Παραδείγματα (2 ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παραδείγματα (2 ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος"

Transcript

1 Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα Έστω ο υποχώρος W του R 5 που παράγεται από τα διανύσματα v=(,,-,,), v=(,,-,6,8), v=(,,,,6), v=(,,5,,8), v5=(,7,,,9). a) Να βρεθεί μία βάση του W b) Να επεκταθεί η προηγούμενη βάση ώστε να παράγει τον R 5 c) Να βρεθεί μία βάση του W, η οποία να αποτελείται αποκλειστικά από ένα υποσύνολο των δοθέντων διανυσμάτων a) Δημιουργούμε τον πίνακα ο οποίος αποτελείται από τα v,v,v,v,v5 ως γραμμές 6 8 A = Η απαλοιφή Gauss δίνει τον πίνακα 5 5 U = O υποχώρος που παράγεται από τα v,v,v,v,v5 αποτελείται από όλους τους δυνατούς γραμμικούς συνδυασμούς των διανυσμάτων αυτών. Το ίδιο ακριβώς αποτέλεσμα δίνει και ο χώρος γραμμών του πίνακα Α δηλ ο RA ( ) Επειδή η απαλοιφή Gauss δεν επηρεάζει το χώρο γραμμών του πίνακα Α, o RA ( ) θα ισούται και με το χώρο γραμμών του U, επομένως μία βάση του U θα αποτελεί βάση και του RA ( ) και κατά συνέπεια και του W = span{ v, v, v, v, v5} Η βάση αυτή αποτελείται από όλες τις μη μηδενικές γραμμές του U Επομένως η ζητούμενη βάση είναι η B=, 5, / 5/ και ο W έχει διάσταση b) Απαιτούνται 5 διανύσματα για να κάνουν μία βάση του R 5, επομένως η επέκταση της βάσης B μπορεί να γίνει αν την συμπληρώσουμε με διανύσματα τέτοια ώστε το σύνολο

2 να είναι γραμμικά ανεξάρτητο. Αυτό επιτυγχάνεται γενικώς συμπληρώνοντας την βάση με διανύσματα που παίρνουμε από την κανονική βάση του R 5 και στη συνέχεια ελέγχοντας αν το νέο σύνολο είναι γραμμικά ανεξάρτητο. Αν δεν είναι, επιλέγουμε κάποια άλλα διανύσματα της κανονικής βάσης και επαναλαμβάνουμε τον έλεγχο. Στην περίπτωσή μας λόγω της μορφής του U είναι εύκολο να τον συμπληρώσουμε με διανύσματα της κανονικής βάσης φροντίζοντας να υπάρχει οδηγός σε κάθε στήλη (επομένως το σύνολο θα είναι γραμμικά ανεξάρτητο) Έχουμε λοιπόν: 5 5 U = Άρα η ζητούμενη βάση του R 5 είναι η B=, 5, /,, 5/ c) Η μεθοδολογία που ακολουθήσαμε στο ερώτημα (α) μας δίνει μία βάση του W, αλλά δεν αποτελείται αποκλειστικά από διανύσματα του συνόλου {v,v,v,v,v5} Θα πρέπει να ακολουθήσουμε άλλη μεθοδολογία: Δημιουργούμε τον πίνακα ο οποίος αποτελείται από τα v,v,v,v,v5 ως στήλες: 7 A = Η απαλοιφή Gauss δίνει τον πίνακα U = O υποχώρος W = span{ v, v, v, v, v5} αποτελείται από όλους τους δυνατούς γραμμικούς συνδυασμούς των διανυσμάτων αυτών. Το ίδιο ακριβώς αποτέλεσμα δίνει και ο χώρος στηλών του πίνακα Α δηλ ο RA ( ) Ο χώρος στηλών του πίνακα U δεν είναι ίδιος με τον RA ( ), αλλά οι στήλες στις οποίες υπάρχει οδηγός στον πίνακα U αντιστοιχούν στις γραμμικά ανεξάρτητες στήλες του πίνακα A. Έτσι ως τη ζητούμενη βάση παίρνουμε τα διανύσματα που βρίσκονται στις στήλες, και 5 του πίνακα Α δηλ:

3 7,, = { v, v, v } 6 9 B= 5 Παράδειγμα Να βρείτε το ομογενές σύστημα του οποίου το σύνολο λύσεων W παράγεται από τα διανύσματα {(,,, ), (,,, ), (,,, 5) } Έστω v= ( yzw,,, ) W Δημιουργούμε ένα πίνακα γράφοντας τα δοσμένα διανύσματα ως γραμμές του και ως τελευταία γραμμή θέτουμε το διάνυσμα v : A = 5 y z w Εφαρμόζουμε απαλοιφή Gauss στον A : r rr r rr r rr A = 5 5 y z w y z w y z w r r r r r ( + y) r + y z + w + y z + w + y+ z 5 y+ w Γίνεται φανερό πως η απαλοιφή Gauss στις πρώτες γραμμές δημιουργεί μία με μηδενικά, επομένως η dimw = Για να ανήκει το διάνυσμα v στο W θα πρέπει η προσθήκη του να μην μεταβάλει τη διάσταση του χώρου γραμμών, επομένως θα πρέπει οι δύο τελευταίες γραμμές του τελικού πίνακα να είναι μηδενικές ή + y+ z = 5 y + w = Αυτό είναι το ζητούμενο ομογενές σύστημα.

4 Παράδειγμα Αν UVW,, υποχώροι κάποιου διανυσματικού χώρου, δείξτε ότι ( U V) + ( U W) U ( V + W) Έστω u ( U V) + ( U W) τότε αυτό γράφεται ως u u u u ( U W). Έχουμε λοιπόν u ( U V) u Uκαι u V u U W u Uκαι u W ( ) Επομένως u, u u = u+ u U () Επίσης u V και u = + με u ( U V) U. Επειδή όμως το U είναι υποχώρος συνεπάγεται πως W. Άρα u = u+ u V + W () Από () και () συνεπάγεται πως u U ( V + W) και Παράδειγμα Δίνεται ο πίνακας A = 6. Να υπολογισθούν οι θεμελιώδεις υποχώροι που σχετίζονται με τον πίνακα Α. Να βρεθεί η διάστασή του κάθε ενός και από μία βάση τους. Οι τέσσερις θεμελιώδεις υποχώροι είναι οι ακόλουθοι: Ο μηδενοχώρος N( A ) O χώρος στηλών RA ( ) O αριστερός μηδενοχώρος N( A ) O χώρος γραμμών RA ( ) Αρχικά γράφουμε τον πίνακα Α σε κλιμακωτή μορφή εφαρμόζοντας απαλοιφή Gauss: U = Παρατηρούμε ότι υπάρχει μόνον ένας οδηγός. Αυτό μας λέει ότι η βαθμίδα του πίνακα ισούται με. Επίσης μας δίνει και τη διάσταση του χώρου στηλών καθώς και τη διάσταση του χώρου γραμμών του Α: dim R( A) = dim R( A ) = rank( A) = o πλήθος των στηλών του πίνακα είναι n=, επομένως η διάσταση του μηδενοχώρου είναι: dim N( A) = n rank( A) = = Επίσης ο U δίνει άμεσα μία βάση του χώρου γραμμών RA ( ). Αυτή αποτελείται από όλες τις μη μηδενικές γραμμές του U.

5 Έτσι το σύνολο αποτελεί μία βάση του RA ( ) O μηδενοχώρος αποτελείται από το σύνολο λύσεων του ομογενούς συστήματος: A = O A = ή ισοδύναμα του U = Εκτελώντας τις πράξεις καταλήγουμε στην εξίσωση: = Υπάρχουν δύο ελεύθερες μεταβλητές (όσες και το dim N( A ) ) που αντιστοιχούν στις στήλες του πίνακα U οι οποίες δεν έχουν οδηγό, δηλ. είναι οι μεταβλητές, Εκφράζοντας τις ελεύθερες μεταβλητές με παραμέτρους παίρνουμε τη γενική λύση του ομογενούς συστήματος: s+ t = s, st, R t Επομένως ο μηδενοχώρος είναι το ακόλουθο σύνολο: / / N( A) = s+ t, s, t : st, R ή και N( A) = s t + : st, R Η βάση του μηδενοχώρου θα αποτελείται από διανύσματα (όσα το dim N( A ) ) Για να βρούμε μία βάση του μηδενοχώρου θέτουμε, στη γενική λύση του ομογενούς συστήματος, με τη σειρά κάθε παράμετρο ίση με τη μονάδα μηδενίζοντας τις υπόλοιπες παραμέτρους: s=, t= => (/,,) s=,t= => (/,,) / / Επομένως το σύνολο, αποτελεί μία βάση του μηδενοχώρου. Ο χώρος στηλών ισούται με το σύνολο όλων των γραμμικών συνδυασμών των στηλών του πίνακα Α δηλ. cc c RA ( ) = span,, c c c : c, c, c R 6 = + + = 6 c c 6c + + 5

6 H διάστασή του όπως είδαμε ισούται με, άρα μία βάση του αποτελείται από ένα διάνυσμα. Το διάνυσμα αυτό είναι η στήλη του πίνακα Α, η οποία αντιστοιχεί στη στήλη του οδηγού στον πίνακα U. Επομένως μία βάση του RA ( ) είναι το σύνολο Ο χώρος γραμμών ισούται με το σύνολο όλων των γραμμικών συνδυασμών των γραμμών του πίνακα Α δηλ. cc RA ( ) = span, c c c c = + = + : c, c R 6 6 c 6c + H διάσταση και μία βάση του έχουν ήδη δοθεί παραπάνω. Μένει να υπολογίσουμε τον αριστερό μηδενοχώρο, ο οποίος ισούται με τις λύσεις του ομογενούς συστήματος A= O A = H διάστασή του ισούται με το πλήθος στηλών () μείον τη βαθμίδα του πίνακα Α. Επομένως dim N( A ) = = Είναι A = 6 Γράφουμε τον πίνακα A σε κλιμακωτή μορφή εφαρμόζοντας απαλοιφή Gauss: U = Το ισοδύναμο σύστημα είναι το U = το οποίο δίνει: = Έχουμε μία ελεύθερη μεταβλητή (όπως φαίνεται από τη διάσταση dim N( A ) ) την Έτσι η γενική λύση του συστήματος είναι t, t R = t Επομένως N( A ) = ( t, t) : t R { } Θέτοντας t= παίρνουμε μία βάση του N( A ), η οποία είναι το σύνολο Συνοψίζοντας έχουμε: Βαθμίδα πίνακα Α rank( A ) = 6

7 Μηδενοχώρος N( A) R N( A) = s+ t, s, t : st, R dim N( A ) = / / Βάση:, Χώρος στηλών RA ( ) R cc c RA ( ) = : c, c, c R c c 6c + + dim RA= ( ) Βάση: Αριστερός μηδενοχώρος N( A ) = ( t, t) : t R dim N( A ) = Βάση: { } N( A ) R Xώρος γραμμών RA ( ) R cc RA ( ) = c c + : c, c R c 6c + dim RA ( ) = Βάση: Παρατήρηση: Ο πίνακας Α αποτελείται από m= γραμμές και n= στήλες Επομένως μπορούμε να επαληθεύσουμε τις ισότητες: dim RA ( ) + dim NA ( ) = n και dim RA ( ) + dim NA ( ) = m Επίσης μπορούμε να επαληθεύσουμε ότι οι χώροι N( A ) και RA ( ) καθώς και οι χώροι N( A ) και RA ( ) είναι ορθογώνιοι. 7

8 6 π.χ. Έστω v = N( A) και u= RA ( ) τότε το εσωτερικό τους γινόμενο δίνει : 9 6 vu= [ ] = [ 6 + ( ) + ( 9) ] = [] 9 Το ίδιο ισχύει για κάθε v NA ( ), u RA ( ) 6 Αντίστοιχα έστω v= N( A ) και u= RA ( ) 8 δίνει : vu= [ 6 ] = [ 6 + ( 8) ] = [] 8 Το ίδιο ισχύει για κάθε v NA ( ), u RA ( ) τότε το εσωτερικό τους γινόμενο Παράδειγμα Να βρεθεί η διάσταση και μία βάση των υποχώρων RA ( ) και RA ( ) για τον πίνακα A = Φέρνουμε τον Α σε κλιμακωτή μορφή: 5 6 U = 5 Έχουμε οδηγούς, άρα rank( A) = dim R( A) = dim R( A ) = Μία βάση του RA ( ) προκύπτει από τις μη μηδενικές γραμμές του πίνακα U δηλαδή είναι το σύνολο:,, Μία βάση του RA ( ) προκύπτει από τις στήλες του Α που αντιστοιχούν στις στήλες με οδηγό του U επομένως είναι το σύνολο: 8

9 5 9 8,, Παράδειγμα 5 Έστω δύο υποχώροι του R : U = span{ u, u, u} και W = span{ w, w} όπου u = (,,,), u = (,,, ), u = (, 6,, 7) και w = (,,,), w = (,, 5,). Να δείξετε ότι U = W Πρέπει να δείξουμε ότι όλοι οι γραμμικοί συνδυασμοί των u,u,u δίνουν το ίδιο σύνολο με όλους τους γραμμικούς συνδυασμούς των w,w ή ισοδύναμα αρκεί να δείξουμε ότι οι πίνακες που περιέχουν τα σύνολα διανυσμάτων ως γραμμές, έχουν τους ίδιους χώρους γραμμών. Οι δύο πίνακες είναι οι A = και B = Θα δείξουμε ότι RA ( ) = RB ( ) Για να συμβαίνει αυτό αρκεί να φέρουμε και τους δύο πίνακες σε ανηγμένη κλιμακωτή μορφή και να συγκρίνουμε τις μη μηδενικές γραμμές τους. Αν αυτές ταυτίζονται τότε θα είναι ( RA) = RB ( ) Η ανηγμένη κλιμακωτή μορφή του Α είναι ο πίνακας: / 8/ και του Β είναι ο πίνακας: / 8/ Επομένως οι μη μηδενικές γραμμές τους ταυτίζονται. Άρα τελικά U = W Παράδειγμα 6 Δίνονται υποχώροι του R : U= {( abcd,,, ) : b+ c+ d= } και W= {( abcd,,, ) : a+ b =, c = d} Βρείτε μία βάση του: a)u b) W c) U W 9

10 a) O χώρος U μπορούμε να θεωρήσουμε ότι είναι οι λύσεις του ομογενούς συστήματος (το οποίο αποτελείται από μία μόνον εξίσωση): α + b+ c+ d = Ο πίνακας συντελεστών είναι ο A = (είναι ήδη σε κλιμακωτή μορφή) [ ] Επομένως U = N( A) Έχουμε έναν οδηγό και τέσσερις στήλες, άρα dimn(a)=dimu=-= Ελεύθερες μεταβλητές: acd,, Η γενική λύση του συστήματος είναι η a s b t w =, stw,, R c t d w Εύρεση βάσης: s =, t =, w= u = (,,,) s =, t =, w= u = (,,, ) s =, t =, w= u = (,,,) Επομένως το σύνολο { u, u, u } αποτελεί μία βάση του U b) O χώρος W μπορούμε να θεωρήσουμε ότι είναι οι λύσεις του ομογενούς συστήματος: a+ b= a+ b= c= d c d = Ο πίνακας συντελεστών είναι ο A = (είναι ήδη σε κλιμακωτή μορφή) Επομένως W = N( A) Έχουμε δύο οδηγούς και τέσσερις στήλες, άρα dimn(a)=dimw=-= Ελεύθερες μεταβλητές: bd, Η γενική λύση του συστήματος είναι η a s b s =, st, R c t d t Εύρεση βάσης: s =, t = w = (,,, ) s =, t = w = (,,,) Επομένως το σύνολο { w, w } αποτελεί μία βάση του W c) o σύνολο U W θα περιλαμβάνει τους περιορισμούς και των δύο υποχώρων. Έτσι το ομογενές σύστημα που δημιουργείται είναι το ακόλουθο:

11 a+ b= b + c + d = c d = Ο πίνακας συντελεστών είναι ο A = (είναι ήδη σε κλιμακωτή μορφή) Έχουμε τρεις οδηγούς και τέσσερις στήλες, άρα dim N( A) = dim( U W) = = Ελεύθερες μεταβλητές: d Η γενική λύση του συστήματος είναι η a t b t =, t R c t d t Εύρεση βάσης: t = v = (,,,) Επομένως το σύνολο { v } αποτελεί μία βάση του χώρου U W Παράδειγμα 7 Δίνονται υποχώροι του R : U span{ (,,, ),(,,,),(,,, ) } {(,,, ),(,,, ),(,,, ) } = και W = span Να υπολογισθούν τα ακόλουθα: a) H διάσταση και μία βάση του U + W b) H διάσταση και μία βάση του U c) H διάσταση και μία βάση του W και d) Η διάσταση και μία βάση της τομής U W a) Ο χώρος U + W γίνεται span και από τα έξι διανύσματα: U + W = span{ (,,, ),(,,,),(,,, ),(,,, ),(,,, ),(,,, ) } Αν τοποθετήσουμε τα διανύσματα αυτά σαν γραμμές ενός πίνακα A τότε ο χώρος U + W ταυτίζεται με τον χώρο των γραμμών του A : RA ( ) Για να βρούμε μία βάση του χώρου εφαρμόζουμε απαλοιφή Gauss: Gauss Έτσι οι μη μηδενικές γραμμές του αποτελέσματος δηλ. τα διανύσματα (,,,-), (,,,) και (,,-,-) αποτελούν μία βάση του U + W το πλήθος των διανυσμάτων της βάσης, και επομένως η διάσταση του χώρου, είναι. b) Εφαρμόζουμε την ίδια μέθοδο στα διανύσματα που παράγουν τον U

12 Gauss Επομένως η διάσταση του U είναι και μία βάση του αποτελούν τα διανύσματα (,,,-) και (,,,) c) Εφαρμόζουμε την ίδια μέθοδο στα διανύσματα που παράγουν τον W Gauss Επομένως η διάσταση του W είναι και μία βάση του αποτελούν τα διανύσματα (,,,-) και (,-,-,) d) Για τη διάσταση του U W γνωρίζουμε ότι ισχύει η σχέση: dim( U + W) = dimu + dimw dim( U W) Επομένως θα είναι: dim( U W) = dimu + dimw dim( U + W) = + = Για να βρούμε μία βάση του χώρου U W εργαζόμαστε ως εξής: Αρχικά βρίσκουμε τις εξισώσεις των ομογενών γραμμικών συστημάτων που έχουν λύσεις το U και το W. Στη συνέχεια ενώνουμε τις εξισώσεις και των δύο συστημάτων μαζί, σε ένα μεγάλο ομογενές σύστημα, το οποίο και επιλύουμε. Από εκεί προκύπτουν τα διανύσματα της βάσης του U W. Για το U έχουμε (όπως στο παράδειγμα ): Gauss y z w y y+ w Επομένως το ομογενές σύστημα που έχει λύσεις το σύνολο U είναι το y = y = y+ w= y+ w= Αντίστοιχα για το W έχουμε: Gauss y z w y+ z y+ w Επομένως το ομογενές σύστημα που έχει λύσεις το σύνολο U είναι το y+ z = y + w = Τοποθετώντας τις εξισώσεις και των δύο συστημάτων μαζί παίρνουμε το ομογενές σύστημα:

13 y = y+ w= y+ z = y+ w= Το επιλύουμε με απαλοιφή Gauss: Gauss Υπάρχει μία ελεύθερη μεταβλητή, η w και επομένως η διάσταση του χώρου U W επαληθεύεται ότι είναι. Το ισοδύναμο σύστημα στο οποίο καταλήγει η Gauss είναι το: y = =w y+ w= y =w z = z = t, t,, t, t R Επομένως το σύνολο λύσεων του συστήματος είναι το {( ) } Έτσι θέτοντας π.χ. t= παίρνουμε το διάνυσμα (,,,) το οποίο αποτελεί μία βάση του χώρου U W Παράδειγμα 8 Δίνεται ο πίνακας A =. Να υπολογισθούν οι θεμελιώδεις υποχώροι που 6 σχετίζονται με τον πίνακα Α. Να βρεθεί η διάστασή του κάθε ενός και από μία βάση τους. Έχουμε A m nμε m=, n= Οι τέσσερις θεμελιώδεις υποχώροι είναι οι ακόλουθοι: Ο μηδενοχώρος N( A ) O χώρος στηλών RA ( ) O αριστερός μηδενοχώρος N( A ) O χώρος γραμμών RA ( ) Θα δουλέψουμε με ενιαίο τρόπο χρησιμοποιώντας παντού την απαλοιφή Gauss πάνω στον πίνακα A (δηλ. χωρίς να χρειαστεί να δουλέψουμε με τον A ). Για το λόγο αυτό, ειδικά για τον αριστερό μηδενοχώρο θα χρειαστεί να υπολογίσουμε τον πίνακα E έτσι ώστε EA = U ως εξής: ( A I ) Gauss ( U E)

14 Έχουμε λοιπόν ( A I ) = 6 H πράξη r r r δίνει 6 Ο στοιχειώδης πίνακας του βήματος είναι ο E = Στη συνέχεια η πράξη r r r δίνει 5 5 Ο στοιχειώδης πίνακας του βήματος είναι ο E = Τέλος η πράξη r r 5 r φέρνει τον πίνακα σε κλιμακωτή μορφή: / 5/ Ο στοιχειώδης πίνακας του βήματος είναι ο E = 5/ Έτσι καταλήγουμε στο συμπέρασμα ότι U = και E = / 5/ Τον πίνακα E εναλλακτικά θα μπορούσαμε να τον υπολογίσουμε και ως E= EEE. (Μπορούμε να το επαληθεύσουμε αν κάνουμε τις πράξεις.) Παρατηρούμε ότι υπάρχουν δύο οδηγοί ή αντίστοιχα μη μηδενικές γραμμές στον πίνακα U. Έτσι έχουμε rank( A ) =. Μηδενοχώρος N( A )

15 O μηδενοχώρος αποτελείται από το σύνολο λύσεων του ομογενούς συστήματος: A = O A = ή ισοδύναμα του U = = = Υπάρχουν δύο ελεύθερες μεταβλητές, που αντιστοιχούν στις στήλες του πίνακα U οι οποίες δεν έχουν οδηγό, δηλ. είναι οι μεταβλητές, Εκφράζοντας τις ελεύθερες μεταβλητές με παραμέτρους παίρνουμε τη γενική λύση του ομογενούς συστήματος: st s =, st, R t t Επομένως ο μηδενοχώρος είναι το ακόλουθο σύνολο: N( A) = st, s, tt, : st, R {( ) } n Αποτελεί υποχώρο του R δηλαδή του R. H διάσταση του χώρου είναι dim N( A) = n rank( A) = =, και είναι ίση με το πλήθος των ελεύθερων μεταβλητών του συστήματος. Επομένως μία βάση του χώρου θα αποτελείται από γραμμικά ανεξάρτητα διανύσματα. Για να βρούμε ένα τέτοιο ζευγάρι θέτουμε, στη γενική λύση του ομογενούς συστήματος, με τη σειρά κάθε παράμετρο ίση με τη μονάδα μηδενίζοντας τις υπόλοιπες παραμέτρους: s =, t = και στη συνέχεια s =, t = Έτσι μία βάση του μηδενοχώρου είναι η,. Χώρος γραμμών ( ) RA O χώρος γραμμών παράγεται από όλους τους γραμμικούς συνδυασμούς των γραμμών του πίνακα A δηλ. 5

16 c+ c + c 6 6 c c 6c + + RA c c c c + c + c n Αποτελεί υποχώρο του R δηλαδή του R. H διάσταση του χώρου είναι ίση με τη βαθμίδα του πίνακα: dim R( A ) = rank( A) = ( ) = span,, = + + = : c+ c + c c, c, c Μία βάση του χώρου γραμμών RA ( ) αποτελείται από όλες τις μη μηδενικές γραμμές του U. Έτσι το σύνολο, αποτελεί μία βάση του RA ( ) R. Χώρος στηλών RA ( ) O χώρος στηλών παράγεται από όλους τους γραμμικούς συνδυασμούς των στηλών του πίνακα A δηλ. RA ( ) = span,,, c c c c = = 6 6 c+ c + c+ c c c c c = : c, c, c, c R c+ 6c + c+ c m Αποτελεί υποχώρο του R δηλαδή του R. H διάσταση του χώρου είναι ίση με τη βαθμίδα του πίνακα (και ίση με τη διάσταση του χώρου γραμμών): dim R( A) = rank( A) = Μία βάση του χώρου στηλών RA ( ) αποτελείται από όλες τις στήλες του πίνακα A που αντιστοιχούν σε στήλες με οδηγό του πίνακα U. Άρα θα αποτελείται από τις στήλες και : Έτσι το σύνολο, αποτελεί μία βάση του RA ( ). Αριστερός Μηδενοχώρος N( A ) 6

17 O αριστερός μηδενοχώρος αποτελείται από το σύνολο λύσεων του ομογενούς συστήματος: A= O A = m Αποτελεί υποχώρο του R δηλαδή του R. Η διάστασή του είναι dim N( A ) = m rank( A) = = Μία βάση του αποτελείται από τις dim N( A ) τελευταίες γραμμές του πίνακα E / Έτσι το σύνολο 5/ O χώρος N( A ) γράφεται λοιπόν ως αποτελεί μία βάση του N( A ) / 5 N( A ) = span 5/ = t, t, t, t R Παρατήρηση: Στο ίδιο αποτέλεσμα θα καταλήγαμε και αν δουλεύαμε με τον A και όχι με τον E, γιατί 6 5 A Gauss = + + = Επομένως το ομογενές σύστημα γίνεται: με ελεύθερη μεταβλητή την 5 = Με προς τα πίσω αντικατάσταση βρίσκουμε τη γενική λύση του συστήματος η οποία δίνεται ως 5 t, tt,, t R. Επομένως καταλήγουμε ξανά στο ότι 5 N( A) = t, tt,, t R Παράδειγμα 9 Δίνεται ο πίνακας RA ( ) και RA ( ) 5 A =. Να υπολογισθεί η διάσταση και μία βάση των 7

18 O πίνακας Α είναι ήδη σε άνω κλιμακωτή μορφή. Υπάρχουν οδηγοί (ή μη μηδενικές γραμμές) επομένως rank( A) = dim R( A) = dim R( A ) = Μία βάση του RA ( ) αποτελείται από τις στήλες με οδηγό: ( ) v =,,,, v = (,,,), v = (,,,). Μία βάση του RA ( ) αποτελείται από τις μη μηδενικές γραμμές: w = (,,5,,), w = (,,,, ), w = (,,,, ). Παράδειγμα 5 6 Δίνεται ο πίνακας A =. Να υπολογισθεί η διάσταση και μία βάση του RA ( ) που να αποτελείται αποκλειστικά από γραμμές του A Εφαρμόζουμε απαλοιφή Gauss στον A : r r+ r r5 r5r r rr A = r r r r rr 8 Επομένως μία βάση του A αποτελείται από τις στήλες του A (γραμμές του A ) με οδηγό δηλ. v = (,,,,), v = (, 5,,, 6), v = (, 6,8,8, 6) Παράδειγμα Βρείτε τη διάσταση και μία βάση του χώρου των λύσεων του ομογενούς συστήματος: + y z+ r s = + y z + r + s = + y z + r + s = Ο χώρος των λύσεων του ομογενούς συστήματος είναι στην ουσία ο μηδενοχώρος N( A ) του πίνακα συντελεστών του A = Εφαρμόζουμε απαλοιφή Gauss: 8

19 r r r 6 6 Έτσι παίρνουμε το ισοδύναμο σύστημα: + y z+ r s = με ελεύθερες μεταβλητές τις yr, και s z r+ s = Με προς τα πίσω αντικατάσταση παίρνουμε ότι NA ( ) = yr sy,, rsrs,, : yrs,, R Επειδή υπάρχουν ελεύθερες μεταβλητές dim N( A ) = Για να βρούμε μία βάση του χώρου θέτουμε διαδοχικά: y =, r =, s = v =,,,, r rr r r r ( ) ( ) ( ) y =, r =, s = v =,,,, y =, r =, s = v =,,,, Επομένως τα διανύσματα v, v, v αποτελούν βάση του χώρου. Παράδειγμα Έστω ο υποχώρος W R που παράγεται από τα διανύσματα (,-,5,-), (,,,-), (,8,-,-5). a) Να βρεθεί η διάσταση του W και μια βάση του. b) Να συμπληρωθεί η βάση του W ώστε να παράγει τον R a) Τοποθετούμε τα διανύσματα ως γραμμές ενός πίνακα A. Τότε W= RA ( ). Eφαρμόζουμε απαλοιφή Gauss: r r r r rr r rr A = Επομένως dimw = και μία βάση του αποτελείται από τις μη μηδενικές γραμμές του τελικού πίνακα δηλ. από τα διανύσματα v = (,,5, ), v = (, 7, 9, ) b) Χρειαζόμαστε άλλα διανύσματα ώστε το σύνολό των τεσσάρων να είναι γραμμικά ανεξάρτητο. Δημιουργούμε τον άνω κλιμακωτό πίνακα: Επομένως τα διανύσματα 9

20 v = (,,5, ), v = (, 7, 9, ), v = (,,, ), v = (,,,) αποτελούν βάση του R και άρα τον παράγουν. Παράδειγμα Εξετάστε ποιοι από τους παρακάτω πίνακες έχουν τον ίδιο χώρο γραμμών. 5 A=, B, C = = Πρέπει να φέρουμε όλους τους πίνακες σε ανηγμένη κλιμακωτή μορφή με απαλοιφή Gauss-Jordan και ύστερα να συγκρίνουμε τις μη μηδενικές τιμές τους. Έτσι έχουμε: 5 r r r 5 r rr A = r r r r r+ r B = r r r r r r r r+ r C = Επομένως οι πίνακες A και C έχουν τον ίδιο χώρο γραμμών. Παράδειγμα Εξετάστε αν οι παρακάτω πίνακες έχουν τον ίδιο χώρο στηλών. 5 A=, B = Πρέπει να εξετάσουμε αν οι πίνακες A και B έχουν τον ίδιο χώρο γραμμών. r r r r r5 r r rr A = r r+ r r rr r r r r r+ r B = 7 7 r r r Επομένως οι πίνακες A και B έχουν τον ίδιο χώρο γραμμών και συνεπώς οι πίνακες A και B έχουν τον ίδιο χώρο στηλών.

21 Παράδειγμα 5 Να υπολογισθεί η μηδενικότητα του πίνακα Με απαλοιφή Gauss παίρνουμε 5 7 A = A r r+ r 6 5 r rr r 6 5 rr 6 5 Επομένως έχουμε rank( A ) = και nullity( A) = dim N( A) = n rank( A) = 6 = (αφού υπάρχουν ελεύθερες μεταβλητές) r r+ r r r+ r = Παράδειγμα 6 Είναι δυνατόν να κατασκευαστούν δύο πίνακες A και B έτσι ώστε οι στήλες του γινομένου τους AB να είναι γραμμικά ανεξάρτητες; Αρχικά, βάσει του ορισμού της γραμμικής ανεξαρτησίας, θέτουμε τον γραμμικό συνδυασμό των στηλών του ( AB ), δηλ. το γινόμενο ( AB) για R, ίσο με το O : ( AB) = O () Το ερώτημα που τίθεται είναι αν η λύση του ομογενούς συστήματος είναι μόνον η μηδενική ή όχι. Γνωρίζουμε ότι η βαθμίδα του πίνακα B θα είναι το πολύ ίση με min(, ) =, επομένως στη λύση του ομογενούς συστήματος B = O η απαλοιφή Gauss στον B θα δώσει οδηγούς και μία ελεύθερη μεταβλητή. Δηλαδή το σύστημα έχει άπειρες λύσεις και άρα υπάρχει κάποιο O, έστω το ', για το οποίο B ' = O Θέτοντας το ' στο αριστερό μέλος της () παίρνουμε διαδοχικά: ( AB) ' = A ( B ' ) = A O = O

22 Έτσι υπάρχει τουλάχιστον ένα O για το οποίο ισχύει ( AB) = O, δηλαδή ο γραμμικός συνδυασμός των στηλών του πίνακα AB κάνει O. Επομένως οι στήλες του AB είναι γραμμικά εξαρτημένες και η απάντηση στο ερώτημα της άσκησης είναι αρνητική.

Παραδείγματα Διανυσματικοί Χώροι (3)

Παραδείγματα Διανυσματικοί Χώροι (3) Παραδείγματα Διανυσματικοί Χώροι () Παράδειγμα Δίνεται ο πίνακας A = 6. Να υπολογισθούν οι θεμελιώδεις υποχώροι που σχετίζονται με τον πίνακα Α. Να βρεθεί η διάστασή του κάθε ενός και από μία βάση τους.

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

Παραδείγματα (2) Διανυσματικοί Χώροι

Παραδείγματα (2) Διανυσματικοί Χώροι Παραδείγματα () Διανυσματικοί Χώροι Παράδειγμα 7 Ελέγξτε αν τα ακόλουθα σύνολα διανυσμάτων είναι γραμμικά ανεξάρτητα ή όχι: α) v=(,4,6), v=(,,), v=(7,,) b) v=(,4), v=(,), v=(4,) ) v=(,,), v=(5,,), v=(5,,)

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.5) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/07 Διδάσκων: Ι. Λυχναρόπουλος Προσδιορίστε το c R ώστε το διάνυσμα (,, 6 ) να ανήκει στο

Διαβάστε περισσότερα

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 9/6/08 Διδάσκων: Ι. Λυχναρόπουλος Έστω A= k και w = 3 0. Να βρεθεί η τιμή του k για την οποία

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Γραμμικά Συστήματα- Απαλοιφή Gauss Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Γραμμικά Συστήματα- Απαλοιφή Gauss Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Γραμμικά Συστήματα- Απαλοιφή Gauss Επιμέλεια: I. Λυχναρόπουλος. Χρησιμοποιείστε απαλοιφή Gauss για να επιλύσετε τα ακόλουθα συστήματα: 5x 8y = 5x= + y

Διαβάστε περισσότερα

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x+ y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί Επιμέλεια: Ι. Λυχναρόπουλος. Να εξετασθεί αν είναι γραμμικές οι ακόλουθες συναρτήσεις: a) f : R R με f b) f : R R f y, ( +, y

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ]. 4. Φυλλάδιο Ασκήσεων IV σύντομες λύσεις, ενδεικτικές απαντήσεις πολλαπλής επιλογής 4.. Άσκηση. Χρησιμοποιήστε τη διαδικασία Gauss-Jordan γιά να βρείτε τους αντιστρόφους των παρακάτω πινάκων, αν υπάρχουν.

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι

Παραδείγματα Διανυσματικοί Χώροι Παραδείγματα Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού: με V και

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο συμβολίζουμε με Σε αυτό το σύνολο γνωρίζουμε

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

Παραδείγματα Γραμμικοί Μετασχηματισμοί

Παραδείγματα Γραμμικοί Μετασχηματισμοί Παραδείγματα Γραμμικοί Μετασχηματισμοί Παράδειγμα Να εξετασθεί αν είναι γραμμικές οι ακόλουθες συναρτήσεις: a) f : R R με f + 4 4+ b) f : R R με f + a+ b ac c) f : P M με f ( a + b + c + d ) d b d f :

Διαβάστε περισσότερα

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jodan Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y 6 με απαλοιφή Gauss. Ο επαυξημένος πίνακας του συστήματος

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος. Υπολογίστε τις ακόλουθες ορίζουσες a) 4 b) c) a b + a) 4 4 Παρατήρηση: Προσέξτε ότι ο συμβολισμός της ορίζουσας

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, Αυγούστου 00 Θέμα. (μονάδες.5) α) [μονάδες: 0.5] Υπολογίστε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών «Γραμμική Άλγεβρα» (ΗΥ119) Χειμερινό Εξάμηνο 009-010 Διδάσκων: Ι. Τσαγράκης 6 Ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Δείξτε ότι η απεικόνιση τον ker f. Είναι η

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις6: Βάση και Διάσταση Βασικά σημεία Βάση διανυσματικού χώρου (ορισμός, παραδείγματα, μοναδικότητα συντελεστών) Θεώρημα (ύπαρξη, πρώτη μορφή) Έστω V K μη μηδενικός με K πεπερασμένο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος /8/5 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Υπολογίστε το διπλό ολοκλήρωμα / I y dyd συντεταγμένες. Επίσης σχεδιάστε το χωρίο ολοκλήρωσης. Λύση: Το

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

Κεφάλαιο 7 Βάσεις και ιάσταση

Κεφάλαιο 7 Βάσεις και ιάσταση Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 9/6/5 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 5 Δίνεται ο πίνακας A 5. Αν διαγωνοποιείται να τον διαγωνοποιήσετε και στη συνέχεια να k υπολογίσετε το A όπου k θετικός

Διαβάστε περισσότερα

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017 ΜΑΣ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο 07-08, Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: ώρες 8 Νοεμβρίου, 07 Δίνονται 4 προβλήματα που αντιστοιχούν σε 0 μονάδες με άριστα το 00! ΟΝΟΜΑ: Αρ.

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί 5 Γενικά Γραμμικοί Μετασχηματισμοί Μία σχέση μεταξύ των στοιχείων δύο συνόλων Α,Β αντιστοιχίζει στοιχεία του Α με στοιχεία του Β άλλου μέσω ενός κανόνα που μπορεί να

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διανυσματικοί Χώροι και Υπόχωροι: Βάσεις και Διάσταση Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Gauss. x + y + z = 2 3x + 3y z = 6 x y + z = 1. x + y + z = r x y = 0 3x + y + sz = s 0

Gauss. x + y + z = 2 3x + 3y z = 6 x y + z = 1. x + y + z = r x y = 0 3x + y + sz = s 0 Γραμμική Άλγεβρα Κεφάλαιο Πίνακες και απαλοιφή Gauss. Ποια συνθήκη πρέπει να ικανοποιούν τα y, y 2, y 3 ώστε τα διανύσματα (0, y ), (, y 2 ), (2, y 3 ) να είναι στην ίδια ευθεία; Η ευθεία που περνάει από

Διαβάστε περισσότερα

Γραμμική Άλγεβρα Ι Εξέταση Φεβρουαρίου. Επώνυμο. Όνομα. ΑΜ (13 ψηφία) Σύνολο

Γραμμική Άλγεβρα Ι Εξέταση Φεβρουαρίου. Επώνυμο. Όνομα. ΑΜ (13 ψηφία) Σύνολο 1 Γραμμική Άλγεβρα Ι 009-10 Εξέταση Φεβρουαρίου Επώνυμο Όνομα ΑΜ (1 ψηφία) Ημ/ία Αίθουσα 1 5 Σύνολο Α Η εξέταση αποτελείται από 5 Θέματα. Το άθροισμα των μονάδων είναι 1, το άριστα 10 και η βάση 5. Απαντήστε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2009-2010 Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι Ένα σύνολο m εξισώσεων n αγνώστων που έχει την ακόλουθη

Διαβάστε περισσότερα

1 1 A = x 1 x 2 x 3. x 4. R 2 3 : a + b + c = x + y + z = 0. R 2 3 : a + x = b + y = c + z = 0

1 1 A = x 1 x 2 x 3. x 4. R 2 3 : a + b + c = x + y + z = 0. R 2 3 : a + x = b + y = c + z = 0 Γραμμική Άλγεβρα Ι Θέματα Εξετάσεων Ιανουαρίου 6. (α Υπολογίστε τον πίνακα X R και την ορίζουσα det(x 5 αν AX = B + C και ( ( ( 3 3 A = B = C =. 4 3 (β Θεωρούμε πίνακα A R n n τέτοιον ώστε A = 4A 4I n.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

Κεφάλαιο 4 ιανυσµατικοί Χώροι

Κεφάλαιο 4 ιανυσµατικοί Χώροι Κεφάλαιο 4 ιανυσµατικοί Χώροι 4 ιανυσµατικοί χώροι - Βασικοί ορισµοί και ιδιότητες ιανυσµατικοί Χώροι Ένας ιανυσµατικός Χώρος V (δχ) είναι ένα σύνολο από µαθηµατικά αντικείµενα (αριθµούς, διανύσµατα, πίνακες,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης Γραµµικη Αλγεβρα Ι Ακαδηµαϊκο Ετος 2011-2012 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml 21-2 - 2012

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος 9/8/6 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Να υπολογισθούν τα ακρότατα της συνάρτησης: y y y y 3 (, ) 3 3 3 Πεδίο ορισμού της συνάρτησης είναι το Υπολογίζουμε

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 009 Θέμα (0 μονάδες) Έστω U = (, y, z, w) = z, y = w υποσύνολο του και V ο υπόχωρος

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Επιμέεια: Ι. Λυχναρόπουος. Έστω ο πίνακας 3. Δείξτε ότι το διάνυσμα v (,3) είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ9) Θέμα. (μονάδες.0) Οι ορίζουσες των πινάκων ABC,, βρεθούν οι ορίζουσες των πινάκων:

Διαβάστε περισσότερα

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων Γ. Καραγιώργος ykarag@aegean.gr Quiz 2 Σύντομες Λύσεις Άσκηση 1. Βρείτε μία βάση και τη διάσταση, για τους διανυσματικούς χώρους M 3

Διαβάστε περισσότερα

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ ΑΣΚΗΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ - Διανυσματικοί Χώροι Διδάσκουσα : Δρ Μ Αδάμ Λαμία, 6//05 Έστω = (,,), = (0,,)

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Γραμμική Άλγεβρα Ι,

Γραμμική Άλγεβρα Ι, Γραμμική Άλγεβρα Ι, 207-8 Ασκήσεις2 και Ασκήσεις3: Γραμμοϊσοδύναμοι Πίνακες και Επίλυση Γραμμικών Συστημάτων Βασικά σημεία Γραμμοϊσοδυναμία πινάκων o Στοιχειώδεις πράξεις γραμμών o Ανηγμένη κλιμακωτή μορφή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών «Γραµµική Άλγεβρα Ι» (ΕΜ111) Χειµερινό Εξάµηνο 2006-2007, ιδάσκων: Ι. Τσαγράκης 5 Ο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Έστω V ένας διανυσµατικός χώρος επί

Διαβάστε περισσότερα

Κεφάλαιο 1 Συστήματα γραμμικών εξισώσεων

Κεφάλαιο 1 Συστήματα γραμμικών εξισώσεων Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Γραμμική Άλγεβρα Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Γραμμικοί Κώδικες. 2.1 Η έννοια του Γραμμικού κώδικα

ΚΕΦΑΛΑΙΟ 2. Γραμμικοί Κώδικες. 2.1 Η έννοια του Γραμμικού κώδικα ΚΕΦΑΛΑΙΟ 2 Γραμμικοί Κώδικες 2.1 Η έννοια του Γραμμικού κώδικα Μέχρι τώρα θεωρούσαμε έναν κώδικα C με παραμέτρους (n, M, d) απλώς ως ένα υποσύνολο του συνόλου A n, όπου A είναι ένα αλφάβητο. Είχαμε, όμως,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 6: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΗΡΑΚΛΕΙΟ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10)

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10) Γραμμική Άλγεβρα, Τμήμα Β (Τζουβάρας/Χαραλάμπους) Φεβρουάριος 07 (I) Εστω n n πίνακας A τέτοιος ώστε A = 6A, έστω δ.χ. V με dim(v ) = n και f : V V η γραμμική απεικόνιση με πίνακα A ως πρός κάποια βάση

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η χρησιμότητα της Γραμμικής Άλγεβρας είναι σχεδόν αυταπόδεικτη. Αρκεί μια ματιά στο πρόγραμμα σπουδών, σχεδόν κάθε πανεπιστημιακού τμήματος θετικών επιστημών, για να διαπιστώσει κανείς την παρουσία

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Απαντήσεις στα θέματα της Προόδου της ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ (8 Μαΐου 2010)

Απαντήσεις στα θέματα της Προόδου της ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ (8 Μαΐου 2010) στα θέματα της Προόδου της ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ (8 Μαΐου ) Εκδοχή (α) Ι. Να απαντήσετε σύντομα και περιεκτικά στις παρακάτω ερωτήσεις. (Σωστό-Λάθος) α) (Σ/Λ) Μια βάση του χώρου στηλών ενός μητρώου Α R mxn

Διαβάστε περισσότερα

n = dim N (A) + dim R(A). dim V = dim ker L + dim im L.

n = dim N (A) + dim R(A). dim V = dim ker L + dim im L. Γραμμική Άλγεβρα ΙΙ Διάλεξη 9 Γραμμικοί Ισομορφισμοί Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 19/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 9 19/3/2014 1 / 12 Γραμμικές απεικονίσεις και υπόχωροι Εικόνα

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Άσκηση 1. i) ============================================================== Α n ( 3 n 1 ) A ) 5 4. Α n 1 2 ( n n 2.

Άσκηση 1. i) ============================================================== Α n ( 3 n 1 ) A ) 5 4. Α n 1 2 ( n n 2. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6995 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i. http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Η εξίσωση α + βy = γ 1. Υπάρχουν προβλήματα που η επίλυση τους οδηγεί σε μια γραμμική εξίσωση με δύο αγνώστους, y και η οποία είναι της μορφής

Διαβάστε περισσότερα

Βάση και Διάσταση Διανυσματικού Χώρου

Βάση και Διάσταση Διανυσματικού Χώρου Βάση και Διάσταση Διανυσματικού Χώρου Έστω V ένας διανυσματικός χώρος επί του σώματος F. Ορισμός : Ένα υποσύνολο S του διανυσματικού χώρου V θα λέμε ότι είναι βάση του V αν ισχύει Α) Η θήκη του S παράγει

Διαβάστε περισσότερα

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x] σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν

Διαβάστε περισσότερα

AX=B (S) A A X=A B I X=A B X=A B I X=A B X=A B X=A B X X

AX=B (S) A A X=A B I X=A B X=A B I X=A B X=A B X=A B X X . Επίλυση γραμμικού συστήματος με χρήση αντιστρόφου Πρόταση Θεωρούμε ένα τετραγωνικό γραμμικό σύστημα (δηλαδή ο αριθμός των εξισώσεων είναι ίσος με τον αριθμό των αγνώστων) AX=B (S). Αν ο πίνακας Α είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (3) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (3) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (3) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}.

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}. Γραμμική Άλγεβρα ΙΙ Διάλεξη 4 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 26/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 4 26/2/2014 1 / 12 Υποσύνολα ενός διανυσματικού χώρου. Πότε είναι ένα υποσύνολο X ενός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικοί Μετασχηματισμοί Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικοί Μετασχηματισμοί Γραμμικός Μετασχηματισμός ή

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικοί Μετασχηματισμοί Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικοί Μετασχηματισμοί Γραμμικός Μετασχηματισμός ή

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 1 Οκτωβρίου 007 Ηµεροµηνία παράδοσης της Εργασίας: 9 Νοεµβρίου 007. Πριν από την λύση κάθε άσκησης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΠΛΗ 12- Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss

ΠΛΗ 12- Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss .4 Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss Σχέση ισοδυναμίας. Έστω το σύνολο των ρητών αριθμών Q και η σχέση της ισότητας σε αυτό που ορίζεται ως εξής: Δύο στοιχεία α, γ Q είναι ίσα αν

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα