ЗАПИТАЈМО СЕ... Jens Carstensen, Алија Муминагић, Данска

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

ПЕРИОДИЧНИ НИЗОВИ. Ратко Тошић, Нови Сад

ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ

СКУПОВИ СКУП ПРИРОДНИХ БРОЈЕВА-ОБНАВЉАЊЕ

Атлетичар Лука Бора Драгиша Горан Дејан Перица Резултат у секундама 12,86 12,69 12,84 12,79 12,85 12,77

Аксиоме припадања. Никола Томовић 152/2011

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-4

Тест за 7. разред. Шифра ученика

ТИ ЧУДЕС ЕСНИ БРОЈЕВИ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

ЗАВОД ЗА УЏБЕНИКЕ БЕОГРАД

ТРЕЋЕ ОТВОРЕНО ПРВЕНСТВО СРБИЈЕ У РЕШАВАЊУ ОПТИМИЗАТОРА 29. НОВЕМБАР ДЕЦЕМБАР ГОДИНЕ

О КРУЖНИЦИ УПИСАНОЈ У ПРАВОУГЛИ ТРОУГАО

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ МАШИНСКИ ФАКУЛТЕТ У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2015.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2014.

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА. школска 2013/2014. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016.

Анализа Петријевих мрежа

Упутство за избор домаћих задатака

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2013.

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

ИГРАНКА СА ПРОЦЕНТИМА

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Михаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД

Предмет: Задатак 4: Слика 1.0

Transcript:

IV разред 1. Дешифруј ребус A + BA + CBA + DCBA = 2016. Иста слова замени једнаким цифрама, а различита различитим. 2. Производ два броја је 2016. Ако се један од њих повећа за 7, производ ће бити 2457. Који су то бројеви? 3. Ана, Бојана, Вера и Гордана играју тенис. Пред сваки меч оне се деле у парове и играју две против две. Нема нерешених резултата. Након 8 одиграних мечева забележено је да је Ана 6 пута била у победничком пару, Бојана 3 пута и Вера 5 пута. Колико пута је Гордана била у победничком пару? 4. Правоугаона стаза ширине 4m прекривена је цела са 1200 плочица правоугаоног облика са страницама дужине 25cm и 20cm, тако да се плочице не преклапају. Одреди дужину стазе. 5. Јелена је записала један за другим природне бројеве без размака 1234567891011121314... и укупно је употребила 2016 цифара. Колико пута је записала цифру нула?

19.03.2016 - V разред 1. Дати квадрат прецртај на папир који ћеш предати, а затим у празна поља упиши бројеве тако да збирови по три броја у свакој врсти, колони и дијагонали буду једнаки. 1,8 0,4 0,7 2. Одреди цифре x, y и z тако да производ 13xy 5z31 буде дељив са 75. Колико решења има задатак? 3. Марко каже Илији: Ја имам интересантан број телефона. То је седмоцифрен број чије су прве четири цифре међусобно једнаке и остале три цифре међусобно једнаке. Збир свих седам цифара је двоцифрен број чија је прва цифра једнака последњој цифри мог телефонског броја, а друга цифра тог броја је једнака првој цифри мог телефонског броја. Одреди број Марковог телефона. 4. Под собе облика правоугаоника са страницама не краћим од 20dm, прекривена је цео са 2016 плочица облика квадрата странице 1dm, тако да се плочице не преклапају. Колики најмањи, а колики највећи обим може имати тај правоугаоник? 5. Одреди природне бројеве a, b, c такве да је a > b > c и 1 1 1 23. a + b + c = 60 Нађи пет решења.

VI разред 1. Збир три цела броја је 0. Збир њихових апсолутних вредности је 8. Одреди те бројеве. 2. Одреди цифру А у тринаестоцифреном броју 111111A 999999 тако да број буде дељив са 7. 3. Одреди природне бројеве m и n тако да у низу 2, 5, 5, m, n, 11 ниједан број не буде мањи од претходног и да аритметичка средина свих шест бројева буде природан број. 4. Конструиши троугао ако је t c = 5cm, b = 4cm, α = 75. 5. Нека је H ортоцентар троугла АВС у коме важи ACB = 45. Докажи да важи CH = AB.

19.03.2016 VII разред 1. Докажи да је 2-2 4+ 3 2 рационалан број. 2. Дужина странице правилног шестоугла ABCDEF је 2cm. Праве одређене страницама AB и CD секу се у тачки G. Одреди обим и површину троугла DFG. 3. Дат је правилан шеснаестоугао. Одреди број правоуглих троуглова чија су темена уједно и темена датог шеснаестоугла. 4. Пера и Јоца су ушли у продавницу у којој се све цене изражавају целим бројем динара. Пера је купио 3 свеске и 4 оловке и платио новчаницама од 10 динара без кусура. Јоца је купио 9 свезака и 2 оловке. Докажи да и он може платити купљену робу новчаницама од 10 динара без кусура. 5. Нека је Е средиште странице CD квадрата ABCD и нека је F подножје нормале из В на праву АЕ. Докажи да је CF = CD.

VIII разред 1. У координатној равни xoy дата је права 4x + 3y = n, n > 0, која је од координатног почетка О удаљена 12. Одреди површину троугла коју та права заклапа са координатним осама Ox и Oy. 2. Основна ивица правилне четворостране пирамиде је 4cm, а растојање средишта основе од једне бочне стране је 15 cm. 2 Израчунај запремину те пирамиде. 3. Кружница c(o1, r1) додирује изнутра кружницу k(o, r) у тачки А и при томе је r > 2r1. Полуправа са почетном тачком О додирује кружницу с у тачки C и сече кружницу k у тачки В. Одреди величину угла ВАС. x+ 25 4. Одреди све целе бројеве x за које је број x- 5 квадрат неког природног броја. 5. У свако поље таблице 3 3 уписан је један број. Производ бројева у свакој врсти и свакој колони је 1, а производ бројева у сваком квадрату 2 2 је 2. Који број је уписан у централно поље?