Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Σχετικά έγγραφα
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Θέματα Μεταγλωττιστών

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Υπολογιστικά & Διακριτά Μαθηματικά

Δύο λόγια από τη συγγραφέα

Ισοδυναµίες, Μερικές ιατάξεις

Μαθηματική Ανάλυση Ι

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a

1 Οι πραγµατικοί αριθµοί

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

HY118- ιακριτά Μαθηµατικά

Σύνοψη Προηγούµενου. Ισοδυναµίες, Μερικές ιατάξεις. Σχέσεις Ισοδυναµίας. Σχέσεις, Ιδιότητες, Αναπαράσταση. Ανακλαστικές (a, a) R

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις

Σχέσεις Ισοδυναµίας και Πράξεις

Πέμπτη 8 εκεμβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Κεφάλαιο 7: Η Θεωρία Πλεγμάτων στην Υπολογιστική Νοημοσύνη

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Α Δ Ι Θ Θ Α Ε Ι Μ :

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016

7. Κεφάλαιο: ΜΗΧΑΝΕΣ ΚΑΙ ΜΟΝΟΕΙΔΗ

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Κλάσεις ισοδυναµίας. Σχέσεις ισοδυναµίας. 15 -Σχέσεις

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο

Σχέσεις Μερικής ιάταξης

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

x < A y f(x) < B f(y).

Φροντιστήριο #5 Λυμένες Ασκήσεις σε Σχέσεις 22/3/2018

Περιεχόμενα. Πρόλογος 3

Σχέσεις Μερικής ιάταξης

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Σχέσεις Ισοδυναµίας, Πράξεις και Μονοειδή

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας

Σχέση Μερικής ιάταξης Σχέση Μερικής ιάταξης (ή µερική διάταξη): ανακλαστική, αντισυµµετρική, και µεταβατική. Αριθµοί: α β (αλλά όχι α < β), α β, Σύνολ

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και»

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

Θεωρία Υπολογισμού και Πολυπλοκότητα

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x.

Σχέσεις Μερικής ιάταξης

Ασκησεις Βασικης Αλγεβρας

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 2 : Σύνολα & Σχέσεις (2/2) Αλέξανδρος Τζάλλας

Κεφάλαιο 1. Αριθμοί. 1.1 Σύνολα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Άλγεβρα Boole και Λογικές Πύλες 2. Επιμέλεια Διαφανειών: Δ.

Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π.

το σύνολο των πολυωνυµικών συναρτήσεων βαθµού d στους φυσικούς και µε P= U P το σύνολο των πολυωνυµικών συναρτήσεων. Να εξετάσετε αν τα σύνολα P

LÔseic Ask sewn sta Jemèlia twn Majhmatik n I

Διάλεξη 1 - Σημειώσεις 1

mail:

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

f(x) = 2x+ 3 / Α f Α.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:

Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

1 Οι πραγµατικοί αριθµοί

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Σύνολα, Σχέσεις, Συναρτήσεις

Αρχιμήδης Μεγάλοι Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ProapaitoÔmenec gn seic.

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Πόσες από αυτές τις σκακιέρες είναι αλήθεια διαφορετικές;

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/ y x= ( ) ( ) .( ) , τότε

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #11: Ασαφής Αριθμητική. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

Πραγματικές συναρτήσεις πραγματικής μεταβλητής

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Υπολογιστικά & Διακριτά Μαθηματικά

τα βιβλία των επιτυχιών

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Εφαρμοσμένα Μαθηματικά ΙΙ

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Εφαρμοσμένη Κρυπτογραφία Ι

K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες

Συναρτησιακές Εξαρτήσεις

Περιεχόμενα. Πρόλογος 3

Εφαρμοσμένα Μαθηματικά ΙΙ

Transcript:

Μάθημα 7α Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2017-2018

Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες σε Πλέγματα. Αριθμοί Διαστημάτων. 2

o Γενική Θεωρία Πλεγμάτων. o Ασαφή Πλέγματα. o Επεκτάσεις σε Ιεραρχίες Πλεγμάτων. o Ενοποίηση Ανόμοιων Τύπων Δεδομένων.

Έστω δύο σύνολα Α,Β Χ με Α,Β. Ορίζουμε ως καρτεσιανό γινόμενο με πρώτο παράγοντα το Α και δεύτερο παράγοντα το Β, το σύνολο: Α Β ={(x,y) x A και y B} Η έννοια του καρτεσιανού γινομένου επεκτείνεται σε πεπερασμένο πλήθος συνόλων: Α 1 Α 2 Α ν ={(x 1, x 2,,x ν ) x 1 Α 1, x 2 Α 2,, x ν Α ν } 4

Σχέση R μεταξύ δύο (ή περισσοτέρων συνόλων) είναι ένα υποσύνολο του καρτεσιανού τους γινομένου. Ιδιαίτερο ενδιαφέρον παρουσιάζουν οι σχέσεις R Α Α. Μια τέτοια σχέση R καλείται δυαδική σχέση επί του συνόλου Α ή (χάριν συντομίας) σχέση R στο Α. 5

Μία δυαδική σχέση R σε ένα σύνολο P καλείται μερικής διάταξης (partially ordered), αν και μόνο αν ικανοποιεί τις παρακάτω τρεις ιδιότητες ( x,y,z P ): Δ1. (x,x) R Δ2. (x,y) R και (y,x) R x=y (Ανακλαστική) (Αντισυμμετρική) Δ3. (x,y) R και (y,z) R (x,z) R (Μεταβατική) 6

Μία δυαδική σχέση R σε ένα σύνολο P καλείται σχέση ολικής διάταξης, (totally ordered) αν και μόνο αν είναι ανακλαστική, αντισυμμετρική, μεταβατική και επιπλέον ισχύει: (x,y) R ή (y,x) R, x,y P.

Παράδειγμα 1 Η σχέση ορισμένη στο δυναμοσύνολο 2 Α ενός συνόλου Α είναι σχέση μερικής διάταξης. Η σχέση στους πραγματικούς αριθμούς είναι σχέση ολικής διάταξης. 8

Μερικώς διατεταγμένο σύνολο (μδσυν) (partially ordered set (poset)) καλείται ένα ζεύγος (P, ), όπου P είναι ένα σύνολο και είναι μια σχέση μερικής διάταξης στο P. Ολικά διατεταγμένο σύνολο ή αλυσίδα (chain) καλείται ένα ζεύγος (P, ), όπου P είναι ένα σύνολο και είναι μια σχέση ολικής διάταξης στο P. 9

Παράδειγμα 2 Το σύνολο R των πραγματικών αριθμών εφοδιασμένο με την σχέση είναι ολικά διατεταγμένο. α β Συγκεκριμένα, ικανοποιούνται οι συνθήκες Δ1, Δ2, Δ3 και επιπλέον για κάθε α,β R ισχύει: α β ή β α. 10

Σύνολα μερικώς διατεταγμένα. Το δυναμοσύνολο 2 Α ενός συνόλου Α, εφοδιασμένο με τη σχέση. Στο σχήμα που ακολουθεί (διάγραμμα Hasse) παρουσιάζεται το δυναμοσύνολο του συνόλου S={a,b,c} εφοδιασμένο με τη σχέση. 11

Διάγραμμα Hasse του δυναμοσυνόλου 2 {a,b,c} του S= {a,b,c}. {a,b,c} {a,b} {a} {a,c} {b} {b,c} {c} { } 12

Άνω φράγμα ενός συνόλου P Χ καλείται κάθε x Χ τέτοιο ώστε p x, p P. Το ελάχιστο άνω φράγμα (εάν υπάρχει) καλείται ανώτερο πέρας (supremum). Αν το sup ανήκει στο σύνολο P τότε καλείται μέγιστο (max). 13

Κάτω φράγμα ενός συνόλου P Χ καλείται κάθε x Χ τέτοιο ώστε x p, p P. Το μέγιστο κάτω φράγμα (εάν υπάρχει) καλείται κατώτερο πέρας (infimum). Αν το inf ανήκει στο P τότε καλείται ελάχιστο (min). 14

Ορισμός Πλέγματος (συνολοθεωρητικός) Πλέγμα (lattice) (L, ) καλείται ένα μερικώς διατεταγμένο σύνολο, στο οποίο οποιαδήποτε δύο στοιχεία του έχουν μέγιστο κάτω φράγμα, που συμβολίζεται με x y και ελάχιστο άνω φράγμα, που συμβολίζεται με x y. 15

Ορισμός Πλέγματος (αλγεβρικός) Πλέγμα (L, ) είναι ένα σύστημα με δύο δυαδικές πράξεις,, οι οποίες ικανοποιούν τις παρακάτω ιδιότητες Δ1- Δ4, και αντιστρόφως. Δ1. x x = x, x x = x (Ταυτοτική) Δ2. x y = y x, x y = y x (Αντιμεταθετική) Δ3. (x y) z= x (y z), (Προσεταιριστική) (x y) z= x (y z) Δ4. x (x y) = x (x y) = x (Απορρόφησης) Η δυαδική σχέση x y είναι ισοδύναμη με το ακόλουθο ζεύγος πράξεων: x y = x και x y = y (Συνέπεια) 16

Ένα πλέγμα (L, ) καλείται πλήρες όταν κάθε υποσύνολό του έχει μέγιστο κάτω φράγμα και ελάχιστο άνω φράγμα στο L. Από τον ορισμό του πλέγματος προκύπτει ότι: όλες οι φραγμένες αλυσίδες είναι πλέγματα. Κάθε αλυσίδα είναι πλέγμα, στην οποία το x y είναι το ελάχιστο και το x y είναι το μέγιστο των x,y, όπου, δηλώνουν τη σύζευξη και τη διάζευξη, αντίστοιχα.

email: hatzane@teiemt.gr Τηλ. 693-815-1768 18