math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr"

Transcript

1 III Όριο

2 Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr

3 ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό, καθώς το προσεγγίζει με οποιονδήποτε τρόπο τον αριθμό, τότε λέμε ότι: "το όριο της f(), όταν το τείνει στο, είναι ", ή πιο απλά, ότι "το όριο της f() στο είναι " και γράφουμε f ( ) Για να αναζητήσουμε το όριο της f () στο, πρέπει η f να ορίζεται όσο θέλουμε κοντά στο, δηλαδή η f να είναι ορισμένη σε ένα σύνολο της μορφής a,, b ή a, ή,b Το μπορεί να ανήκει στο πεδίο ορισμού της συνάρτησης ή να μην ανήκει σε αυτό (σχήμα ) Η τιμή της f στο, όταν υπάρχει, μπορεί να είναι ίση με το όριό της στο ή διαφορετική από αυτό (σχήμα ) Σχήμα f ( ) (α) Η δεν ορίζεται στο (β) Η f ορίζεται στο και f ( ) f f (γ) Η ορίζεται στο, αλλά f ( ) Πλευρικά Όρια στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό, καθώς το προσεγγίζει τον αριθμό από μικρότερες τιμές, τότε λέμε ότι "το όριο της f (), όταν το τείνει στο από τα αριστερά, είναι ", ή, πιο απλά, ότι "το αριστερό όριο της () στο είναι " και γράφουμε f ( ) f Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr

4 Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό, καθώς το προσεγγίζει τον αριθμό από μεγαλύτερες τιμές, τότε λέμε ότι "το όριο της f(), όταν το τείνει στο από τα δεξιά, είναι ", ή, πιο απλά, ότι "το δεξιό όριο της f () στο είναι " και γράφουμε f ( ) Σχέδιο Πλευρικά Όρια Παντελής Μπουμπούλης, MSc, PhD σελ 4 blogspotcom, bouboulismyschgr

5 Β Βασικά Θεωρήματα Θεώρημα Έστω μια συνάρτηση ισοδυναμίες: f ( ) f ορισμένη σε ένα σύνολο της μορφής a,, b Τότε, ισχύουν οι παρακάτω (α) f ( ) (β) f ( ) f ( h) Θεώρημα Έστω μια συνάρτηση f ορισμένη σε ένα σύνολο της μορφής a,, b Τότε f ( ), αν και μόνο αν f ( ) f ( ) Θεώρημα Έστω μια συνάρτηση h f ορισμένη σε ένα σύνολο της μορφής a,, b Αν f ( ), τότε ( ) κοντά στο Αν f ( ), τότε f ( ) κοντά στο f Θεώρημα 4 Αν οι συναρτήσεις, f g είναι ορισμένες σε ένα σύνολο της μορφής a, b και ισχύει f ( ) g(), τότε f ( ) g( ),,, έχουν όριο στο Θεώρημα 5 (Κριτήριο Παρεμβολής) Δίνονται οι συναρτήσεις,,, οι οποίες είναι ορισμένες σε ένα σύνολο της μορφής Αν f g h a,, b f ( ) g( ), για κάθε a, b και g( ) h(, τότε f () h( ), ) Παντελής Μπουμπούλης, MSc, PhD σελ 5 blogspotcom, bouboulismyschgr

6 Γ Βασικές Ιδιότητες όριο σταθερής συνάρτησης: c c, για κάθε c R Όριο ταυτοτικής Συνάρτησης: Όριο αθροίσματος: Αν υπάρχουν τα όρια των f, g στο, τότε ισχύει ότι f ( ) g( ) f ( ) f ( ) 4 Όριο βαθμωτού γινομένου: Αν υπάρχει το όριο της f στο, τότε ισχύει ότι f ( ) f ( ), για κάθε R 5 Όριο γινομένου: Αν υπάρχουν τα όρια των f, g στο, τότε ισχύει ότι f ( ) g( ) f ( ) f ( ) 6 Όριο πηλίκου: Αν υπάρχουν τα όρια των f, g στο και g( ), τότε ισχύει ότι f ( ) g( ) f ( ) f ( ) 7 Όριο απόλυτης τιμής: Αν υπάρχει το όριο της f στο, τότε ισχύει ότι f ( ) f ( ), 8 Όριο ρίζας: Αν η f είναι θετική κοντά στο και υπάρχει το όριο της f στο, τότε k f ( ) k f ( ) Τριγωνομετρικά Όρια Ισχύει ημ ( ) για κάθε R ημ( ) ημ( ) συν( ) συν ( ) 4 ημ( ) 5 συν( ) Όριο Σύνθετης Συνάρτησης f ( g( )), για κάθε φυσικό αριθμό k Θέτουμε u g() Υπολογίζουμε (αν υπάρχει) το όριο u g( ) Τέλος, υπολογίζουμε το όριο f ( u) Ισχύει δηλαδή f ( g( )) f ( u) (αν g( u ) κοντά στο uu uu Παντελής Μπουμπούλης, MSc, PhD σελ 6 blogspotcom, bouboulismyschgr

