Παράδειγμα. Στις χρονοσειρές σημαντικό ρόλο παίζει η αυτοσυσχέτιση: η αυτοσυσχέτιση. (lag k) ισούται με όπου γ



Σχετικά έγγραφα
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μαρκοβιανές Αλυσίδες

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Παράδειγμα. Για τα ΝΒ10 δεδομένα έχουμε το μοντέλο:

X = = 81 9 = 9

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

HMY 795: Αναγνώριση Προτύπων

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

Παραδείγματα (2) Διανυσματικοί Χώροι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

HMY 795: Αναγνώριση Προτύπων

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

conditional posterior distributions είναι standard δηλαδή ξέρουμε να κάνουμε δειγματοληψία από τις κατανομές π ( µτ,x) (, x) (, x) ( )

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i

Πολυτεχνείο Κρήτης Σχολή Ηλεκτρονικών Μηχανικών Και Μηχανικών Η/Υ. ΠΛΗ 513 Αυτόνομοι Πράκτορες

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

WinBUGS. Το BUGS (Bayesian inference Using Gibbs Sampling) είναι ένα ελεύθερο λογισµικό στο διαδίκτυο (

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Παραδείγματα (2 ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

HMY 795: Αναγνώριση Προτύπων

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

E [ -x ^2 z] = E[x z]

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις

HMY 795: Αναγνώριση Προτύπων

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

Αναζήτηση Κατά Βάθος. Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Credit Value at Risk

Στατιστική Συμπερασματολογία

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΦΡΟΝΤΙΣΤΗΡΙΑ 7 ΚΑΙ 8

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

Οι παρατηρήσεις του δείγματος, μεγέθους n = 40, δίνονται ομαδοποιημένες κατά συνέπεια ο δειγματικός μέσος υπολογίζεται από τον τύπο:

ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

3.7 Παραδείγματα Μεθόδου Simplex

Παραδείγματα Διανυσματικοί Χώροι (3)

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΚΡΗΤΙΚΟΥ ΚΑΤΕΡΙΝΑ NΙΚΑΚΗ ΚΑΤΕΡΙΝΑ NΙΚΟΛΑΪΔΟΥ ΧΡΥΣΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Χ. Εμμανουηλίδης, 1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Ορισμός παραγώγου Εξίσωση εφαπτομένης

Πεπερασμένες Διαφορές.

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Στατιστική, Άσκηση 2. (Κανονική κατανομή)

HMY 795: Αναγνώριση Προτύπων

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

Αριθμητική Ανάλυση και Εφαρμογές

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

6. Στατιστικές μέθοδοι εκπαίδευσης

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Μέθοδος μέγιστης πιθανοφάνειας

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

HMY 795: Αναγνώριση Προτύπων

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Στοχαστικές Στρατηγικές

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων»

Το Κεντρικό Οριακό Θεώρημα

Transcript:

MCMC Η Monte Carlo μεθοδολογία για την δημιουργία αριθμητικών προσεγγίσεων διαφόρων τιμών της εκ των υστέρων κατανομής, όπως του μέσου και της τυπικής απόκλισης, στηρίζεται στους Ασθενείς Νόμους των Μεγάλων Αριθμών: σε IID δείγμα, οι Monte Carlo εκτιμητές είναι συνεπείς, που σημαίνει ότι είναι πολύ κοντά στις πραγματικές τιμές με υψηλή πιθανότητα, καθώς ο αριθμός των επαναλήψεων m τείνει στο άπειρο. Πριν δούμε πως οι Metropolis et al. προσπάθησαν να επιτύχουντοίδιοαποτέλεσμαγιαέναμηiid Monte Carlo δείγμα ας δούμε το πρακτικό επακόλουθο της εναλλαγής των δεδομένων από IID σε Μαρκοβιανά.

Παράδειγμα Πίσω στο παράδειγμα με το ποσοστό ποδηλάτων στο Berkeley. Τρέχοντας τον IID αλγόριθμο απόρριψης για m επαναλήψεις, δημιουργούμε την επονομαζόμενη Monte Carlo βάση δεδομένων:

Παράδειγμα Τρέχοντας τον αλγόριθμο του Metropolis για το ίδιο παράδειγμα, δημιουργούμε την επονομαζόμενη MCΜC βάση δεδομένων, η οποία έχει περίπου την ίδια δομή με την προηγούμενη με την διαφορά ότι οι γραμμές χωρίζονται σε 3 φάσεις: Iteration (επανάληψη) 0 είναι η αρχική τιμή. Iterations (1-b) αφορούν την burn-in περίοδο, επαναλήψεις μέχρις ότου επιτευχθεί η στασιμότητα (δεν τις λαμβάνουμε υπόψιν). Iterations (b+1)-(b+m), οι υπό παρακολούθηση επαναλήψεις (monitoring run), από τις οποίες θα λάβουμε εκτιμήσεις για τις ποσότητες της εκ των υστέρων που ενδιαφερόμαστε.

Παράδειγμα

Παράδειγμα Στις χρονοσειρές σημαντικό ρόλο παίζει η αυτοσυσχέτιση: η αυτοσυσχέτιση στάσιμης χρονοσειράς μίας για υστέρηση κ * * (lag k) ισούται με όπου γ γ κ = C( θt, θt k) είναι 0 η συνδιακύμανση της σειράς με τον εαυτό της πριν από κ επαναλήψεις (δηλαδή πρόκειται για μία μέτρηση του βαθμού εξάρτησης της σειράς από το παρελθόν της). γ κ * θ t ρ κ

Παράδειγμα Για τον IID αλγόριθμο απόρριψης η χρονοσειρά που δημιουργούμε έχει μηδενική αυτοσυσχέτιση σε κάθε υστέρηση. Αντιθέτως η χρονοσειρά που δημιουργείται από τον αλγόριθμο του Metropolis έχει μή μηδενική αυτοσυσχέτιση, συνήθως θετική, με άλλα λόγια κάθε φορά που προσομοιώνουμε κάποια νέα τιμή από την Μαρκοβιανή αλυσίδα παίρνουμε κάποια νέα πληροφορία για την εκ των υστέρων κατανομή η οποία συνδυάζεται με την παλιά πληροφορία που είχαμε. Βασιζόμενοι όμως στο Εργοδικό Θεώρημα καταλήγουμε στο αποτέλεσμα πως όλα τα περιγραφικά μέτρα της εκ των υστέρων κατανομής είναι ακόμα και σε αυτή την περίπτωση συνεπείς εκτιμητές αρκεί η αλυσίδα να έχει συγκλίνει στην στάσιμη κατανομή. Άρα οι δυο μεθοδολογίες δίνουν ισοδύναμα αποτελέσματα και διαφέρουνμόνοστηναποτελεσματικότητάτους, μιας και λόγω της θετικής αυτοσυσχέτισης με τον αλγόριθμο του Metropolis μαθαίνουμε πληροφορίες με πιο αργό ρυθμό (μεγαλύτερα τυπικά σφάλματα).

Metropolis Algorithm Όπως έχουμε ήδη αναφέρει με την μέθοδο απόρριψης στο χρονικό σημείο t προσομοιώνεις τιμή θ * από την κατανομή εισήγησης g(θ y) και την αποδέχεσαι ή την απορρίπτεις σύμφωνα με την πιθανότητα α θ y ( * ) R αποδοχής. Αν την δεχτείς μετακινείσαι στο θ *, αλλιώς προσομοιώνεις νέα τιμή. ΜετοντρόποαυτόδημιουργείςμίαIID σειρά προσομοιωμένων τιμών από την εκ των υστέρων κατανομή p(θ y). Οι Metropolis et al. γενίκευσαν την παραπάνω ιδέα σε περιπτώσεις όπου το IID δείγμα είναι δύσκολο. Επέτρεψαν στην κατανομή εισήγησης στον χρόνο t να εξαρτάται από την τωρινή κατάσταση θ t της αλυσίδας και εν συνεχεία, για να επιτύχουν την ζητούμενη στάσιμη κατανομή, όταν μία προτεινόμενη τιμή απορρίπτονταν ανάγκαζαν την αλυσίδα το μείνει στην κατάσταση που βρισκόταν για άλλη μια επανάληψη. Η αλυσίδα που καταλήγουμε τότε είναι Μαρκοβιανή αφού (α) οι τιμές είναι εξαρτημένες αλλά (β) από όλο το παρελθόν της μόνο η πιο πρόσφατη κατάσταση καθορίζει το μέλλον.

Metropolis Hastings Algorithm Με την παραπάνω μέθοδο υπάρχει μεγάλη ελευθερία στην επιλογή της κατανομής εισήγησης g(θ * θ t,y), όπου με θ * συμβολίζουμε την προτεινόμενη τιμή και με θ t την τωρινή κατάσταση. Η αρχική ιδέα των Metropolis et al. ήταν η χρησιμοποίηση συμμετρικής κατανομής εισήγησης, δηλ. g(θ * θ t,y) = g(θ t θ *,y), αλλά ο Hastings το 1970 γενίκευσε την ιδέα αυτή για μη συμμετρικές κατανομές εισήγησης, δημιουργώντας τον αλγόριθμο Metropolis Hastings. Βασιζόμενος στις ιδέες των Metropolis et al. o Hastings απέδειξε ότι καταλήγουμε στη σωστή στάσιμη κατανομή αρκεί να χρησιμοποιήσουμε ως πιθανότητα αποδοχής την ακόλουθη: (1)

Metropolis Hastings Algorithm

Metropolis Hastings Algorithm Έχει αρκετό ενδιαφέρον να συγκρίνουμε την συγκεκριμένη πιθανότητα αποδοχής με αυτή από τη μέθοδο απόρριψης. Η ουσιαστική διαφορά τους είναι πως η κατανομή εισήγησης τώρα δεν είναι σταθερή αλλά αλλάζει κάθε φορά. Παρατηρήστε πως η σχέση (1) είναι μια γενίκευση της πιθανότητας αποδοχής της μεθόδου απόρριψης: η νέα πιθανότητα αποδοχής μπορούμε να πούμε πως είναι το πηλίκο 2 πιθανοτήτων αποδοχής της μεθόδου απόρριψης, μίας που έχει να κάνει με το που είσαι τώρα και μίας που έχει να κάνει με το που σκέφτεσαι να πας (είναι επιπλέον ισοδύναμο να δουλεύεις με την g ήτηνg μιας και στην περίπτωση αυτή η σταθερά κανονικοποίησης θα απαλειφθεί στο πηλίκο).

Metropolis Hastings Algorithm Αξιοσημείωτο είναι το γεγονός ότι για οποιαδήποτε κατανομή εισήγησης η στάσιμη κατανομή θα είναι η εκ των υστέρων p. Απόδειξη Ο μεταβατικός πυρήνας για τον αλγόριθμο Metropolis-Hastings είναι: ( t+ 1 t) ( t+ 1 t y) ΜΗ ( t+ 1 t y) ( t 1 t) + ( t y) ΜΗ ( t y) θ θ = θ θ α θ θ + θ =θ θ θ α θ θ θ * * * P g,, I 1 g,, d, (2)

Metropolis Hastings Algorithm όπου I(.) είναι η δείκτρια συνάρτηση. Ο πρώτος όρος του δεξιού μέλους της προηγούμενης σχέσης προκύπτει από την * * αποδοχή του υποψηφίου θ =θ t + 1, οδεύτεροςόροςαπότην απόρριψης όλων των πιθανών υποψηφίων θ *. Χρησιμοποιώντας την σχέση: ( θt y) ( θt+ 1 θt y) αμη ( θt+ 1 θ t y) = ( θt+ 1 y) ( θt θt+ 1 y) αμη ( θt θt+ 1 y) p g,, p g,, η οποία προκύπτει από την (1) καταλήγουμε λόγω της (2) στην σχέση ( θ ) ( ) ( ) ( ) t y θt+ 1 θ t y = θt+ 1 y θt θt+ 1 y p P, p P,

Metropolis Hastings Algorithm Ολοκληρώνοντας την προηγούμενη σχέση ως προς θ t Το αριστερό μέρος της παραπάνω σχέσης μας δίνει την περιθώρια κατανομή της, υπό την προϋπόθεση ότι η προέρχεται από τηνεκτωνυστέρωνκατανομή. Άρα η παραπάνω σχέση μας λέει πως αν η ίδιο θα συμβαίνει και για την ( θ ) ( ) ( ) t θt+ 1 θt θ t = θt+ 1 p y P, y d p y. θ t θ t+ 1 προέρχεται από την εκ των υστέρων κατανομή το θ. t + 1 Άρα με το που λάβουμε δείγμα από την στάσιμη κατανομή όλα τα υπόλοιπα δείγματα θα προέρχονται από αυτή και το αποτέλεσμα αυτό ισχύει για οποιαδήποτε g. θ t

Metropolis Hastings Algorithm Η παραπάνω απόδειξη μας αποσαφηνίζει μόνο το γεγονός ότι η στάσιμη κατανομή είναι η εκ των υστέρων, χωρίς να δείχνει αν πράγματι η αλυσίδα συγκλίνει σε στάσιμη κατανομή. Όταν η κατανομή εισήγησης είναι συμμετρική τότε η * p( θ y) πιθανότητα αποδοχής ισούται με p( θ, που t y) σημαίνει πως θέλεις να επισκεφτείς σημεία με μεγαλύτερη συχνότητα πιο συχνά.

Παράδειγμα IID 2 2 Έστω (Y i σ ) ~ N( μ, σ ), i = 1,.., n (μ γνωστό). συνάρτηση πιθανοφάνειας τότε είναι: Η Αν επιλέξουμε ως εκ των προτέρων κατανομή την: p ( ) ν 0 2 + 2 1 2 2 σ0 νσ 0 0 exp 2 2 σ σ 2σ

Παράδειγμα δηλαδή σ Inv χ ν, σ ) 2 2 0 0 2 ( τότε: 2 2 2 ( σ ) ( σ ) l ( σ ) p y p y ( ) ν 0 + 2 1 2 2 n 2 0 0 0 n 2 2 2 ( ) 2 σ ν σ exp σ exp u σ 2σ 2σ ( ν + n) 0 2 + 1 1 2 2 2 ( 0 0 ) σ exp ν σ + nu, 2σ Παρατηρούμε ότι 2 2 2 νσ 0 0 + nu σ y Inv χ ν 0 + n,. ν 0 + n n 1 με u = μ n i = 1 ( y ) i 2

Παράδειγμα Αν και στο συγκεκριμένο παράδειγμα μπορούμε να υπολογίσουμε την εκ των υστέρων κατανομή πλήρως, ας υποθέσουμε ότι θέλουμε να χρησιμοποιήσουμε τον MH algorithm για προσομοίωση τιμών από αυτή. Για να χρησιμοποιήσουμε τον αλγόριθμο θα πρέπει να 2 2 διαλέξουμε την κατανομή εισήγησης g( σ σ, y). t Όπως αναφέραμε προηγουμένως η επιλογή της g δεν επηρεάζει την σύγκλιση στην εκ των υστέρων κατανομή. Επηρεάζει όμως την ταχύτητα σύγκλισης και πόσο καλά η αλυσίδα αναμιγνύεται (μίξη).

Παράδειγμα 1. Διαλέξτε μια κατανομή εισήγησης που μοιάζει με μία υπερκαλυπτόμενη έκδοση της εκ των υστέρων κατανομή (για αυτό το λόγο συχνά είναι αναγκαίο αρχικά να προβούμε σε μία πιλοτική μελέτη για να αποκτήσουμε μια πρόχειρη εικόνα για το σχήμα της εκ των υστέρων κατανομής). 2. Δημιουργήστε την κατανομή εισήγησης με τέτοιο τρόπο * ώστε E g θ θ t, y =θt. Δηλαδή η αναμενόμενη τιμή του πού πρόκειται να μετακινηθείς θ *, δεδομένου ότι έχεις δεχθεί να μετακινηθείς από την τωρινή κατάσταση θ t ισούται με τηντωρινήκατάστασηθ t. Άρα όταν κινείσαι υπάρχει ένα είδος αριστερής δεξιάς ισορροπίας στην κατεύθυνση που μετακινείσαι, και άρα επιτυγχάνεις καλύτερη εξερεύνηση στου χώρου.

Παράδειγμα Βάση της ιδέας (1) μια ικανοποιητική επιλογή για την κατανομή εισήγησης είναι η Η κατανομή αυτή έχει μέσο v* 2 * για v* 2. v 2 σ > ( ) g( σ σ, y) = Inv χ ν, σ. * 2 2 2 2 t * * Άρα χρησιμοποιώντας την ιδέα (2) μπορώ να χρησιμοποιήσω ν * >2 και 2 v* 2 2 σ * = σt δηλαδή: v* 2 2 2 v* 2 2 g( σ σ t, y) = Inv χ ν*, σt. v*

Παράδειγμα Διάλεξε μια τιμή για το ν * έτσι ώστε η αλυσίδα να αναμιγνύεται καλύτερα ν * =2.5 α MH =0.07 ν * =20 α MH =0.44 ν * =500 α MH =0.86

Παράδειγμα Η τυπική απόκλιση (SD) της κατανομής εισήγησης που χρησιμοποιούμε είναι ανάλογη της ποσότητας: 1 ν 4 η οποία είναι φθίνουσα συνάρτηση του ν *. Όταν το SD είναι μεγάλο (μικρό ν * όπως στο πρώτο γράφημα) ο αλγόριθμος κάνει μεγάλα άλματα γύρω από τον χώρο του σ 2 (πράγμα καλό), αλλά τα περισσότερα από αυτά απορρίπτονται (πράγμα κακό), και άρα υπάρχουν μεγάλες περίοδοι στις οποίες δεν έχουμε κίνηση. Αντίθετα όταν το SD είναι μικρό (μεγάλο ν* όπως στο τρίτο γράφημα) ο αλγόριθμος δέχεται σχεδόν όλες τις κινήσεις (πράγμα καλό) αλλά αυτές είναι τόσο μικρές έτσι ώστε να χρειάζεται πολύ χρόνο για να εξερευνήσει πλήρως τον χώρο (πράγμα κακό). *

Παράδειγμα Έχει δειχθεί ότι σε απλά προβλήματα με προσεγγιστικά κανονικές εκ των υστέρων κατανομές η βέλτιστη πιθανότητα αποδοχής είναι περίπου 44%. Στο παράδειγμα μας η άγνωστη ποσότητα ήταν μονοδιάστατη, αλλά ο αλγόριθμος δουλεύει χωρίς προβλήματα και με πολυδιάστατο θ. Το μεγάλο προτέρημα είναι ότι για να εφαρμόσουμε τον αλγόριθμο αρκεί να γνωρίζουμε την εκ των υστέρων χωρίς την σταθερά κανονικοποίησης.

Single Component M-H Όταν το θ = (θ 1,..,θ k ) τότε μπορούμε να εφαρμόζουμε τον αλγόριθμο M-H και να προσομοιώνουμε διανύσματα θ ή μπορούμε να δημιουργούμε ξεχωριστά τις συνιστώσες βάση διαφορετικών κατανομών εισήγησης. Κάθε δηλαδή επανάληψη του αλγορίθμου αποτελείτε από κ βήματα, στην αρχή δηλαδή της επανάληψης t, ανανεώνεις πρώτα το θ 1, μετά το θ 2 και στο τέλος το θ κ. Ας καλέσουμε θ t,i τηντιμήτηςi συνιστώσας στο χρόνο t και θ t,-i =(θ t+1,1, θ t+1,2,..., θ t+1,i-1, θ t,i+1,, θ t,k } * Το υποψήφιο σημείο θ i παράγεται από την κατανομή * εισήγησης g( θ θ, θ, y) με πιθανότητα αποδοχής: i i t,i t, i * * * p( θi θt, i, y)g i( θt,i θi, θt, i, y) αμη( θi θ t,i, θt, i, y) = min 1, p( * θt,i θt, i, y )g i ( θi θt,i, θt, i, y )

Gibbs Sampling Ειδική περίπτωση του Single Component M-H αποτελεί ο δειγματολήπτης Gibbs (Gibbs Sampling) όπου η κατανομή εισήγησης g( θ θ, θ, y) = p( θ θ, y) * * i i t,i t, i i t, i είναι η πλήρους δέσμευσης εκ των υστέρων κατανομή (full conditional posterior distribution) για το θ i. Στην περίπτωση αυτή η πιθανότητα αποδοχής ισούται με 1, με άλλα λόγια στο Gibbs Sampling προσομοιώνουμε τιμές από την full conditional posterior distribution (η οποία έχει το πλεονέκτημα ότι στις περισσότερες των περιπτώσεων είναι εύκολα υπολογίσιμη) και δεχόμαστε όλες τις προτεινόμενες κινήσεις.

Gibbs Sampling

Παράδειγμα όπου η t ν (μ, σ 2 ) είναι η scaled t-distribution με μέσο μ, παράμετρο κλίμακας σ 2 και παράμετρο μορφής ν. Είναι γνωστό από την Θεωρία Πιθανοτήτων ότι για να προσομοιώσεις τιμές από την συγκεκριμένη t κατανομή μπορείς αρχικά να προσομοιώσεις τιμές από μία αντίστροφη Γάμμα και μετά από μία Κανονική δεδομένων των τιμών που προσομοίωσες από την Γάμμα (Inverse Gamma mixture of Gaussians).

Παράδειγμα Εισάγοντας και τις συζυγείς εκ των προτέρων για τα μ και σ 2 καταλήγουμε στο ακόλουθο ιεραρχικό μοντέλο (hierarchical model)

Παράδειγμα

Παράδειγμα Ερωτήματα Υπολογισμός των full Conditionals. Αρχικές τιμές. Πόσο μεγάλα πρέπει να είναι τα b, m; Πως ξέρω ότι έχω σύγκλιση της αλυσίδας;

Υπολογισμός των Full Conditionals Ας θεωρήσουμε το εξής πιο απλό παράδειγμα:

Υπολογισμός των Full Conditionals Οπότε: δηλαδή Όμοια

Υπολογισμός των Full Conditionals Οπότε: δηλαδή

Υπολογισμός των Full Conditionals Παρατηρούμε ότι σε συζυγείς περιπτώσεις οι full conditional έχουν συζυγείς μορφές. Άρα είναι εφικτό με την βοήθεια ενός λογισμικού να υπολογιστούν αυτόματα οι full conditionals και να μην χρειαστεί να κάνουμε εμείς κάθε φορά τους υπολογισμούς. Ένα τέτοιο λογισμικό είναι το BUGS το οποίο τρέχει κάτω από Unix ή Dos καθώς και το αντίστοιχο λογισμικό κάτω από Windows το WinBugs. To Bugs/WinBugs δουλεύουν και για μή συζυγείς εκ των προτέρων κατανομές βασιζόμενο στα παρακάτω:

Directed Acyclic Graphs 1. Βλέποντας τα ιεραρχικά μοντέλα ως Κατευθυνόμενα Ακυκλικά Γραφήματα - Directed Acyclic Graphs (DAG). Η δεσμευμένη ανεξαρτησία των ιεραρχικών μοντέλων (οι ποσότητες στο μοντέλο εξαρτώνται μόνο από αυτές που είναι ένα στάδιο παραπάνω και όχι από τις υπόλοιπες) μας επιτρέπει να δούμε τις ποσότητες ως κόμβους σε ένα γράφημα. Το DAG είναι ένα γράφημα στο οποίο οι ποσότητες απεικονίζονται είτε ως κύκλοι (άγνωστες ποσότητες) είτε ως τετράγωνα (γνωστές ποσότητες) και εν συνεχεία βασισμένοι στην εξάρτηση τους τις συνδέουμε με ένα βέλος. Το γράφημα αυτό είναι ακυκλικό (acyclic) με την έννοια ότι ακολουθούμενος την πορεία του βέλους είναι αδύνατο να γυρίσεις σε κόμβο από τον οποίο πέρασες.

Adaptive Rejection Sampling 2. Εφαρμόζοντας την προσαρμοσμένη μέθοδο απόρριψης (Adaptive Rejection Sampling), για να προσομοιώσεις τιμές από full conditional distributions που δεν έχουν απλή μορφή (μή συζυγείς εκ των προτέρων). Όπως έχουμε δει η μέθοδος απόρριψης είναι μια γενική μέθοδος προσομοίωσης τιμών από την p(θ y) με την βοήθεια ενός φακέλου G(θ y). Ο αλγόριθμος για κανονικοποιημένη G είναι ο ακόλουθος:

Adaptive Rejection Sampling Για την κατασκευή του φακέλου G μπορούμε να εισάγουμε 2 συναρτήσεις a, b (squeezing functions) τέτοιες ώστε b(θ y) p(θ y) a(θ y) και να αντικαταστήσουμε την γραμμή 4 τουπροηγουμένουκώδικα(πιθανότητα αποδοχής) με το παρακάτω: H αναπροσαρμοσμένη μέθοδος απόρριψης (ARS) είναι μια αρκετά αποδοτική μέθοδος, που δουλεύει ως βάση του Gibbs Sampling σε περιπτώσεις όπου οι full conditionals είναι log-concave.

Adaptive Rejection Sampling Για μονοδιάστατο θ μπορεί εύκολα να κατασκευαστεί η logg(θ y) στην λογαριθμική κλίμακα φέρνοντας εφαπτόμενες στην logp(θ y) από σημεία ενός σύνολου S Οι εφαπτόμενες δημιουργούν τον φάκελο στην λογαριθμική κλίμακα και οι χορδές την συνάρτηση a.

Adaptive Rejection Sampling Ο φάκελος αποτελείτε από γραμμικές συναρτήσεις στην λογαριθμική κλίμακα, οπότε στην αρχική κλίμακα αποτελείτε από εκθετικές κατανομές από τις οποίες μπορούμε εύκολα να προσομοιώσουμε τιμές. Το πλεονέκτημα της μεθόδου είναι η αναπροσαρμογή στην κατασκευή του φακέλου που μπορούμε να πραγματοποιήσουμε. Καθώς μαθαίνουμε όλο και περισσότερα για το θ προσομοιώνοντας νέες τιμές, προσθέτουμε νέα σημεία στο σύνολο S και άρα ο φάκελος καλυτερεύει και πλησιάζει όλο και περισσότερο την πραγματική συνάρτηση.