Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
|
|
- Χριστόφορος Κορομηλάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από δείγματα ενός πληθυσμού, για ολόκληρο τον πληθυσμό. Αν, για παράδειγμα, κατά την εξέταση ενός δείγματος από έναν πληθυσμό, βρέθηκε ότι ο μέσος όρος του δείγματος είναι 15, το ερώτημα που τίθεται είναι κατά πόσο είναι έγκυρο να υποθέσουμε ότι και ο μέσος όρος μ, όλου του πληθυσμού είναι και αυτός μ=15 ; Στην περίπτωση που υποθέσουμε, ότι ο δειγματικός μέσος όρος είναι και μέσος όρος του πληθυσμού ( δηλαδή : ), λέμε ότι κάνουμε μία εκτίμηση του μέσου όρου του πληθυσμού. Τα ίδια ισχύουν, προφανώς, και για τις άλλες στατιστικές παραμέτρους ( διακύμανση, τυπική απόκλιση κ.λ.π. ) Είναι επίσης προφανές ότι κάθε φορά που έχουμε ένα δείγμα μεγέθους ν από τον πληθυσμό, έχουμε και μία νέα εκτίμηση της τιμής της παραμέτρου του πληθυσμού. Οι εκτιμήσεις των διαφόρων παραμέτρων χωρίζονται, συνήθως, σε δύο κατηγορίες : α) Την εκτίμηση σημείου, στην οποία εκτιμούμε την παράμετρο, με μία συγκεκριμένη τιμή β) Την εκτίμηση διαστήματος, στην οποία εκτιμούμε την παράμετρο, με ένα διάστημα, μέσα στο οποίο βρίσκεται η τιμή της παραμέτρου. Για παράδειγμα, αν μία απόσταση βρεθεί ίση με 5,8 χιλιόμετρα, τότε έχουμε μία εκτίμηση σημείου. Αν όμως βρεθεί ίση με 5,8, 3 χιλιόμετρα, δηλαδή από 5,5 έως 5,31 χιλιόμετρα, τότε έχουμε μία εκτίμηση διαστήματος Έλεγχος του μέσου ενός πληθυσμού Συνήθως, μετά από κάθε δειγματοληψία, υπολογίζουμε τον δειγματικό μέσο. Ο μέσος μ, του πληθυσμού, είναι άγνωστος και δεν γνωρίζουμε αν το ή αν κάποιο διάστημα με κέντρο το, περιέχει και το μ. (εκτίμηση σημείου ή διαστήματος ) Αυτό που γίνεται στην πράξη, είναι να υπολογίζουμε την πιθανότητα να σφάλλουμε ( ή να μη σφάλλουμε ) αν εκτιμήσουμε τον μέσο μ, με τον δειγματικό μέσο ή με ένα διάστημα με κέντρο το
2 Σύμφωνα με το Κεντρικό Οριακό Θεώρημα, η δειγματική κατανομή του μέσου, για μεγάλα τυχαία δείγματα, ακολουθεί κατά προσέγγιση την κανονική κατανομή. Έτσι μπορούμε να ισχυριστούμε με πιθανότητα 1-α, πως ο δειγματικός μέσος διαφέρει από τον μέσο μ, του πληθυσμού, το πολύ κατά τυπικά σφάλματα του μέσου Από τα προηγούμενα, είναι γνωστό ότι η δειγματική κατανομή του μέσου ( για μεγάλα δείγματα ) είναι κανονική με και x οπότε βρίσκουμε ότι ο διαφέρει το πολύ κατά z Συνεπώς, αφού είναι το σφάλμα που κάνουμε όταν εκτιμούμε τον μέσο μ, με τον, τότε υπάρχει πιθανότητα 1-α να σφάλλουμε είτε υποτιμώντας είτε υπερτιμώντας τον μέσο μ, το πολύ κατά Ε = z όταν 3 Το Ε το ονομάζουμε μέγιστο σφάλμα εκτίμησης Όταν έχουμε λάβει υπόψη τα δεδομένα και μπορούμε να εκτιμήσουμε τον μέσο μ, συνηθίζεται ο όρος εμπιστοσύνη, αντί του όρου πιθανότητα 1-α Οι τιμές z ονομάζονται κρίσιμες τιμές και υπολογίζονται από τους πίνακες κατανομής της κανονικής καμπύλης Η πιθανότητα ( ή εμπιστοσύνη ) 1-α εκφράζεται σαν ποσοστό επί τοις εκατό και ονομάζεται επίπεδο εμπιστοσύνης Το επίπεδο εμπιστοσύνης, δηλώνει πόσο συχνά, θα βρίσκουμε ένα διάστημα που περιέχει την πραγματική τιμή του μέσου μ, του πληθυσμού. Το διάστημα αυτό ονομάζεται διάστημα εμπιστοσύνης Τελικά τα διαστήματα εμπιστοσύνης για τον μέσο μ του πληθυσμού, είναι : α) z επανατοποθέτηση για δειγματοληψία από άπειρο πληθυσμό ή με β) z για δειγματοληψία από πεπερασμένο 1 πληθυσμό μεγέθους Ν, χωρίς επανατοποθέτηση z
3 3 Παρατήρηση Οι πιο συνηθισμένες τιμές για το επίπεδο εμπιστοσύνης 1 % και την κρίσιμη τιμή z, είναι οι εξής : 1 % 9% 95% 98% 99% z 1,645 1,96.33,58 Παράδειγμα Υποθέτουμε, ότι θέλουμε να εκτιμήσουμε τον μέσο όρο του χρόνου που περιμένουν οι πελάτες, ενός πολυκαταστήματος, στην ουρά του ταμείου, για να πληρώσουν Για αυτό κάνουμε μία δειγματοληπτική έρευνα και παρατηρήσαμε ότι σε 11 πελάτες, ο μέσος 13, 4 λεπτά και η τυπική απόκλιση 1, 5 λεπτά Έτσι έχουμε τα εξής στοιχεία : ν=11 13, 4 1, 5 άρα για 95% επίπεδο εμπιστοσύνης έχουμε ότι : 1,5 13,4 1,96 13,4,7 λεπτά 11 Δηλαδή : 13,4,7 13,4,7 13,13 13, 67 Παρατηρήσεις 1) Για να εξηγήσουμε,καλύτερα, την έννοια του διαστήματος εμπιστοσύνης, στο παραπάνω παράδειγμα υποθέτουμε ότι κάνουμε 1 όμοια πειράματα. Κάθε υποθετικό πείραμα περιέχει τον ίδιο αριθμό παρατηρήσεων, με διαφορετικές τιμές για το και το. Όταν βρούμε τα διαστήματα εμπιστοσύνης, για όλα τα πειράματα, περίπου το 95% των διαστημάτων θα περιέχει τον πραγματικό μέσο μ. ) Η κρίσιμη τιμή z μεγαλώνει, όσο μεγαλώνει το επίπεδο εμπιστοσύνης και έτσι γίνεται πιο πλατύ το διάστημα εμπιστοσύνης. Μπορούμε να αποφύγουμε το πρόβλημα αυτό, μεταξύ ακρίβειας και αξιοπιστίας με την επιλογή δειγμάτων μεγαλύτερου μεγέθους ν. Έτσι θα έχουμε πιό στενό διάστημα εμπιστοσύνης και αύξηση της ακρίβειας της εκτίμησης.
4 4 3) Στο παραπάνω παράδειγμα, η τυπική απόκλιση, που χρησιμοποιήσαμε, είναι η δειγματική απόκλιση x ( αφού η είναι άγνωστη ) παρόλο που ο τύπος περιέχει την. Η αντικατάσταση αυτή, γίνεται συχνά, όταν είναι άγνωστη η και είναι αποδεκτή όταν το μέγεθος του δείγματος είναι 3
5 5 Προβλήματα 1) Ένας σπουδαστής του τμήματος μας, μελέτησε τους μισθούς των αποφοίτων της σχολής του και σε σύνολο 169 αποφοίτων, βρήκε ότι 158 ευρώ και = 4,8 ευρώ α) Να βρεθεί το διάστημα εμπιστοσύνης, με 99% επίπεδο εμπιστοσύνης β) Να βρεθεί το διάστημα εμπιστοσύνης, με 9% επίπεδο εμπιστοσύνης γ) Τι μπορούμε να πούμε για το πλάτος και την αξιοπιστία των παραπάνω εκτιμήσεων ; ) Θέλουμε να εκτιμήσουμε τον μέσο όρο του βάρους των τελάρων δοσμένου μεγέθους, που είναι γεμάτα ψάρια. Επιλέγουμε 7 τελάρα και βρίσκουμε ότι κιλά και = 9 κιλά Να βρεθεί το διάστημα εμπιστοσύνης σε επίπεδο 95% 3) Ένας ψυχολόγος βρήκε ότι ο χρόνος αντίδρασης σε εξωτερικούς ερεθισμούς έχει τυπική απόκλιση,5 ec Πόσο μεγάλο πρέπει να είναι το δείγμα των μετρήσεων του, για να είναι : α) 95% και β) 99% βέβαιος ότι το σφάλμα στην εκτίμηση του μέσου χρόνου αντίδρασης, δεν υπερβαίνει τα,1 ec ; 4) Τα παιδιά των νηπιαγωγείων έχουν ύψη, τα οποία κατανέμονται κατά προσέγγιση κανονικά, με μέσο 39 ίντσες και τυπική απόκλιση ίντσες. Ένα τυχαίο δείγμα μεγέθους 5 έχει ληφθεί και υπολογίστηκε ο α) Ποιά είναι η πιθανότητα να βρίσκεται η τιμή αυτή μεταξύ 38,5 και 4 ιντσών ; β) Ποιά είναι τα όρια του διαστήματος, μέσα στο οποίο θα βρίσκεται το κεντρικό 9% των δειγματικών μέσων της δειγματικής κατανομής από δείγματα μεγέθους 1 ;
6 6 Έλεγχος υποθέσεων Στη διαδικασία λήψης αποφάσεων, κάνουμε συχνά υποθέσεις για τις παραμέτρους ενός πληθυσμού. Π.χ. Ο μέσος δείκτης νοημοσύνης του πληθυσμού είναι 1. Ένας ερευνητής υποστηρίζει, ότι τα παιδιά που μεγαλώνουν σε ιδρύματα, παρουσιάζουν διανοητική καθυστέρηση. Ο Στατιστικός για να ελέγξει την υπόθεση αυτή, παίρνει ένα δείγμα παιδιών και κάνει τον έλεγχο της υπόθεσης, χρησιμοποιώντας, το κατάλληλο στατιστικό κριτήριο ελέγχου. Μία τέτοια υπόθεση, που μπορεί να είναι ή να μην είναι αληθής, ονομάζεται στατιστική υπόθεση. Η πιό συνηθισμένη στατιστική υπόθεση, είναι η λεγόμενη μηδενική υπόθεση, η οποία συμβολίζεται με και συνίσταται στο να υποθέσουμε ότι η εμφανιζόμενη διαφορά μεταξύ του δειγματικού μέσου και του αντίστοιχου μέσου μ του πληθυσμού, είναι στατιστικά ασήμαντη και οφείλεται στα τυχαία σφάλματα της δειγματοληψίας Άλλη διατύπωση της μηδενικής υπόθεσης, είναι η εξής : Υποθέτουμε ότι ο άγνωστος μέσος του πληθυσμού μ, είναι ίσος με μία υποθετική τιμή Η μηδενική υπόθεση διατυπώνεται ως εξής : : Σε κάθε μηδενική υπόθεση, θέτουμε συγχρόνως και μία άλλη υπόθεση, η οποία ονομάζεται εναλλακτική υπόθεση και συμβολίζεται με το 1. Για αυτήν, υποθέτουμε ότι ο μέσος μ, του πληθυσμού έχει διαφορετική τιμή από την υποθετική τιμή Η εναλλακτική υπόθεση διατυπώνεται ως εξής : : 1 Για να οδηγηθούμε σε συμπέρασμα, εφαρμόζουμε το κατάλληλο κριτήριο ελέγχου, το οποίο δέχεται ή απορρίπτει την υπόθεση. Αν το κριτήριο απορρίψει την, τότε δεχόμαστε την εναλλακτική υπόθεση 1 Η αποδοχή ή η απόρριψη της υπόθεσης, γίνεται πάντα με μία ορισμένη πιθανότητα να διαπράξουμε σφάλμα. Τα πιο συνηθισμένα σφάλματα τα οποία διαπράττονται, είναι τα εξής δύο : α) Σφάλμα τύπου Ι. Αν η υπόθεση, είναι αληθής και το κριτήριο ελέγχου την απορρίψει, τότε διαπράττουμε σφάλμα τύπου Ι Η πιθανότητα να διαπράξουμε σφάλμα τύπου Ι, ονομάζεται επίπεδο σημαντικότητας και συμβολίζεται με το γράμμα α
7 7 β) Σφάλμα τύπου ΙΙ. Αν η υπόθεση είναι λανθασμένη και το κριτήριο ελέγχου την δεχτεί ως αληθή,τότε διαπράττουμε σφάλμα τύπου ΙΙ Στην πράξη εκείνο που έχει σημασία είναι ότι, το εφαρμοζόμενο κριτήριο ελέγχου, πρέπει να ελαχιστοποιεί την πιθανότητα εμφάνισης σφάλματος και των δύο τύπων Συνήθως, προσπαθούμε να αποφύγουμε σφάλματα τύπου Ι. Για να το πετύχουμε αυτό, προκαθορίζουμε την πιθανότητα να διαπράξουμε σφάλμα τύπου Ι, σε ένα ορισμένο επίπεδο σημαντικότητας, που συνήθως είναι το α =,5 (ή 5%) ή α =,1 (ή 1%) Αν π.χ. προκαθορίσουμε το α =,5 και απορρίψουμε την υπόθεση, τότε σε 1 όμοιες περιπτώσεις, μόνο σε 5, είναι δυνατόν να έχουμε κάνει λάθος Πρέπει να τονιστεί, ότι ο έλεγχος των υποθέσεων, δεν οδηγεί στην απόδειξη της υπόθεσης, αλλά συμπεραίνει αν στηρίζεται η υπόθεση από τα διαθέσιμα δεδομένα. Για αυτό όταν επαληθεύεται η μηδενική υπόθεση, δεν λέμε ότι αυτή είναι αληθινή, αλλά ότι αυτή μπορεί να είναι αληθινή. Διαδικασία ελέγχου του μέσου Έστω ότι θέλουμε να ελέγξουμε την υπόθεση, ότι ο μέσος μ ενός πληθυσμού έχει μία συγκεκριμένη τιμή. Από τον ελεγχόμενο πληθυσμό παίρνουμε τυχαίο δείγμα μεγέθους ν και υπολογίζουμε τον δειγματικό μέσο. Η διαδικασία ελέγχου ακολουθεί τα εξής βήματα : 1) Θέτουμε την μηδενική υπόθεση και την εναλλακτική υπόθεση 1, δηλαδή : και : 1 ) Καθορίζουμε το επίπεδο σημαντικότητας α. (π.χ. α =,1 ή α =,5) 3) Εφαρμόζουμε το κατάλληλο στατιστικό κριτήριο ελέγχου, από το οποίο προκύπτει μία συγκεκριμένη τιμή. Το πιό συνηθισμένο κριτήριο ελέγχου είναι το κριτήριο Ζ, για το οποίο είναι : z για δείγμα μεγέθους 3 4) Με βάση το επίπεδο σημαντικότητας, βρίσκουμε τις κριτικές τιμές της τυποποιημένης μεταβλητής Ζ, πάνω στην τυποποιημένη κανονική καμπύλη και καθορίζουμε τις περιοχές αποδοχής και απόρριψης της υπόθεσης
8 8 Στο σχήμα, οι γραμμοσκιασμένες περιοχές, είναι περιοχές απόρριψης της, ενώ η μεσαία περιοχή, είναι περιοχή αποδοχής της 5) Συγκρίνουμε την τιμή της Ζ που βρέθηκε από το κριτήριο ελέγχου, με τις κριτικές τιμές z και Αν Αν z z ή z z1 z 1 z τότε απορρίπτουμε την z z τότε αποδεχόμαστε την 1 Αν κατά την προηγούμενη διαδικασία απορρίψουμε την, τότε αποδεχόμαστε την 1 Το κριτήριο ελέγχου, με το οποίο έγινε ο έλεγχος της υπόθεσης : έναντι της εναλλακτικής υπόθεσης : ονομάζεται 1 δίπλευρο κριτήριο ελέγχου ( ή αμφίπλευρο ) Πολλές φορές ενδιαφερόμαστε, αν ο μέσος είναι μικρότερος ή μεγαλύτερος από μία συγκεκριμένη τιμή. Στις περιπτώσεις αυτές οι ελεγχόμενες υποθέσεις είναι : : και : (1) 1 : και : () 1 Ο έλεγχος αυτών των υποθέσεων ονομάζεται μονόπλευρος έλεγχος και διακρίνεται σε :
9 9 Μονόπλευρος προς τα κάτω (περίπτωση 1) Μονόπλευρος προς τα πάνω (περίπτωση ) Στην περίπτωση 1, αν z z η υπόθεση απορρίπτεται Στην περίπτωση, αν z z1, η υπόθεση απορρίπτεται Ο παρακάτω πίνακας περιέχει τα επίπεδα σημαντικότητας α, και τις κριτικές τιμές Ζ, για τους δίπλευρους και μονόπλευρους ελέγχους υποθέσεων : Επίπεδο σημαντικότητας α Κριτικές τιμές Ζ για δίπλευρο έλεγχο Κριτικές τιμές Ζ για μονόπλευρο έλεγχο -1,645 +1,645-1,8 +1,8,1,5,1-1,96 +1,96-1,645 +1,645 -,58 +,58 -,33 +,33 Παράδειγμα Υποθέτουμε ότι το μέσο οικογενειακό εισόδημα τον χρόνο Τ, ήταν χιλιάδες ευρώ και η τυπική απόκλιση 6 χιλιάδες ευρώ. Θέλουμε να ελέγξουμε το μέσο οικογενειακό εισόδημα τον επόμενο χρόνο Τ+1. Παίρνουμε τυχαίο δείγμα 1 οικογενειών και βρίσκουμε το μέσο εισόδημα, έστω 1 χιλιάδες ευρώ και υποθέτουμε ότι η τυπική απόκλιση 6 χιλιάδες ευρώ, δεν έχει αλλάξει. Επίπεδο σημαντικότητας α =,5 Έχουμε : μ =, = 6, ν =1, 1 Έστω : : και 1 : Δηλαδή, υποθέσαμε ότι η διαφορά 1-=1 είναι σφάλμα δειγματοληψίας 1 5 Τότε : z 1,
10 1 Οι κριτικές τιμές για δίπλευρο έλεγχο, είναι : z 1, 96 και z 1, 96 Άρα, αφού η τιμή του κριτηρίου είναι 1,67<1,96 και βρίσκεται στην περιοχή αποδοχής της υπόθεσης, πρέπει η υπόθεση να γίνει αποδεκτή. Δηλαδή και τον επόμενο χρόνο Τ+1, το μέσο οικογενειακό εισόδημα θα είναι χιλιάδες ευρώ, με πιθανότητα σφάλματος 5% Αν τώρα θέσουμε την υπόθεση : : και : τότε z 1,67 και η κριτική τιμή Ζ για τον μονόπλευρο προς τα πάνω έλεγχο είναι : z 1, 645 Επειδή z 1,67 1, 645 z η υπόθεση : απορρίπτεται και γίνεται δεκτή η υπόθεση 1 :. Δηλαδή το εισόδημα θα αυξηθεί!!! Επειδή η τιμή του κριτηρίου 1,67, είναι πολύ κοντά στην κριτική τιμή, η απόρριψη της πρέπει να γίνει με επιφύλαξη. Συνιστάται, νέα δειγματοληψία 1
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΣτατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΈλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
Διαβάστε περισσότερα6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά
Διαβάστε περισσότεραΚεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Διαβάστε περισσότεραΗ ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21
ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις
Διαβάστε περισσότεραΚεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Διαβάστε περισσότερα5 o Μάθημα Έλεγχοι Υποθέσεων
5 o Μάθημα Έλεγχοι Υποθέσεων 5 Το Πρόβλημα του Ελέγχου Υποθέσεων Ας υποθέσουμε ότι σχεδιάζονται κάποιες κυκλοφοριακές ρυθμίσεις με στόχο ο μέσος χρόνος μετακίνησης των εργαζομένων που χρησιμοποιούν το
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος
Διαβάστε περισσότεραΣτατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η
Διαβάστε περισσότεραΣτατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
Διαβάστε περισσότεραΣτατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική
Διαβάστε περισσότεραΓ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Διαβάστε περισσότεραΕισαγωγή στην Εκτιμητική
Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση
Διαβάστε περισσότεραΜεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 7-8 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
Διαβάστε περισσότεραΔιαδικασία Ελέγχου Μηδενικών Υποθέσεων
Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ
Διαβάστε περισσότεραΈλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης
Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
Διαβάστε περισσότεραΔιαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ
Διαβάστε περισσότερα5. Έλεγχοι Υποθέσεων
5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος
Διαβάστε περισσότεραΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική Ενότητα 3: Έλεγχοι υποθέσεων - Διαστήματα εμπιστοσύνης Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Οι ερευνητικές υποθέσεις Στην έρευνα ελέγχουμε
Διαβάστε περισσότεραΔειγματοληψία στην Ερευνα. Ετος
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)
Διαβάστε περισσότεραΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ
ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά
Διαβάστε περισσότεραΈλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2
Έλεγχοι Υποθέσεων 7-2 7 Έλεγχοι Υποθέσεων Χρήση της Στατιστικής Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-3 7 Μαθησιακοί Στόχοι Όταν θα έχετε ολοκληρώσει την μελέτη του κεφαλαίου θα πρέπει να
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
Διαβάστε περισσότεραΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017
Διαβάστε περισσότεραΠεριγραφική Ανάλυση ποσοτικών μεταβλητών
Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο
Διαβάστε περισσότεραΣτατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΕισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Διαβάστε περισσότεραΑνάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Διαβάστε περισσότεραΕνότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 2: Έλεγχοι Υποθέσεων
Διαβάστε περισσότεραΣύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test
1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
Διαβάστε περισσότεραΕργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης
Διαβάστε περισσότεραΑνάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Διαβάστε περισσότεραΓραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική
Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ ΜΥΛΩΝΑ ΔΙΟΝΥΣΙΑ ΕΠΟΠΤΕΥΩΝ ΚΑΘΗΓΗΤΗΣ: ΔΡ. ΒΑΣΙΛΙΚΗ ΚΑΡΙΩΤΗ ΕΙΣΗΓΗΤΗΣ:
Διαβάστε περισσότεραΟικονομετρία. Απλή Παλινδρόμηση. Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Διαβάστε περισσότεραΚεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων
Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων Επαγωγική Στατιστική Ο έλεγχος υποθέσεων είναι η δεύτερη μορφή της επαγωγικής στατιστικής. Έχει επίσης μεγαλύτερη δυνατότητα εφαρμογής. Για να κατανοήσουμε την
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών
Διαβάστε περισσότεραΓια το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας
Διαβάστε περισσότεραΕνότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών
Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.
Διαβάστε περισσότεραΣτατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )
Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Πίνακας Περιεχομένων Εργασία η... Θέμα ο :... Θέμα ο :... 4 Θέμα 3 ο :...
Διαβάστε περισσότεραΔειγματοληπτικές κατανομές
Δειγματοληπτικές κατανομές Κατανομές που χρησιμοποιούνται για τον έλεγχο υποθέσεων στα δείγματα Κανονική κατανομή (z-κατανομή) t-κατανομή Χ κατανομή F-κατανομή Ζητάμε να προσδιορίσουμε τις παραμέτρους
Διαβάστε περισσότεραΚεφάλαιο 10 Εισαγωγή στην Εκτίμηση
Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ
Διαβάστε περισσότεραΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17
ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής
Διαβάστε περισσότερα1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος
Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο
Διαβάστε περισσότεραΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων
ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα
Διαβάστε περισσότερα3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)
3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί
Διαβάστε περισσότερα2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ
.5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων
Διαβάστε περισσότεραΤο τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος
Το σύμβολο μ απεικονίζει 92.4% το μέσο όρο του πληθυσμού 121 92.4% το μέσο όρο του δείγματος 8 6.1% το μέσο όρο της κατανομής t 0 0% το μέσο όρο της κανονικής κατανομής 2 1.5% Το σύμβολο X απεικονίζει
Διαβάστε περισσότεραΣτατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΣημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη
Σημειακή εκτίμηση και εκτίμηση με διάστημα 11 η Διάλεξη Εκτιμήτρια Κάθε στατιστική συνάρτηση που χρησιμοποιείται για την εκτίμηση μιας παραμέτρου ενός πληθυσμού (π.χ. ο δειγματικός μέσος) Σημειακή εκτίμηση
Διαβάστε περισσότεραΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
Διαβάστε περισσότεραΔειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Διαβάστε περισσότεραΠεριπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη
Διαβάστε περισσότεραΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Διαβάστε περισσότεραΣτατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ
Διαβάστε περισσότεραΕξαρτημένα δείγματα (εξαρτημένες μετρήσεις)
Ν6_(6)_Στατιστική στη Φυσική Αγωγή 06_0_Έλεγχος_Υποθέσεων0 Ανεξάρτητα δείγματα Εξαρτημένα δείγματα Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ανεξάρτητα δείγματα (ανεξάρτητες μετρήσεις)
Διαβάστε περισσότεραΈλεγχος Υποθέσεων (Hypothesis Testing)
Έλεγχος Υποθέσεων (Hypothesis Testig) Ορισμοί Μορφές στατιστικού ελέγχου Πιθανότητες σφάλματος τύπου Ι και ΙΙ Ισχύς (Power) ενός ελέγχου Η P-τιμή (P-vlue) Στατιστικοί έλεγχοι υποθέσεων για ειδικές περιπτώσεις
Διαβάστε περισσότερα4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Διαβάστε περισσότερα4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Διαβάστε περισσότεραΚεφάλαιο 9 Κατανομές Δειγματοληψίας
Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε
Διαβάστε περισσότερα2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)
.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην
Διαβάστε περισσότεραΔιάλεξη 1 Βασικές έννοιες
Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη
Διαβάστε περισσότεραΜεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 :
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 : 1. Να χρησιμοποιηθεί το αρχείο gssft.sav για να γίνει έλεγχος της υπόθεσης ότι στους εργαζόμενους με πλήρη απασχόληση η τιμή του μέσου
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα
Διαβάστε περισσότεραΜέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing)
Μέρος IV. Ελεγχοι Υποθέσεων (ypothesis Testig) Βασικές έννοιες Γενική μεθοδολογία Σφάλμα τύπου Ι και -vlue Στατιστικοί έλεγχοι υποθέσεων για ειδικές περιπτώσεις Εφαρμοσμένη Στατιστική Μέρος 4 ο - Κ. Μπλέκας
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Διαβάστε περισσότεραΛίγα λόγια για τους συγγραφείς 16 Πρόλογος 17
Περιεχόμενα Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 1 Εισαγωγή 21 1.1 Γιατί χρησιμοποιούμε τη στατιστική; 21 1.2 Τι είναι η στατιστική; 22 1.3 Περισσότερα για την επαγωγική στατιστική 23 1.4 Τρεις
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΣτατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 2 ου κεφαλαίου Σταύρος Χατζόπουλος 20/02/2017, 06/03/2017, 13/03/2017 1 Κεφάλαιο 2. Έλεγχος Απλών Υποθέσεων Τα προβλήματα ελέγχου υποθέσεων απορρέουν από παρατηρήσεις
Διαβάστε περισσότεραΕξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική
1 ΕΞΑΜΗΝΙΑΙΑ Β ΤΟ ΦΩΤΟΒΟΛΤΑΙΚΟ ΠΑΡΚΟ ΑΣΠΑΙΤΕ Τμήμα Εκπαιδευτικών Ηλεκτρολογίας Εργαστήριο Συλλογής και Επεξεργασίας Δεδομένων Διδάσκοντες: Σπύρος Αδάμ, Λουκάς Μιχάλης, Παναγιώτης Καράμπελας Εξαμηνιαία
Διαβάστε περισσότεραΠινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες
Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω
Διαβάστε περισσότεραΜέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.
Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο
Διαβάστε περισσότεραΔειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Διαβάστε περισσότεραΔειγματοληψία στην εκπαιδευτική έρευνα. Είδη δειγματοληψίας
Δειγματοληψία στην εκπαιδευτική έρευνα Είδη δειγματοληψίας Γνωρίζουμε ότι: Με τη στατιστική τα δεδομένα γίνονται πληροφορίες Στατιστική Δεδομένα Πληροφορία Αλλά από πού προέρχονται τα δεδομένα; Πώς τα
Διαβάστε περισσότεραΕίδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότερα2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ
.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα
Διαβάστε περισσότεραΧρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,
ΜΕΜ64: Εφαρμοσμένη Στατιστική 1 ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=0, X = 7.5, σ = 16, α = 5%. Πως αλλάζει το διάστημα αν
Διαβάστε περισσότεραX = = 81 9 = 9
Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη
Διαβάστε περισσότερα3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
Διαβάστε περισσότερα