7 Δ Μεθοδολογία Ασκήσεων Υπολογισμός απλών ορίων Στην περίπτωση απλών ή σύνθετων παραστάσεων, στις οποίες δεν υπάρχουν απόλυτες τιμές, αλλά ούτε και κάποιος παρονομαστής που να μηδενίζεται, απλώς αντικαθιστούμε το με την τιμή (την τιμή στην οποία τείνει το ) και υπολογίζουμε το όριο Παραδείγματα: Άσκηση Α, Α σχολικού βιβλίου σελ Όρια δύκλαδων συναρτήσεων ή συναρτήσεων με απόλυτες τιμές Αντικαθιστούμε το με την τιμή, όπως στην πρώτη περίπτωση Αν οι παραστάσεις μέσα στα απόλυτα είναι θετικές ή αρνητικές υπολογίζουμε το όριο με αυτή την απλή αντικατάσταση Στην περίπτωση που κάποια από τις παραστάσεις αυτές πάρει την τιμή (και προκύπτει κάποιου είδους απροσδιοριστία), τότε βγάζουμε το απόλυτο χρησιμοποιώντας τη γνωστή (από την Α Λυκείου) σχέση: Με αυτό τον τρόπο βγάζουμε την απόλυτη τιμή και οδηγούμαστε σε μια δύκλαδη συνάρτηση, της οποίας υπολογίζουμε τα πλευρικά όρια Παραδείγματα: Άσκηση 5Α, Β σχολικού βιβλίου σελ Υπολογισμός ορίου ρητών παραστάσεων που εμφανίζουν την απροσδιόριστη μορφή / Παραγοντοποιούμε τον αριθμητή και τον παρονομαστή (οι οποίοι έχουν ως ρίζα το ) και διαγράφουμε τους κοινούς παράγοντες Στη συνέχεια αντικαθιστούμε το με την τιμή και υπολογίζουμε το όριο Παραδείγματα: Άσκηση Α, Β, Β βιβλίου σελ Υπολογισμός ορίου ρητών παραστάσεων με ρίζες, οι οποίες εμφανίζουν την απροσδιόριστη μορφή / Ακολουθούμε μια από τις παρακάτω μεθοδολογίες Α) Πολλαπλασιάζουμε με τις συζυγείς παραστάσεις των παραγόντων, οι οποίοι έχουν ρίζες, τον αριθμητή και παρονομαστή Κάνουμε τις πράξεις (διαφορά τετραγώνων, κλπ) και διαγράφουμε τους κοινούς παράγοντες που προκύπτουν Στη συνέχεια αντικαθιστούμε το με την τιμή και υπολογίζουμε το όριο Β) Αν εμφανίζονται ριζικά μεγαλύτερης τάξης (πχ ), τότε αντί για πολλαπλασιασμό με τη συζυγή παράσταση, πολλαπλασιάζουμε με τον κατάλληλο παράγοντα ώστε να σχηματιστεί η ταυτότητα n n n n n n y ( y) y y y Για παράδειγμα, αν εμφανίζεται παράγοντας της μορφής, πολλαπλασιάζουμε αριθμητή και παρονομαστή με την παράσταση ( ) Έτσι παίρνουμε ( ) ( ) Παντελής Μπουμπούλης, MSc, PhD σελ 7 blogspotcom, bouboulismyschgr

8 Γ) Αν εμφ ανίζονται ριζικά με ίδιο υπ όριζο (πχ, ), τότε μπορούμε να αντικαταστήσουμε με u το ριζικό με δείκτη τον ΕΚΠ των δεικτών που εμφανίζονται στις ρίζες Στο συγκεκριμένο παράδειγμα 6 u, οπότε u και u u Στη συνέχεια, μπορούμε να εφαρμόσουμε τις ιδιότητες ορίων σύνθετων συναρτήσεων Δ) Στην περίπτωση όπου εμφανίζονται διαφορετικές ρίζες (πχ, ), τότε μπορούμε να σπάσουμε το κλάσμα σ τα δύο, βάζοντας στο ένα τη μ ία ρίζα και στο άλλο την άλλη, προσέχοντας όμως να έχουμ ε απροσ διοριστία και σ τα δύο κλάσματα Δουλε ύουμε το κάθε ένα ξεχωριστά 7 4 Πχ Αν θέλουμε να υπολογίσουμε το όριο, τότε παίρνουμε και υπολογίζουμε τα δύο όρια ξεχωριστά Παραδείγματα: Άσκηση 4Α, Βiii βιβλίου σελ Υπολογισμός ορίου τριγωνομετρικών παραστάσεων, οι οποίες εμφανίζουν την απροσδιόριστη μορφή / Ακολουθούμε μια από τις παρακάτω μεθοδολογίες: Α) Γενικά προσπαθούμε να χρησιμοποιήσουμε κάποια από τις σχέσεις των τριγωνομετρικών ορίων Για το σκοπό αυτό μπορεί να χρειαστεί να παραγοντοποιήσουμε τον αριθμητή ή τον παρονομαστή ημ(a ) ημ( a ) a ημ( a ) Π χ αν μας ζητείται το όριο, τότε έχουμε και ακολουθούμε τους a κανόνες του ορίου σύνθετης συνάρτησης Β) Αν έχουμε παράσταση με ρίζα, τότε ακολουθούμε τη διαδικασία που περιγράφεται στην κατηγορία 4 και στη συνέχεια προσπαθούμε να χρησιμοποιήσουμε τις σχέσεις των τριγωνομετρικών ορίων Δεν ξεχνάμε τη βασική τριγωνομετρική ταυτότητα: ημ ( ) συν ( ) Γ ) Αν εμφανίζεται σε ένα κλάσμα η παράσταση ( ), ή η παράσταση ( ), τότε μια καλή ιδέα είναι να πολλαπλασιάσουμε αριθμητή και παρονομαστή με τη συζυγή παράσταση Δ) Πολλά όρια που περιέχουν τριγωνομετρικές συναρτήσεις λύνονται με τη βοήθεια του κριτηρίου παρεμβολής Γι αυτό το λόγο μπορούμε να χρησιμοποιήσουμε τις ανισώτητες ημ, - συν - ημ Παραδείγματα: Άσκηση 6Α, 7Α βιβλίου σελ Υπολογισμός ορίου συνάρτησης, αν δίνονται συγκεκριμένες ανισότητες Σε τέτοιες ασκήσεις χρησιμοποιούμε το κριτήριο παρεμβολής Βρίσκουμε τα όρια των παραστάσεων που φράζουν άνω και κάτω τη δοσμένη συνάρτηση Αν αυτά τα όρια ταυτίζονται, τότε το κοινό όριο είναι και όριο τη δοσμένης συνάρτησης Παραδείγματα: Άσκηση 9Α, βιβλίου σελ Παντελής Μπουμπούλης, MSc, PhD σελ 8 blogspotcom, bouboulismyschgr

9 7 Ασκήσεις στις οποίες μας ζητάνε να υπολογίσουμε το όριο μιας συνάρτησης f(), όταν δίνεται το όριο μιας παράστασης Π(f()) (η οποία περιέχει την f()) Θέτουμε g( ) ( f ( )) και λύνουμε ως προς f () Στη συνέχεια, χρησιμοποιούμε τους γνωστούς κανόνες των ορίων Παραδείγματα: Άσκηση 4Β, βιβλίου σελ Σημείωση Αν f ( ) τότε ισχύει ότι f ( ) Η απόδειξη μπορεί να γίνει με κριτήριο παρεμβολής, χρησιμοπο ιώντας την ανίσωση f ( ) f ( ) f () Αν f ( ), είτε f ( ), είτε δεν υπάρχει το f ( ) f ( ),, τότε είτε Σημείωση Όπως θα δούμε παρακάτω, πολλά από τα όρια που εμφανίζουν απροσδιοριστία της μορφής / μπορούν να υπολογιστούν ευκολότερα με τη βοήθεια του κανόνα L' Hospital: f ( ) f ( ) g( ) g( ) Παντελής Μπουμπούλης, MSc, PhD σελ 9 blogspotcom, bouboulismyschgr

10 Ασκήσεις Να υπολογιστούν τα όρια 4 4 Α), Β) 8, Γ) Να υπολογιστούν τα όρια (αν υπάρχουν) Α), Β), Γ) 5 5, Δ) Να υπολογιστούν τα όρια Α) 7, Β) Να υπολογιστούν τα όρια Α), Β) Να υπολογιστούν τα όρια 5 Α), Β) 6 Να υπολογιστούν τα όρια 4 Α), Β), Γ) Γ) 8, Γ) Να υπολογιστούν τα όρια 7 Α), Β), Γ) Ε) 8 Να υπολογιστούν τα όρια ( ) ( ) Α), Β) ( ) ( ) 6 9 Αν γνωρίζετε ότι f ( ), Να αποδείξετε ότι υπάρχει το όριο ( ) (, Γ) ) Αν γνωρίζετε ότι f ( ) g( ) και ότι, Δ) 4 4, Δ), Δ) ( ) f ( ) και να το υπολογίσετε f ( ) g( ) τα όρια f ( ), g( ) και να τα υπολογίσετε, να αποδείξετε ότι υπάρχουν Δίνεται η συνάρτηση Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr

11 ( ), f ( ) ( ), ( ), Αν γνωρίζετε ότι υπάρχουν τα όρια f ( ), f ( ), να υπολογίσετε τις παραμέτρους α, β Δίνεται μια πραγματική συνάρτηση τέτοια ώστε f ( ), για κάποιο D f Να αποδείξετε ότι Α) Αν η συνάρτηση είναι άρτια, τότε f ( ) Β) Αν η συνάρτηση είναι περιττή, τότε f ( ) Δίνεται η συνάρτηση f, για την οποία ισχύει f ( y) f ( ) f ( y) για κάθε, y Γνωρίζουμε ότι D f, f ( ) και f ( ) f ( ) Να αποδείξετε ότι Α) f ( ) Β) f ( ) f, για κάθε D f 4 Δίνεται η συνάρτηση f, για την οποία ισχύει f ( y) f ( ) f ( y) για κάθε, y Γνωρίζουμε ότι D f και f ( ) f ( ) Να αποδείξετε ότι Α) f ( ) Β) f ( ) f, για κάθε D f 5 Αν γνωρίζετε ότι f ( ), να δειχθεί ότι f ( ), R f ( ) 6 Αν για κάθε R, ισχύει ( ) f ( ), να βρεθούν Α) το f ( ) και f ( ) Β) το 7 Αν για τις πραγματικές συναρτήσεις g, ισχύει ότι όρια: Α) f ( ) Β) g( ) Γ) Αν f ( ) g ( ) ( ) f ( ), για κάθε 8 Αν για κάθε R, ισχύει Α) το f (), Β) το f ( ), 4 f ( ) 8 f, f ( ) g ( ) D f D f, να υπολογίσετε τα R, να δειχθεί ότι f ( ) g( ), να βρεθούν Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr

12 f ( ) f () Γ) το f ( ) Δ) το ( ) και 9 Δίνεται η συνάρτηση f με πεδίο ορισμού το Α, έτσι ώστε η συνάρτηση να ορίζεται κοντά στο Αν γνωρίζετε το όριο f ( ) f (), Να αποδείξετε ότι f ( ) f () f () Δίνεται η συνάρτηση f με πεδίο ορισμού το (, ) και σύνολο τιμών το (, ) Η συνάρτηση ικανοποιεί τη συνθήκη f ( ) f ( ), για κάθε f ( ) Α) Δείξτε ότι f ( ) f ( ) για κάθε (, ) Β) Βρείτε το όριο f ( ) Γ) Να βρεθεί το f ( ) * Αν για τη συνάρτηση f : R R (με σύνολο τιμών το f ( y) f ( ) f ( y) y, για κάθε, y R και f ( ) f ( ) f () και 7, Να υπολογίσετε το f () * R ) ισχύει η σχέση Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr

13 ΜΕΡΟΣ Μη πεπερασμένο Όριο στο - Όριο στο Άπειρο Α Μη πεπερασμένο όριο Πολύ συχνά, καθώς το κινείται προς το παρατηρούμε ότι οι τιμές της συνάρτησης μεγαλώνουν ή μικραίνουν απεριόριστα (σχήμα ) Σε αυτή την περίπτωση, λέμε ότι η συνάρτηση έχει στο όριο το ή το αντίστοιχα (α) Σχήμα (α) Η συνάρτηση έχει στο όριο το Βασικές ιδιότητες Αν f ( ), τότε f ( ) κοντά στο Αν f ( ), τότε f ( ) κοντά στο Αν f ( ), τότε Αν f ( ), τότε Αν f ( ), τότε f ( ) f ( ) (β) (β) Δεν ορίζεται το όριο της συνάρτησης στο f ( ) Αν f ( ) και f ( ) κοντά στο, τότε Αν f ( ) και f ( ) κοντά στο, τότε f ( ), τότε f ( ), τότε k f ( ) f ( ) f ( ) f ( ) Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr

14 Σύμφωνα με τις ιδιότητες αυτές μπορούμε εύκολα να αποδείξουμε,, Β Όριο στο άπειρο Καθώς το αυξάνεται (ή μειώνεται) απεριόριστα με οποιονδήποτε τρόπο, μπορεί να συμβούν τα εξής: Το f () προσεγγίζει όσο θέλουμε έναν πραγματικό αριθμό Σε αυτή την περίπτωση λέμε ότι η f έχει στο όριο το και γράφουμε f ( ) Το () και γράφουμε f μειώνεται απεριόριστα Σε αυτή την περίπτωση λέμε ότι η f έχει στο όριο το f ( ) Το () και γράφουμε f αυξάνεται απεριόριστα Σε αυτή την περίπτωση λέμε ότι η f έχει στο όριο το f ( ) Βασικά όρια και, και a, a, για a a a,, για a log, log, για a a log, log, για a a a a n n Όριο Πολυωνυμικής συνάρτησης P( ) an an a a n n P( ) ( a ), P( ) ( a ) n n n an an a a Όριο Ρητής συνάρτησης f ( ) m m bm bm b b an nm an nm f ( ) bm f ( ) bm n Παντελής Μπουμπούλης, MSc, PhD σελ 4 blogspotcom, bouboulismyschgr

15 Πράξεις με το Οι πράξεις με άπειρα όρια γίνονται με βάση την κοινή λογική (αν ) (αν ) = ΑΠΡΟΣΔΙΟΡΙΣΤΕΣ ΜΟΡΦΕΣ,,,,, Παντελής Μπουμπούλης, MSc, PhD σελ 5 blogspotcom, bouboulismyschgr

16 Γ Μεθοδολογία Ασκήσεων Υπολογισμός απλών ορίων Στην περίπτωση όπου το όριο της δοσμένης παράσταση μπορεί να υπολογισθεί άμεσα χρησιμοποιώντας τους κανόνες που αναφέρθηκαν, το έργο μας είναι εύκολο Πολλές φορές οι γραφικές παραστάσεις των συναρτήσεων μας προσφέρουν εύκολα το όριο που αναζητούμε Αν έχουμε απόλυτα τότε πέρνουμε περιπτώσεις και τα αφαιρούμε σύμφωνα με τον κανόνα Παραδείγματα, το 6 5 δεν υπάρχει, 6, κλπ Όριο ρητών συναρτήσεων στο που καταλήγουν στην μορφή θ/, θ> Στην περίπτωση αυτή εξετάζουμε το πρόσημο του παρονομαστή κοντά στο Αν ο παρονομαστής είναι θετικός για κάθε γύρω από μια περιοχή του, τότε το όριο είναι, ενώ αν είναι αρνητικός το όριο είναι το Όμως, στην περίπτωση που ο παρονομαστής δεν διατηρεί σταθερό πρόσημο γύρω από το, τότε το όριο δεν υπάρχει (παρότι υπάρχουν τα πλευρικά όρια) Παραδείγματα: ( ), το όριο ( ) δεν υπάρχει αφού ( ), ενώ ( ) Αν η παράσταση είναι άθροισμα ρητών με παρονομαστές που μηδενίζονται, τότε κάνουμε ομώνυμα για να έχουμε μια μόνο ρητή παράσταση Παραδείγματα: Ασκήσεις Α, Α, Β σελ 8-8 Όριο ρητών συναρτήσεων στο άπειρο Στην περίπτωση αυτή ακολουθούμε τους κανόνες των ορίων ρητής συνάρτησης, δηλαδή: n n an an a a Αν f ( ) m m bm bm b b Τότε an nm f ( ) b και an nm m f ( ) bm Αν η παράσταση είναι άθροισμα ρητών, τότε κάνουμε ομώνυμα για να έχουμε μια μόνο ρητή παράσταση Παραδείγματα: Α, 4Β σελ Όριο στο άπειρο διαφοράς ριζών που καταλήγουν στην απροσδιόριστη μορφή - Πολλαπλασιάζουμε με τη συζυγή παράσταση αριθμητή και παρονομαστή, κάνουμε τη διαφορά τετραγώνων και εκτελούμε τις πράξεις μέχρι να εξαλειφθεί η απροσδιοριστία Παντελής Μπουμπούλης, MSc, PhD σελ 6 blogspotcom, bouboulismyschgr

17 5 Όριο στο άπειρο ρητής συνάρτησης με εκθετικές Επιλέγουμε τη μεγαλύτερη βάση, έστω α, και διαιρούμε όλους τους όρους στον αριθμητή και στον παρονομαστή με το a e e e Παράδειγμα e e e 6 Ασκήσεις στις οποίες μας ζητάνε να υπολογίσουμε το όριο μιας συνάρτησης f(), όταν δίνεται το όριο μιας παράστασης Π(f()) (η οποία περιέχει την f()) Θέτουμε g( ) ( f ( )) και λύνουμε ως προς f () Στη συνέχεια, χρησιμοποιούμε τους γνωστούς κανόνες των ορίων Παραδείγματα 4Β, σελ Ασκήσεις στις οποίες μας ζητάνε να υπολογίσουμε την τιμή μιας παραμέτρου έτσι ώστε να υπάρχει το όριο (ή να είναι ίσο με μια συγκεκριμένη τιμή) f () Αν έχουμε ένα πηλίκο της μορφής, τότε για να υπάρχει το όριο θα πρέπει f ( ) Υπολογίζουμε τις τιμές του λ για τις οποίες ισχύει η συνθήκη και ελέγχουμε αν όντως υπάρχει το όριο Αν έχουμε απροσδιόριστη μορφή, τότε ακολουθούμε τη μεθοδολογία της κατηγορίας 4 και εξετάζουμε για ποια τιμή του λ υπάρχει το όριο Όμοια δουλεύουμε σε όλες τις άλλες περιπτώσεις Παραδείγματα: Β, σελ 8, Β, Β σελ 87 Παντελής Μπουμπούλης, MSc, PhD σελ 7 blogspotcom, bouboulismyschgr

18 Ασκήσεις Να υπολογιστούν τα παρακάτω όρια: ημ εφ α), β) ημ εφ ημ, γ) ημημ(ημ) Δίνεται η συνάρτηση τέτοια ώστε f ( ) για κάθε (, ) Να βρεθεί το f ( ) ( ) f Να υπολογιστούν τα όρια: α) 5, β), γ), δ) e 4 Αν f ( ) ( ) και g( ) συν4, να δειχτεί, ότι f ( ) g( ) ημ f ( ) g( ) 5 Αν και, να βρεθεί το f ( ) g( ) εφ συν 6 Δίνεται η συνάρτηση f :(,) R για την οποία ισχύει f ( ) f ( ) με (, ) α) Να αποδείξετε, ότι f ( ) για κάθε f ( ) f ( ) β) Να υπολογίσετε τα όρια και 4 ( ) ( ) 4 7 Να βρεθεί το, R ( ) 8 Να βρεθούν αν υπάρχουν τα όρια α), β) 5 6, γ) Να βρεθούν αν υπάρχουν τα όρια 4 α), β), γ) ( ) ( ) Να βρεθούν αν υπάρχουν τα όρια α), β) 5 Να βρεθούν αν υπάρχουν τα όρια 7 α), β) 4 4 Να βρεθούν αν υπάρχουν τα όρια: 5 α), β) γ) 9 Παντελής Μπουμπούλης, MSc, PhD σελ 8 blogspotcom, bouboulismyschgr

19 4 Να βρεθεί ο R έτσι ώστε το 4 Να βρεθεί το για τις διάφορες τιμές του R να είναι πραγματικός αριθμός 5 Να βρεθεί το 9 για τις διάφορες τιμές του R 6 Να βρεθούν τα παρακάτω όρια: 5 4 α) ( ), β) ( ) γ) δ) ζ) ( ) 4 4, ε) 5, στ) , η), θ) 7 Να βρεθούν τα όρια: α), β) 8 Να βρεθούν τα όρια: α), β) 9 Να βρεθούν τα όρια: α), β) 4 5 Δίνεται η συνάρτηση f ( ) Να βρεθεί το f ( ) αν και R ( ) Αν f ( ), να βρεθούν τα, R έτσι ώστε, να ισχύει: α) f ( ), β) f ( ) Δίνεται η συνάρτηση f ( ) ( ), R Να βρεθούν τα όρια: α) f ( ), β) Να βρεθούν τα όρια: α), β) f ( ) 6, γ) Παντελής Μπουμπούλης, MSc, PhD σελ 9 blogspotcom, bouboulismyschgr

Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ

Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ του ορίου συνάρτησης όταν χ χ Για να έχει νόημα το όριο συνάρτησης f με πεδίο

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Περιεχόμενα μεθόδευση του μαθήματος

Περιεχόμενα μεθόδευση του μαθήματος Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

IV. Συνέχεια Συνάρτησης. math-gr

IV. Συνέχεια Συνάρτησης. math-gr IV Συνέχεια Συνάρτησης mth-gr mth-gr Παντελής Μπουμπούλης, MSc, PhD σελ mth-grblogspotcom, bouboulismyschgr ΜΕΡΟΣ Συνέχεια Συνάρτησης Α Ορισμός Συνέχεια σε σημείο: Θα λέμε ότι μια συνάρτηση είναι συνεχής

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΕΥΡΕΣΗ ΟΡΙΩΝ

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΕΥΡΕΣΗ ΟΡΙΩΝ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΕΥΡΕΣΗ ΟΡΙΩΝ o A. Ρητή της μορφής (0/0), με παραγοντοποίηση εμφανίζουμε το (χ-χ ο ) σε αριθμητή και παρονομαστή, απλοποιούμε και στη συνέχεια κάνουμε αντικατάσταση σε ό,τι έμεινε!

Διαβάστε περισσότερα

1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x

1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x 6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ 5 Να γράψετε τις ιδιότητες του άπειρου ορίου στο o Απάντηση : Όπως στην περίπτωση των πεπερασμένων ορίων έτσι και για τα άπειρα όρια συναρτήσεων, που ορίζονται σε ένα σύνολο της

Διαβάστε περισσότερα

O1 ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f x

O1 ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f x O ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f ) Εντοπίζω τα σημεία που συναντώνται οι δύο καμπύλες ) Η τεταγμένη y αυτού του σημείου είναι το όριο της f και η τετμημένη η θέση y lim f Πλευρικά όρια lim f λ lim

Διαβάστε περισσότερα

1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x

1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x 6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ 5 Να γράψετε τις ιδιότητες του άπειρου ορίου στο o Απάντηση : Όπως στην περίπτωση των πεπερασμένων ορίων έτσι και για τα άπειρα όρια συναρτήσεων, που ορίζονται σε ένα σύνολο της

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0 5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( ) ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 4: ΕΝΝΟΙΑ ΟΡΙΟΥ ΣΤΟ R - ΠΛΕΥΡΙΚΑ ΟΡΙΑ ΣΤΟ R - ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ ΟΡΙΟΥ ΣΤΟ R - ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ - ΟΡΙΑ ΚΑΙ ΠΡΑΞΕΙΣ [Κεφ 4: Όριο Συνάρτησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο

Διαβάστε περισσότερα

Σχόλια στα όρια. Γενικά

Σχόλια στα όρια. Γενικά Σχόλια στα όρια. Γενικά Η αναζήτηση του ορίου έχει νόημα όταν η συνάρτηση ορίζεται κοντά στο x, δηλαδή σε διάστημα (α,x ) (x,β) ή φυσικά σε (α,β) με x (α,β) και όχι κατ ανάγκη στο ίδιο το x. Για παράδειγμα

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Ενότητες Κριτήριο Παρεμβολής - Τριγωνομετρικά Όρια - Όριο Σύνθετης

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

Φ3: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ

Φ3: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ Φ: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α ΘΕΩΡΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΩΣΤΟΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΘΕΜΑ Β ΑΣΚΗΣΕΙΣ ΘΕΜΑ Γ ΑΣΚΗΣΕΙΣ ΘΕΜΑ Δ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

Ο Ρ Ι Ο & Σ Υ Ν Ε Χ Ε Ι Α Σ Υ Ν Α Ρ Τ Η Σ Η Σ Όριο Συνάρτησης

Ο Ρ Ι Ο & Σ Υ Ν Ε Χ Ε Ι Α Σ Υ Ν Α Ρ Τ Η Σ Η Σ Όριο Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Ο Ρ Ι Ο & Σ Υ Ν Ε Χ Ε Ι Α Σ Υ Ν Α Ρ Τ Η Σ Η Σ Όριο Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω; Πότε θα λέμε ότι μια συνάρτηση f: (α x0) (x0 β) έχει όριο τον πραγματικό αριθμό

Διαβάστε περισσότερα

APEIROSTIKOS LOGISMOS I

APEIROSTIKOS LOGISMOS I APEIROSTIKOS LOGISMOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου 4. Άσκηση : Υπολογίστε, αν υπάρχουν, τα παρακάτω όρια. Αν χρειάζεται, υπολογίστε τα αντίστοιχα πλευρικά όρια. + 4 3 + +,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ . ΔΙΑΒΑΖΩ ΤΗ ΘΕΩΡΙΑ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ Σελ.303: Ορισμός (Αρχική συνάρτηση ή παράγουσα) Σελ.304: Απόδειξη του

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ)

ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ) ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ) A. Εύρεση Πεδίου Τιµών Συναρτήσεων ίνεται η συνάρτηση h, h ( ) = 4+, [ 1,4] Να βρεθεί το πεδίο τιµών της συνάρτησης. Η λογική για

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 2.9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΑΣΥΜΠΤΩΤΕΣ-ΚΑΝΟΝΑΣ

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ

4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ 4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Για να λύσω μια κλασματική εξίσωση, δηλ. μια εξίσωση που έχει άγνωστο στον παρανομαστή, Βήμα : παραγοντοποιώ

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι

Διαβάστε περισσότερα

T Ш. κεφαλαιο1. οριο - συνεχεια συναρτησης. τ κεφαλαιο 1. κεφαλαιο 1. γ λυκειου. κεφαλαιο 1. κεφαλαιο 1. κεφαλαιο 1

T Ш. κεφαλαιο1. οριο - συνεχεια συναρτησης. τ κεφαλαιο 1. κεφαλαιο 1. γ λυκειου. κεφαλαιο 1. κεφαλαιο 1. κεφαλαιο 1 γ λυκειου ` κεφαλαιο1 οριο - συνεχεια συναρτησης επιμελεια : τακης τσακαλακος T Ш τ 1 017 ... πραγματικοι αριθμοι... συναρτησεις... μονοτονες συναρτησεις - αντιστροφη συναρτηση... οριο συναρτησης στο χ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί

Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΟΝΥΜΙΚΕΣ Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί Όταν έχουμε μία εξίσωση που περιέχει παρονομαστές ή ρίζες, πρέπει να βάζουμε περιορισμούς. Το νόημα

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ [Ενότητες Ορισμός της Συνέχειας Πράξεις με Συνεχείς

Διαβάστε περισσότερα

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΕΘΟ ΟΙ ΣΤΑ ΟΡΙΑ

ΑΣΚΗΣΕΙΣ ΜΕΘΟ ΟΙ ΣΤΑ ΟΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟ ΟΙ ΣΤΑ ΟΡΙΑ Γενικοί κανόνες ταξινόµηση των ορίων Αν και µπορούµε να αντιµετωπίσουµε τα όρια µε έναν ενιαίο τρόπο, θα τα χωρίσουµε σε δύο µεγάλες οµάδες: Οµάδα Α. Όταν, Οµάδα B. Όταν ή Ως

Διαβάστε περισσότερα

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x 8 Συνέχεια συνάρτησης Ορισμός της συνέχειας 8. α) Πότε μια συνάρτηση f :A λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού της; β) Έστω η συνάρτηση:, αν < f() =, αν i) Να αποδείξετε ότι f() = 7 και να

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x) 7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()

Διαβάστε περισσότερα

Όριο και συνέχεια πραγματικής συνάρτησης

Όριο και συνέχεια πραγματικής συνάρτησης ΚΕΦΑΛΑΙΟ 4 Όριο και συνέχεια πραγματικής συνάρτησης Αγνοώ το πώς με βλέπει ο κόσμος αλλά στον εαυτό μου, φαίνομαι σαν να μην ήμουν τίποτα άλλο από ένα αγοράκι που παίζει στην ακρογιαλιά και κατά καιρούς

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Η έννοια του ορίου στο x ο Υπάρχουν συναρτήσεις οι τιμές των οποίων πλησιάζουν ένα πραγματικό αριθμό L, όταν η ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)

Διαβάστε περισσότερα

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε Ανάλυση Γ Λυκείου όριο συνάρτησης στο ο Ιδιότητες των ορίων Όριο και διάταξη ΘΕΩΡΗΜΑ ο Αν f >, τότε f > κοντά στο Αν f

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ Β. Ολοκλήρωση κατά παράγοντες Γενικά η μέθοδος αυτή εφαρμόζεται όταν έχουμε γινόμενο δύο συναρτήσεων Εκφράζεται με τον τύπο της παραγοντικής ολοκλήρωσης: f()g ()d= f()g() - f ()g()d

Διαβάστε περισσότερα

Μη πεπερασµένα όρια και όριο στο άπειρο

Μη πεπερασµένα όρια και όριο στο άπειρο Μη πεπερασµένα όρια και όριο στο άπειρο Λυγάτσικας Ζήνων Πρότυπο Πειρµαµατικό Γενικό Λύκειο Βαρβακείου Σχολής 9 εκεµβρίου 203 Μη Πεπερασµένο Οριο Συναρτησεων στο x 0. Το Μη-πεπερασµένο Το Απειρο Ορισµός.

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» www.ma8eno.gr Ανισώσεις γινόμενο και ανισώσεις πηλίκο Πρόσημο γινομένου της μορφής P()

Διαβάστε περισσότερα

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί α) (Κατακόρυφη ασύμπτωτη) Αν ένα τουλάχιστον απ' τα όρια f(), o o λέγεται κατακόρυφη ασύμπτωτη της C f. f() είναι +, ή -, τότε η ευθεία o β) (Οριζόντια

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ. ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος τηλ. 4598 Κεφάλαιο ο Ολοκληρωτικός Λογισμός Ολοκληρωτικός Λογισμός Μεθοδολογία Λυμένα

Διαβάστε περισσότερα

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ A ΑΛΓΕΒΡΑ Β' Γενικού Λυκείου Γενικής Παιδείας Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Α1. Στο επόμενο σχήμα βλέπετε τον τριγωνομετρικό κύκλο, τους άξονες ημιτόνων, συνημιτόνων, εφαπτομένων,

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

2.3 Πολυωνυμικές Εξισώσεις

2.3 Πολυωνυμικές Εξισώσεις . Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (

Διαβάστε περισσότερα

Παράδειγμα 8. Να βρείτε την τιμή της παράστασης:

Παράδειγμα 8. Να βρείτε την τιμή της παράστασης: Μιγαδικοί αριθμοί Σελ 10 ΜΕΘΟΔΟΛΟΓΙΑ 104 Ασκήσεις με παραστάσεις της μορφής συγκεκριμένοι μιγαδικοί z 1 z με z 1,z i Εξετάζουμε μήπως οι μιγαδικοί συνδέονται με σχέση της μορφής z i 1 z ii Αντικάθιστούμε

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ). Κεφάλαιο 4 Συνέχεια συνάρτησης σε διάστημα 411 Ερώτηση θεωρίας 1 Η θεωρία και τι προσέχουμε Πότε μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (, ) αβ; Απάντηση Μια συνάρτηση f θα λέμε

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

Βασικές Μεθοδολογίες για την επίλυση ασκήσεων

Βασικές Μεθοδολογίες για την επίλυση ασκήσεων ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Βασικές Μεθοδολογίες για την επίλυση ασκήσεων ΣΤΕΛΙΟΥ ΜΙΧΑΗΛΟΓΛΟΥ ΕΥΑΓΓΕΛΟΥ ΤΟΛΗ 5-6 Επιμέλεια : Νικόλαος Σαμπάνης Στο φυλλάδιο περιέχονται όλες οι βασικές Μεθοδολογίες

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Κριτήριο Παρεμβολής. και. άρα από το παραπάνω κριτήριο παρεµβολής το l im f ( x) (x 1) 2 f (x) 2x (x 1) 2 2x (x 1) 2 f (x) 2x + (x 1) 2

Κριτήριο Παρεμβολής. και. άρα από το παραπάνω κριτήριο παρεµβολής το l im f ( x) (x 1) 2 f (x) 2x (x 1) 2 2x (x 1) 2 f (x) 2x + (x 1) 2 Κριτήριο Παρεμβολής Υποθέτουµε ότι κοντά στο µια συνάρτηση f εγκλωβίζεται ανάµεσα σε δύο συναρτήσεις h και g. Αν, καθώς το τείνει στο, οι g και h έχουν κοινό όριο l, τότε όπως φαίνεται και στο σχήµα, η

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ. Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

f( x 1, x ( ) ( ) f x > f x. ( ) ( )

f( x 1, x ( ) ( ) f x > f x. ( ) ( ) MONOTONIA ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ I MONOTONIA ΣΥΝΑΡΤΗΣΕΩΝ ΘΕΩΡΙΑ Στο διπλανό σχήµα δίνεται η γραφική παράσταση µιας συνάρτησης f στο α,β Παρατηρούµε ότι διάστηµα [ ] καθώς αυξάνουν οι τιµές του

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο

Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο Ακριβής ορισμός του πλευρικού ορίου Έστω ότι το πεδίο ορισμού της f x περιέχει ένα διάστημα d, c στα αριστερά του c. Η f x έχει αριστερό όριο L στο c

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η ΑΛΓΕΒΡΑ Τα ςημαντικότερα ςημεία τησ θεωρίασ Ερωτήςεισ εμπζδωςησ- απαντήςεισ Μεθοδολογία αςκήςεων Προτεινόμενεσ αςκήςεισ του βιβλίου - διεξοδική ανάλυςη των λφςεων (ςκζψη-βήματα-επεξήγηςη

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Άσκηση i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε ότι

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 12 Ιανουαρίου 2009

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 12 Ιανουαρίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Ιανουαρίου 009 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 009. Πριν

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης 8 Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμός Έστω μια συνάρτηση f ορισμένη σε διάστημα Δ. Ονομάζουμε αρχική συνάρτηση ή παράγουσα της f στο Δ, μια συνάρτηση F παραγωγίσιμη

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός ὁ γιγνώσκων γιγνώσκει τὶ ἢ οὐδέν;

ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός ὁ γιγνώσκων γιγνώσκει τὶ ἢ οὐδέν; ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός ὁ γιγνώσκων γιγνώσκει τὶ ἢ οὐδέν; gkarras@gmail.com o ΛΥΚΕΙΟ ΓΕΡΑΚΑ - ΚΑΡΡΑΣ 1. Να βρεθεί το: 5 1 + 4) 5. Να βρεθεί το: π π 1 + 4) 1 + 4 5 5 1)

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 5: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ - ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ - ΟΡΙΟ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Ενότητες Κριτήριο Παρεμβολής - Τριγωνομετρικά Όρια - Όριο Σύνθετης

Διαβάστε περισσότερα

Ασύμπτωτες. Διαφορικός Λογισμός μιας μεταβλητής Ι

Ασύμπτωτες. Διαφορικός Λογισμός μιας μεταβλητής Ι Ασύμπτωτες Διαφορικός Λογισμός μιας μεταβλητής Ι Άπειρα όρια: Οριζόντιες και κατακόρυφες ασύμπτωτες Έστω η f()=1/, τότε παρατηρούμε ότι: καθώς +, (1/) 0 & καθώς -, (1/) 0 & 1 lim ( ) = 0 + 1 lim ( ) =

Διαβάστε περισσότερα

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα