ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
|
|
- Μαριάμ Λειβαδάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ Webpage: 1
2 Κλασσική γραμμική παλινδρόμηση Μας ενδιαφέρει να μελετήσουμε την άγνωστη επίδραση της μεταβολής μιας μεταβλητής Χ (εξαρτημένη μεταβλητή), σε μια άλλη μεταβλητή, την Υ (ανεξάρτητη μεταβλητή). Το υπόδειγμα γραμμικής παλινδρόμησης ορίζει μια γραμμική σχέση μεταξύ της μεταβλητής Χ και της Υ. Η κλίση της γραμμής που συνδέει την Χ με την Υ είναι η επίδραση μιας μεταβολής της Χ κατά μια μονάδα στην Υ. Το πρόβλημα είναι να εκτιμήσουμε αυτήν την κλίση, χρησιμοποιώντας ένα δείγμα από δεδομένα από τις δύο μεταβλητές, Χ και Υ. 2
3 π.χ. Θέλουμε να ερευνήσουμε εμπειρικά την σχέση που υπάρχει ανάμεσα στις δαπάνες καταναλώσεως (Υ) και στο διαθέσιμο εισόδημα (Χ) με βάση τις πληροφορίες από ένα δείγμα με Τ οικογένειες για μια δεδομένη χρονική περίοδο. Έχουμε δηλαδή Τ ζεύγη από παρατηρήσεις (Υ t, Xt) όπου Υ t : δαπάνες καταναλώσεως της οικογένειας t, t = 1, 2,, T X t : διαθέσιμο εισόδημα της οικογένειας t, t = 1, 2,, T Αν η μαθηματική μορφή της συναρτησιακής σχέσης ανάμεσα στις δύο μεταβλητές είναι γραμμική τότε μπορούμε να γράψουμε: Υ t = β 0 + β 1 Χ t (1) 3
4 Η σχέση (1) είναι προσδιοριστική και σημαίνει ότι όλες οι οικογένειες με το ίδιο διαθέσιμο εισόδημα έχουν τις ίδιες δαπάνες καταναλώσεως. Στην πραγματικότητα η σχέση αυτή δεν μπορεί να ικανοποιείται από όλα τα ζεύγη παρατηρήσεων (Υ t, X t ). Οι διαφορές ή αποκλίσεις από την ευθεία που ορίζει η σχέση (1) μπορούν να ληφθούν υπόψη με την προσθήκη μιας τυχαίας μεταβλητής ή αλλιώς ενός διαταρακτικού όρου u t, οπότε η προσδιοριστική σχέση γίνεται στοχαστική: Υ t = β 0 + β 1 Χ t + u t (2) συστηματικό μέρος μη συστηματικό μέρος 4
5 β 0 Στοχαστική συνάρτηση κατανάλωσης Υ t = β 0 + β 1 Χ t + u t Υ u 1 0 Χ 1 Χ 2 Χ 3 Χ Ευθείας παλινδρόμησης Προσδιοριστική σχέση Υ t = β 0 + β 1 Χ t Πραγματικές τιμές Υ t από δεδομένα Προσθήκη διαταρακτικού όρου στην συνάρτηση παλινδρόμησης Ύπαρξη άγνωστων ή μη μετρήσιμων μεταβλητών που δεν συμπεριλαμβάνονται στο υπόδειγμα, σκόπιμη παράλειψη μεταβλητών μικρής σημασίας Αστάθμητη ανθρώπινη συμπεριφορά Σφάλματα μετρήσεως 5
6 Ορολογία για το υπόδειγμα γραμμικής παλινδρόμησης με μια ερμηνευτική μεταβλητή Υ t = β 0 + β 1 Χ t + u t Ο δείκτης t αναφέρεται στις παρατηρήσεις, t = 1, 2,, T. Υ t είναι η εξαρτημένη μεταβλητή Χ t είναι η ανεξάρτητη μεταβλητή β 0 + β 1 Χ t είναι η γραμμή παλινδρόμησης β 0 είναι ο σταθερός όρος της γραμμή παλινδρόμησης β 1 είναι η κλίση της γραμμή παλινδρόμησης u t είναι o όρος σφάλματος ή τυχαίος όρος ή διαταρακτικός όρος 6
7 Βασικές υποθέσεις του απλού γραμμικού υποδείγματος παλινδρόμησης Η στοχαστική φύση της σχέσης Υ t = β 0 + β 1 Χ t + u t (2) συνεπάγεται πως για κάθε τιμή της Χ δεν υπάρχει μια μόνο τιμή για την Υ, αλλά μια κατανομή τιμών, που εξαρτάται από το u t. 0 Χ 1 Χ 2 Χ 3 Χ Για την εκτίμηση της (2) έχουμε ένα δείγμα με Τ ζεύγη παρατηρήσεων (Υ t, X t ), αλλά δεν έχουμε παρατηρήσεις για τον διαταρακτικό όρο u t, πράγμα που σημαίνει ότι θα κάνουμε κάποιες υποθέσεις σχετικά με την κατανομή της τυχαίας μεταβλητής u t. Υ 7
8 Ολοκληρωμένη εξειδίκευση του γραμμικού στοχαστικού υποδείγματος Υ t = β 0 + β 1 Χ t + u t u t ~ (0, σ 2 ) α) u t είναι τυχαία μεταβλητή β) Εu t = 0 γ) Var u t = Εu t 2 = σ 2 u t : ομοσκεδαστικός όρος, δηλ. έχει σταθερή διακύμανση Cov(u t, u s ) = Eu t u s = 0 για t s (ανεξαρτησία τυχαίων όρων) Η μεταβλητή Χ δεν είναι στοχαστική. Οι τιμές της παραμένουν σταθερές και δεν είναι όλες ίσες μεταξύ τους. 8
9 Η κατανομή της Υ και η Γραμμή Παλινδρομήσεως Η μεταβλητή Υ είναι συνάρτηση της τυχαίας μεταβλητής u t και επομένως είναι και αυτή τυχαία μεταβλητή. Η κατανομή της Υ είναι κατανομή υπό συνθήκη, δεδομένης της τιμής της Χ. Ισχύουν τα παρακάτω: ΕΥ t = β 0 + β 1 Χ t : γραμμή παλινδρομήσεως στον πληθυσμό Var Υ t = σ 2 9
10 Οι συντελεστές β 0, β 1 δεν είναι γνωστοί άρα πρέπει να εκτιμηθούν από το δείγμα των παρατηρήσεων των μεταβλητών Χ, Υ. Έστω β 0, β 1 είναι οι εκτιμήσεις των συντελεστών β 0, β 1, αντίστοιχα. Οπότε: Υ t = β 0 + β 1 Χ t : γραμμή παλινδρομήσεως στο δείγμα Υ t : η τιμή της Υ που υπολογίζουμε από την γραμμή παλινδρομήσεως του δείγματος u t = Y t Υ t : κατάλοιπο (residual) ή απόκλιση, η διαφορά μεταξύ των πραγματικών τιμών Y t και των εκτιμώμενων τιμών Υ t 10
11 Γραμμή παλινδρομήσεως πληθυσμού και δείγματος Υ Υ t = β 0 + β 1 Χ t (δείγμα) Ε(Υ/Χ t )= β 0 + β 1 Χ t (πληθυσμός) 0 Χ 1 Χ 2 Χ 11
12 Μέθοδος ελαχίστων τετραγώνων (Ordinary Least Square - OLS) Εκτίμηση των συντελεστών β 0, β 1 ώστε να ελαχιστοποιήσουμε τα κατάλοιπα u t και συγκεκριμένα η OLS αποσκοπεί στην ελαχιστοποίηση του αθροίσματος των τετραγώνων των καταλοίπων (minimum sum of squared residuals): min T t=1 u t 2 = min T t=1 (Y t Υ t ) 2 Υ (X1,Y 1 ) u 1 u 2 (Xt,Y t ) u t Υ t = β 0 + β 1 Χ t 0 Χ 1 Χ 2 Χ 12
13 Εκτιμητές ελαχίστων τετραγώνων, προβλεφθείσες τιμές και κατάλοιπα Εκτιμητής ελαχίστων τετραγώνων της κλίσης β 1 : β 1 = t=1 Τ (Xt X)(Y t Y) Τ = S XY X t X 2 t=1 s2 ή β 1 = ΧΥ Τ X Υ X Χ 2 Τ X 2 Εκτιμητής ελαχίστων τετραγώνων του σταθερού όρου β 0 : β 0 = Y β 1 Χ Προβλεφθείσες τιμές ελαχίστων τετραγώνων των Υ t : Υ t = β 0 + β 1 X t, t = 1,, T Προβλεφθείσες τιμές ελαχίστων τετραγώνων των καταλοίπων u t : u t = Yt Υ t, t = 1,, T Οι εκτιμήσεις των παραπάνω γίνονται με βάση το δείγμα των T παρατηρήσεων των X t και Υ t, t = 1,, T. Είναι εκτιμήσεις των πραγματικών παραμέτρων του πληθυσμού. 13
14 Θεώρημα των Gauss-Markov Εφόσον ισχύουν οι υποθέσεις του απλού γραμμικού υποδείγματος της παλινδρόμησης, οι εκτιμητές β 0, β 1 αποτελούν τους καλύτερους γραμμικούς αμερόληπτους εκτιμητές, δηλαδή: α) Είναι γραμμικές συναρτήσεις των παρατηρήσεων της εξαρτημένης μεταβλητής Υ t. β) Είναι αμερόληπτοι εκτιμητές. Ένας εκτιμητής ονομάζεται αμερόληπτος όταν η αναμενόμενη τιμή του είναι ίση με την τιμή της υπό εκτίμηση άγνωστης τιμής του συντελεστή του πληθυσμού, δηλαδή Ε β 0 = β 0 και Ε β 1 = β 1. γ) Είναι αποτελεσματικοί εκτιμητές, δηλαδή μεταξύ όλων των γραμμικών αμερόληπτων εκτιμητών έχουν την μικρότερη διακύμανση. 14
15 Παράδειγμα. Τα στοιχεία του Πίνακα αναφέρονται στην αξία (σε δισεκ. δραχμές) των εισαγωγών καταναλωτικών αγαθών (Υ) και στο διαθέσιμο εισόδημα (Χ) για την Ελληνική Οικονομία για την περίοδο Να βρεθεί η γραμμή παλινδρομήσεως του δείγματος, οι προβλεφθείσες τιμές Υ και τα κατάλοιπα u. Έτος Υ Χ Έτος Υ Χ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,550 15
16 Αρχικά υπολογίζουμε την δειγματική μέση τιμή των μεταβλητών Χ και Υ, αντίστοιχα: X = 1 Τ Υ= 1 Τ t=1 Τ X t t=1 Τ Υ t. Έπειτα υπολογίζουμε τους συντελεστές της γραμμής παλινδρόμησης του δείγματος β 1 = ΧΥ Τ X Υ Χ 2 Τ X 2 β 0 = Y β 1 Χ και Είναι: Τ = 16 (πλήθος παρατηρήσεων) X = 1 16 = 1 16 = 1 16 Υ= 1 16 = 1 16 = 1 16 t=1 16 X t = (105, , , 550)= 2966, 315 = 185, 394 t=1 16 Υ t = (5, , , 139)= 129, 463 = 8,
17 16 ΧΥ = X t Υ t = t=1 = 105, 508 5, , 497 4, , , 139 =26541,949 Χ 2 = t=1 16 Χ 2 t = 105, , , 5502 =617645,622 Οπότε: β 1 = ΧΥ Τ X Υ Χ 2 Τ X , , 394 8, 091 = , , β 0 = Y β 1 Χ = 8, 091 0, , 394 = 1, 136 = 0,
18 Υ t = 1, , 0375Χ t γραμμή παλινδρομήσεως στο δείγμα Οπότε οι προβλεφθείσες τιμές ελαχίστων τετραγώνων των Υ t υπολογίζονται από την σχέση: Υ t = β 0 + β 1 X t, t = 1,, T Οι προβλεφθείσες τιμές ελαχίστων τετραγώνων των καταλοίπων u t υπολογίζονται από την σχέση: u t = Yt Υ t, t = 1,, T Προβλεφθείσες τιμές ελαχίστων τετραγώνων των Υ t : t = 1: Υ 1 = 1, , 0375Χ 1 = = 1, , , 508 = = 5, 094 t = 2: Υ 2 = 1, , 0375Χ 2 = = 1, , , 497 = = 5, 169. Προβλεφθείσες τιμές ελαχίστων τετραγώνων των καταλοίπων u t : t = 1: u 1 = Y1 Υ 1 = = 5, 121 4, 134 = 0, 026 t = 2: u 2 = Y2 Υ 2 = = 4, 134 5, 169 = 1,
19 Έτος Υ Χ Υ u , ,508 5,094 0, , ,497 5,169-1, , ,875 5,333-0, , ,676 5,814-0, , ,118 6,018-0, , ,140 6,469-0, , ,338 6,964 0, , ,456 7,568 1, , ,420 7,980 0, , ,895 8,373 0, , ,164 8,796 0, , ,908 9,461 0, , ,471 10,158-0, , ,849 11,185-0, , ,450 11,995-1, , ,550 13,087 0,052 19
20 Η συνάρτηση εισαγωγών καταναλωτικών αγαθών είναι: Υ t = 1, , 0375Χ t Ο συντελεστής παλινδρομήσεως β 1 παριστάνει τη μεταβολή στην προσδοκώμενη τιμή της εξαρτημένης μεταβλητής όταν η ερμηνευτική μεταβλητή (Χ) μεταβάλλεται κατά μια μονάδα ή εναλλακτικά είναι η παράγωγος της Ε(Y t ) ως προς Χ t : β 1 = de(yt) dx t Στο συγκεκριμένο παράδειγμα, β 1 = 0, 0375, το οποίο παριστάνει την οριακή ροπή για εισαγωγές καταναλωτικών αγαθών, δηλαδή όταν το διαθέσιμο εισόδημα αυξάνεται κατά ένα δισεκ. δραχμές, οι εισαγωγές καταναλωτικών αγαθών θα αυξηθούν κατά 0, 0375 δισεκ. δραχμές. Με άλλα λόγια, το 3,75% της αύξησης του διαθέσιμου εισοδήματος απορροφάτε από τις εισαγωγές καταναλωτικών αγαθών. 20
21 Στατιστική επαγωγή Η γραμμή παλινδρόμησης του δείγματος είναι μια εκτίμηση της γραμμής παλινδρομήσεως του πληθυσμού και άρα υπόκειται σε σφάλματα, παρόλο που οι εκτιμητές ελαχίστων τετραγώνων ικανοποιούν τις επιθυμητές ιδιότητες (γραμμικοί, αμερόληπτοι, αποτελεσματικοί). Περιγράφει καλά τα δεδομένα η γραμμή παλινδρόμησης του δείγματος; Η ανεξάρτητη/ερμηνευτική μεταβλητή (Χ) ερμηνεύει μεγάλο ή μικρό τμήμα της μεταβολής της εξαρτημένης μεταβλητής (Υ); Οι παρατηρήσεις (δεδομένα δείγματος) είναι κοντά συγκεντρωμένες γύρω από την γραμμή παλινδρόμησης του δείγματος ή είναι διάσπαρτες; Θέλουμε να εξετάσουμε πόσο καλή είναι η εκτίμηση που κάναμε, δηλαδή πόσο καλοί είναι οι συντελεστές β 0, β 1 και τι κριτήρια μπορούμε να χρησιμοποιήσουμε για να αξιολογήσουμε τα αποτελέσματα της εκτιμήσεως. 21
22 Συντελεστής προσδιορισμού R 2 (regression R 2 ή R squared) Έστω δείγμα X t, Y t, t = 1,, T. Η μεταβλητότητα της Y ορίζεται σε σχέση με τον μέσο του δείγματος: T Μεταβλητότητα της Υ: t=1 Y t Y 2 Θέλουμε να εξετάσουμε πόση από την μεταβλητότητα που παρατηρείται στις τιμές της Υ ερμηνεύεται από την παλινδρόμηση. Y t Y : απόκλιση της τιμής του δείγματος από τον μέσο 1. Μέτρα της προσαρμογής Y t Y: απόκλιση της προβλεφθείσας/εκτιμώμενης τιμής από τον μέσο u t = Y t Y t : απόκλιση της τιμής του δείγματος από την γραμμή παλινδρόμησης 22
23 Συνολική μεταβλητότητα της Y: T SSΤ = t=1 Y t Y 2 συνολικό άθροισμα τετραγώνων (sum of squares, total) Μεταβλητότητα της Y, που εξηγείται από την παλινδρόμηση: T SSR = t=1 Y t Y 2 ερμηνευόμενο άθροισμα τετραγώνων (sum of squares, regression) Μεταβλητότητα της Y, που μένει ανεξήγητη: T SSE = t=1 Y t Y t Ισχύει: SST = SSR + SSE Συνολική μεταβλητότητα της Y 2 = t=1 1. Μέτρα της προσαρμογής T u 2 t άθροισμα τετραγώνων των καταλοίπων (sum of squares, error) Εξηγείται από τις μεταβολές της Χ Οφείλεται στους τυχαίους παράγοντές 23
24 Συντελεστής προσδιορισμού R 2 είναι η αναλογία ή το ποσοστό της διακύμανσης του δείγματος της Υ που ερμηνεύεται / προβλέπεται από την Χ: R 2 = SSR SST R 2 = 1 SSE SST R 2 = β 1 xy y 2 ή ή, όπου x = X X, y = Y Y 1. Μέτρα της προσαρμογής Ο συντελεστής προσδιορισμού παίρνει τιμές από 0 έως 1: 0 R 2 1. Όσο μεγαλύτερη η τιμή του R 2, τόσο καλύτερη είναι η προσαρμογή του υποδείγματος στα δεδομένα του δείγματος. 24
25 Τυπικό σφάλμα της παλινδρόμησης s (standard error of the regression) είναι ένας εκτιμητής της τυπικής απόκλισης του σφάλματος της παλινδρόμησης u t. Επειδή τα u t δεν είναι γνωστά, η εκτίμηση προκύπτει με βάση τα u t. Εκτίμηση της διακύμανσης s 2 = 1 T 2 T 2 t=1 u t ή 1. Μέτρα της προσαρμογής s 2 = y2 β 1 xy, όπου x = Χ Χ, y = Υ Υ T 2 Όσο πιο μικρή τιμή προκύπτει για το s (τετραγωνική ρίζα της διακύμανσης), τόσο καλύτερη η προσαρμογή του υποδείγματος στα δεδομένα του δείγματος. 25
26 Έλεγχος υποθέσεων των συντελεστών β 0, β 1 Είναι ο στατιστικός έλεγχος για τους συντελεστές β 0, β 1 ώστε να διαπιστώσουμε αν πράγματι οι τιμές που εκτιμήσαμε είναι καλές. Ανασκόπηση βασικών εννοιών Υπόθεση ονομάζεται η απόφαση που παίρνουμε για τα θέματα σχετικά με τους πληθυσμούς, βασιζόμενοι στις πληροφορίες που παίρνουμε από τα δείγματα των πληθυσμών. Έλεγχος υποθέσεων ή έλεγχος σημαντικότητας ή στατιστικός έλεγχος ονομάζεται η διαδικασία που χρησιμοποιείται ώστε να αποφασίσουμε αν θα δεχτούμε ή θα απορρίψουμε τις υποθέσεις που έχουμε κάνει. Μηδενική υπόθεση Η 0 ορίζεται ως η υπόθεση που κάνουμε αρχικά με σκοπό να την απορρίψουμε. Εναλλακτική υπόθεση Η 1 ορίζεται ως η ασυμβίβαστη υπόθεση σε σχέση με την μηδενική υπόθεση. 26
27 3. Έλεγχος υποθέσεων των συντελεστών β 0, β 1 Η απόφαση αν θα γίνει δεκτή ή αν θα απορριφθεί η μηδενική υπόθεση Η 0 στηρίζεται σε ένα στατιστικό που ονομάζεται στατιστικό του τεστ, το οποίο υπολογίζεται από τα δεδομένα του δείγματος. Απορριπτική περιοχή R της Η 0 ονομάζεται η περιοχή στα σημεία της οποίας η Η 0 απορρίπτεται. Σφάλμα τύπου Ι: Απορρίπτω Η 0 όταν η Η 0 είναι αληθής, με πιθανότητα α Σφάλμα τύπου ΙΙ: Δέχομαι την Η 0 όταν η Η 1 αληθής, με πιθανότητα β 27
28 Οι υποθέσεις που θέλουμε να ελέγξουμε είναι: 3. Έλεγχος υποθέσεων των συντελεστών β 0, β 1 Για το β 0 Η 0 : β 0 = 0 Η 1 : β 0 0 Στατιστικό ελέγχων Για το β 1 Η 0 : β 1 = 0 Η 1 : β 1 0 t = β 0 β 0 s β 0 = β 0 s β 0 t = β 1 β 1 s β 1 = β 1 s β 1 Για επίπεδο σημαντικότητας α, η κάθε μια μηδενική υπόθεση απορρίπτεται αν: t t T 2,a/2 Όπου t T 2,a/2 είναι κριτική ή κρίσιμη τιμή που δίνεται από τους πίνακες της κατανομής Student. 28
29 Βιβλιογραφία Χρήστου Κ. Γεώργιος (2007) Εισαγωγή στην Οικονομετρία, Τόμος 1, Εκδότης: Γ. ΔΑΡΔΑΝΟΣ - Κ. ΔΑΡΔΑΝΟΣ Ο.Ε. Stock H. James, Watson W. Mark, επιμέλεια Πραγγίδης Ιωάννης - Χρυσόστομος (2017) Εισαγωγή στην Οικονομετρία, Εκδότης: Γ. ΔΑΡΔΑΝΟΣ - Κ. ΔΑΡΔΑΝΟΣ Ο.Ε. Χρήστου Κ. Γεώργιος (2006) Εισαγωγή στην Οικονομετρία Ασκήσεις, Εκδόσεις Gutenberg. Δριτσάκη Ν. Χάιδω, Δριτσάκη Ν. Μελίνα (2013) Εισαγωγή στην Οικονομετρία με τη Χρήση του Λογισμικού EViews, Κλειδάριθμος ΕΠΕ Εκδόσεις. 29
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: ageliki.papaa@gmail.com, agpapaa@auth.gr Webpage: http://users.auth.gr/agpapaa
ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (3 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
ΟΙΚΟΝΟΜΕΤΡΙΑ. Η μέθοδος των βοηθητικών μεταβλητών. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 12: Σφάλματα μέτρησης στις μεταβλητές Η μέθοδος των βοηθητικών μεταβλητών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Χ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
ΟΙΚΟΝΟΜΕΤΡΙΑ. σε μη γραμμικές μορφές. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 7: Επεκτάσεις του γραμμικού υποδείγματος σε μη γραμμικές μορφές Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΟΙΚΟΝΟΜΕΤΡΙΑ. Α μέρος: Πολυσυγγραμμικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 9: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Α μέρος: Πολυσυγγραμμικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 11: Αυτοσυσχέτιση Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Περιεχόμενο ενότητας
ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2
013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει
Απλή Γραμμική Παλινδρόμηση II
. Ο Συντελεστής Προσδιορισμού Η γραμμή Παλινδρόμησης στο δείγμα, αποτελεί μία εκτίμηση της γραμμής παλινδρόμησης στον πληθυσμό. Αν και από τη μέθοδο των ελαχίστων τετραγώνων προκύπτουν εκτιμητές που έχουν
Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)
Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ
Πολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση
ΟΙΚΟΝΟΜΕΤΡΙΑ. Έλεγχοι σταθερότητας των συντελεστών. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 8: Η τεχνική των ψευδομεταβλητών - Έλεγχοι σταθερότητας των συντελεστών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων Γρεβενά Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Ιδιότητες εκτιμώμενης ευθείας παλινδρόμησης με τη μέθοδο των ελαχίστων
Απλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100
Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Απλή Γραμμική Παλινδρόμηση I
Απλή Γραμμική Παλινδρόμηση I. Εισαγωγή Έστω ότι θέλουμε να ερευνήσουμε εμπειρικά τη σχέση που υπάρχει ανάμεσα στις δαπάνες κατανάλωσης και στο διαθέσιμο εισόδημα, των οικογενειών. Σύμφωνα με την Κεϋνσιανή
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού
Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21
Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο
Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών
Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 3: Θεώρημα των Gauss Markov Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 6.1 Ετεροσκεδαστικότητα: Εισαγωγή Συχνά, η υπόθεση της σταθερής διακύμανσης των όρων σφάλματος,
ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ
ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression
Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή
Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική
Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική
Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από
ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης
ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται
Στατιστική Ι. Ανάλυση Παλινδρόμησης
Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι
ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ
Οικονομετρία. Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση των εισαγωγικών εννοιών που
Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
Αναλυτική Στατιστική
Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 8: Κανονικότητα Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων
7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 5.1 Αυτοσυσχέτιση: Εισαγωγή Συχνά, η υπόθεση της μη αυτοσυσχέτισης ή σειριακής συσχέτισης
Οικονομετρία. Απλή Παλινδρόμηση. Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση
Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ
Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά
Γ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης
Οικονομετρία. Απλή Παλινδρόμηση. Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία I.1 Τι Είναι η Οικονομετρία; Η κυριολεκτική ερμηνεία της λέξης, οικονομετρία είναι «οικονομική
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation
Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν
ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην
ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΕΥΣΗ: ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ
Α.Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΕΥΣΗ: ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ : «Η ΕΠΙΔΡΑΣΗ ΔΙΑΦΟΡΩΝ ΠΑΡΑΓΟΝΤΩΝ
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το Γενικευμένο Γραμμικό Υπόδειγμα (Α) ΔΙΑΛΕΞΗ 05 Μαρί-Νοέλ Ντυκέν,
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΙΜΟΣ ΜΕΙΝΤΑΝΗΣ, Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών, ΕΚΠΑ ΓΙΑΝΝΗΣ Κ. ΜΠΑΣΙΑΚΟΣ, Επίκουρος Καθηγητής Τμήμα Οικονομικών
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
ΠΑΛΙΝΔΡΟΜΗΣΗ. Απλή Παλινδρόμηση. (Όγκος πωλήσεων = α +b έξοδα διαφήμησης +e ) Εκτίμηση Απλής Παλινδρόμησης. α= εκτίμηση της τεταγμένης για χ=0
ΠΑΛΙΝΔΡΟΜΗΣΗ ΓΡΑΜΜΙΚΟ ΜΗ ΓΡΑΜΜΙΚΟ ΔΕΝ ΥΠΑΡΧΕΙ ΣΧΕΣΗ Απλή Παλινδρόμηση Y = a + bx + e (Όγκος πωλήσεων = α +b έξοδα διαφήμισης +e ) Εκτίμηση Απλής Παλινδρόμησης Y = a + bx (Όγκος πωλήσεων = α +b έξοδα διαφήμησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή
Εισαγωγή στην Γραμμική Παλινδρόμηση
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 13-11-015 Εισαγωγή στην Γραμμική Παλινδρόμηση Γραμμική σχέση μεταξύ μεταβλητών Αν. Καθ. Μαρί-Νοέλ Ντυκέν Στόχος Πολύ συχνά, η Τ.Μ. που εξετάζουμε π.χ. η κατανάλωση των νοικοκυριών
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας
Στατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : σ =Ε(Χ )-µ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : Cov(X,Υ)=Ε(ΧΥ)-Ε(Χ)Ε(Υ) ΑΣΚΗΣΗ 3 Να δείξετε ότι
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά
ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών
Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )
Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Πίνακας Περιεχομένων Εργασία η... Θέμα ο :... Θέμα ο :... 4 Θέμα 3 ο :...
5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο
5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε
Ενδεικτικές ασκήσεις ΔΙΠ 50
Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν