Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:"

Transcript

1 Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : Παρασκευή 25 Οκτωβρίου 2013 Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: x R y x y Q Να δείξετε ότι η R είναι μια σχέση ισοδυναμίας στο R, και να περιγράψετε το σύνολο πηλίκο R/R. Λύση. Χάριν απλότητας γράφουμε: αντι R, [x] αντί [x] R, κτλ. Για κάθε x, y, z R έχουμε: Ανακλαστική ιδιότητα δηλαδή x x : Επειδή x x = 0 Q έπεται ότι x x. Συμμετρική ιδιότητα δηλαδή x y = y x : Αν x y τότε x y Q = y x Q = y x Μεταβατική ιδιότητα δηλαδή x y και y z = x z : Επειδή x y και y z, έχουμε x y Q = x z Q = x z y z Q Άρα η R είναι μια σχέση ισοδυναμίας στο R. Έστω x R. Τότε η κλάση ισοδυναμίας [x] του x ως προς τη σχέση R είναι το ακόλουθο σύνολο: [x] = { y R x y } = { y R x y Q } = { y R x y = r Q } = { x r R r Q } = { x + r R r Q } := x + Q και άρα το σύνολο πηλίκο του R ως προς την R είναι R/R = { [x] R x R } = { x + Q x R }

2 2 Ασκηση 2. Στο σύνολο των ρητών αριθμών Q ορίζουμε μια σχέση R Q Q ως εξής: x R y x y Z Να δείξετε ότι η R είναι μια σχέση ισοδυναμίας στο Q, και υπάρχει μια 1-1 και επί επεικόνιση f : Q/R Q [0, 1) Λύση. Χάριν απλότητας γράφουμε: αντι R, [x] αντί [x] R, κτλ. Για κάθε x, y, z Q έχουμε: Ανακλαστική ιδιότητα δηλαδή x x : Επειδή x x = 0 Z έπεται ότι x x. Συμμετρική ιδιότητα x y = y x : Αν x y τότε x y Z = y x Z = y x Μεταβατική ιδιότητα δηλαδή x y και y z = x z : Επειδή x y και y z έχουμε x y Z = x z Z = x z y z Z Άρα η R είναι μια σχέση ισοδυναμίας στο Q. Έστω x Q. Τότε η κλάση ισοδυναμίας του x ως προς τη σχέση R είναι το ακόλουθο σύνολο: [x] = { y Q x y } = { y Q x y Z } = { y Q x y = m Z } = { x m Q m Z } = { x + m Q m Z } := x + Z και άρα το σύνολο πηλίκο του Q ως προς τη σχέση ισοδυναμίας R είναι Q/R = { [x] R x Q } = { x + Z x Q } Για να περιγράψουμε αναλυτικότερα το σύνολο-πηλίκο Q/R, σταθεροποιούμε έναν ρητό αριθμό x = p q, όπου προφανώς μπορούμε να υποθέσουμε ότι q > 0. Από την Ευκλείδια διαίρεση έπεται ότι: υπάρχουν α, β Z έτσι ώστε : p = α q + β, όπου 0 β < q Επομένως θα έχουμε 0 β q < 1, και τότε x = p q = a q + β = a + β q q = x β q = a Z = x R Επομένως [x] = [ β q ], όπου β Q [0, 1) q Η παραπάνω ανάλυση μας επιτρέπει να ορίσουμε μια αντιστοιχία f : Q/R Q [0, 1), [ p q ] f([p q ]) = β q όπου p = α q + β και 0 β q < 1. Θα δείξουμε ότι η f είναι μια καλά ορισμένη απεικόνιση: β q

3 Η f είναι καλά ορισμένη: Έστω [x], [y] Q/R, όπου x = p p q και y = q, και έστω ότι [x] = [y], δηλαδή [ p q ] = [ p q ]. Επειδή όπως παραπάνω μπορούμε να γράψουμε [ p q ] = [ β ] και [p q q ] = [ β q ] όπου p = α q + β, 0 β < q και p = α q + β, 0 β < q, έπεται ότι [ β q ] = [ β q ] = β q β q = k Z = β q = β β + k = 0 q q + k < 1 Επειδή k Z από την τελευταία ανισότητα έπεται προφανώς ότι κ = 0 και άρα β q = β q = f([ p ]) = f([p ]) = f([x]) = f([y]) q q Επομένως η f είναι μια καλά ορισμένη απεικόνιση. Θα δείξουμε ότι η f είναι 1-1 και επί. Η f είναι 1-1: Έστω f([ p p q ]) = f([ q ]) όπου όπως παραπάνω p q = α + β και p q q = α + β q. Τότε και άρα έχουμε: β q = β q p q p q = α α Z = [ p q ] = [p q ] Συνεπώς η f είναι ένα προς ένα. Η f είναι επί: Για κάθε ρητό αριθμό p q Q [0, 1), επειδή 0 p q < 1, θα έχουμε προφανώς ότι p q = b. Άρα q f([ p q ]) = p q, δηλαδή η f είναι επί. Άρα δείξαμε ότι υπάρχει μια καλά ορισμένη 1-1 και επί απεικόνιση f : Q/R Q [0, 1). 3 Ασκηση 3. Θεωρούμε το υποσύνολο S = { z C z = 1 } του συνόλου C των μη-μηδενικών μιγαδικών αριθμών. Στο C ορίζουμε μια σχέση R ως εξής: z R w zw 1 S 1. Να δείξετε ότι η R είναι μια σχέση ισοδυναμίας στο C, και ακολούθως νa περιγραφεί το σύνολο-πηλίκο C /R. 2. Είναι το υποσύνολο S κλειστό ως προς την πράξη πολλαπλασιασμού στο σύνολο C ; 3. Είναι η πράξη πολλαπλασιασμού στο σύνολο C συμβιβαστή με την σχέση ισοδυναμίας R; Λύση. Παρατηρούμε ότι: z R w zw 1 S zw 1 = 1 z w 1 = 1 z w 1 = 1 z = w. 1. Έστω y, z, w C. Έχουμε: Ανακλαστική ιδιότητα: y R y, αφού y = y. Συμμετρική ιδιότητα: Αν y R z, δηλαδή y = z, τότε και z = y. Επομένως, z R y. Μεταβατική ιδιότητα: Έστω y R z και z R w, δηλαδή y = z και z = w. Τότε y = w. Επομένως, y R w. Άρα η R είναι μια σχέση ισοδυναμίας στο C. Το σύνολο πηλίκο του C ως προς την R είναι C /R = { [z] R z C }

4 4 όπου η κλάση ισοδυναμίας του z C ως προς τη σχέση R είναι το σύνολο: [z] R = { w C z R w } = { w C z = w } Γεωμετρικά: η κλάση τού z C είναι η περιφέρεια με κέντρο την αρχή των συντεταγμένων τού μιγαδικού επιπέδου και ακτίνα το μέτρο του z. Το σύνολο-πηλίκο (πηλικοσύνολο) C /R είναι το σύνολο όλων αυτών των ομόκεντρων περιφερειών. Ri z 5 z 3 z 4 z 2 z 1. R z 6 Στο παραπάνω σχήμα παρουσιάζεται το μιγαδικό επίπεδο ή επίπεδο Gauss και το πηλικοσύνολο C /R. Μιγαδικοί αριθμοί z, z με [z] R = [z ] R, δηλαδή με το ίδιο μέτρο z = z, κείνται πάνω στην ίδια περιφέρεια τού επιπέδου Gauss, η οποία έχει ως κέντρο την αρχή των συντεταγμένων και ακτίνα z. Για παράδειγμα, στο σχήμα είναι z 1 = z 2, z 3 = z 4 και z 5 = z 6. Έτσι μπορούμε να πούμε ότι γεωμετρικά το πηλικοσύνολο C /R «ταυτίζεται» με το σύνολο των περιφερειών που περιγράψαμε προηγούμενα στο επίπεδο τού Gauss. Αλγεβρικά: Θεωρούμε το σύνολο R + των θετικών πραγματικών αριθμών και την «αντιστοιχία» f : C /R R +, [z] R f([z] R ) := z. Η f είναι μια απεικόνιση, αφού είναι ανεξάρτητη από τον αντιπρόσωπο τής κλάσης [z] R, μολονότι ορίστηκε μέσω ενός συγκεκριμένου αντιπροσώπου!. Πράγματι αν, z [z] R, δηλαδή [z ] R = [z] R, τότε z = z και γι αυτό f([z ] R ) = f([z] R ). Η f είναι μια «επί» απεικόνιση, αφού αν r R +, τότε υπάρχει κλάση [z] R C /R με f([z] R ) := z = r. Πράγματι, αρκεί να θυμηθούμε ότι R + C, αφού r = r + 0i και να θεωρήσουμε την κλάση [r] R, η εικόνα τής οποίας είναι προφανώς η f(r) = r = r. Η f είναι μια «1-1» απεικόνιση, αφού αν f([z] R ) = f([z ] R ), όπου [z] R, [z ] R C /R, τότε επειδή f([z] R ) = z και f([z ] R ) = z, έπεται z = z και γι αυτό z R z. Συνεπώς [z] R = [z ] R και η f είναι μια «1-1» απεικόνιση. Έτσι μπορούμε να πούμε ότι αλγεβρικά το πηλικοσύνολο C /R «ταυτίζεται» με το σύνολο R Το υποσύνολο S είναι κλειστό ως προς την πράξη πολλαπλασιασμού στο σύνολο C αφού αν z, w S τότε zw = z w = 1, δηλαδή zw S.

5 3. Για να είναι η σχέση ισοδυναμίας R C C συμβιβαστή με την πράξη πολλαπλασιασμού : C C C, θα πρέπει x, y, z, w C με x R z και y R w, δηλαδή με x = z και y = w, να ισχύει x y R z w. Προφανώς αν, x = z και y = w, τότε x y = z w και επομένως x y R z w και γι αυτό η συγκεκριμένη σχέση ισοδυναμίας R στο σύνολο C είναι συμβιβαστή με την πράξη πολλαπλασιασμού. 5 Ασκηση 4. Να εξεταστεί, ποια από τα ακόλουθα υποσύνολα τού καρτεσιανού γινομένου Z Z ορίζουν μια σχέση ισοδυναμίας φ επί του συνόλου των ακεραίων αριθμών Z και για κάθε σχέση ισοδυναμίας φ να προσδιοριστούν οι αντίστοιχες κλάσεις ισοδυναμίας καθώς και η προκύπτουσα διαμέριση του συνόλου Z: (1) g 1 = {(z, z) z Z}, (2) g 2 = {(z, z + 1) z Z}, (3) g 3 = {(z + 1, z) z Z}, (4) g 4 = g 1 g 2, (5) g 5 = g 1 g 2 g 3 (6) g 6 = {(1, 2), (2, 3), (1, 3)}, (7) g 7 = {(1, 2), (2, 3), (1, 3), (2, 1), (3, 2), (3, 1)}, (8) g 8 = g 1 g 7, (9) g 9 = g 1 g 7 {(7, 8), (8, 7)}, (10) g 10 = g 1 g 7 {(3, 4), (4, 3)}. Λύση. (1) Το σύνολο g 1 = {(z, z) z Z} είναι σχέση ισοδυναμίας. Για κάθε z Z oι κλάσεις ισοδυναμίας είναι [z] = {z} και άρα Z = z Z [z]. (2) Το σύνολο g 2 = {(z, z + 1) z Z} δεν είναι σχέση ισοδυναμίας αφού για κάθε z Z το (z, z) / g 2. (3) Όμοια με το σύνολο g 2 έχουμε ότι το σύνολο g 3 = {(z + 1, z) z Z} δεν είναι σχέση ισοδυναμίας. (4) Το σύνολο g 4 = g 1 g 2 δεν είναι σχέση ισοδυναμίας δίοτι για παράδειγμα το στοιχείο (0, 1) g 4 ενώ το (1, 0) / g 4 και άρα δεν ισχύει η συμμετρική ιδιότητα. (5) Το σύνολο g 5 = g 1 g 2 g 3 είναι σχέση ισοδυναμίας επί του Z. (6) Το στοιχείο (1, 2) g 6 αλλά το (2, 1) / g 6 και άρα το σύνολο g 6 = {(1, 2), (2, 3), (1, 3)} δεν είναι σχέση ισοδυναμίας. (7) Για παράδειγμα τα στοιχεία (1, 2), (2, 1) g 7 αλλά το (1, 1) / g 7 και άρα το σύνολο g 7 δεν είναι σχέση ισοδυναμίας. (8) Το σύνολο g 8 = g 1 g 7 είναι σχέση ισοδυναμίας και οι κλάσεις ισοδυναμίας είναι [1] = [2] = [3] = {1, 2, 3} και τα μονοσύνολα [z] = {z} για κάθε z Z\{1, 2, 3}. (9) Το σύνολο g 9 = g 1 g 7 {(7, 8), (8, 7)} είναι σχέση ισοδυναμίας και οι κλάσεις ισοδυναμίας είναι [1] = [2] = [3] = {1, 2, 3}, [7] = [8] = {7, 8} και τα μονοσύνολα [z] = {z} για κάθε z Z\{1, 2, 3, 7, 8}. (10) Το σύνολο g 10 = g 1 g 7 {(3, 4), (4, 3)} δεν είναι σχέση ισοδυναμίας δίοτι τα στοιχεία (4, 3), (3, 1) g 10 αλλά (4, 1) / g 10. Ασκηση 5. Έστω X ένα μη-κενό σύνολο και {R i } i I μια οικογένεια σχέσεων ισοδυναμίας επί του X. 1. Να δείξετε ότι η τομή R = i I R i είναι μια σχέση ισοδυναμίας επί του X. 2. Να εξετάσετε αν η ένωση R = i I R i είναι σχέση ισοδυναμίας επί του X.

6 6 Λύση. 1. Έστω x X. Τότε το (x, x) R i, i I, και άρα (x, x) i I R i. Συνεπώς η σχέση R είναι ανακλαστική. Έστω (x, y) i I R i. Τότε έχουμε (x, y) R i, i I = (y, x) R i, i I = (y, x) i I R i και άρα η R είναι συμμετρική. Έστω (x, y) i I R i και (y, z) i I R i. Τότε για κάθε i I έχουμε (x, y) R i = (x, z) R i, i I = (x, z) R i (y, z) R i i I δηλαδή η R είναι μεταβατική. Επομένως η τομή R = i I R i είναι μια σχέση ισοδυναμίας επί του X. 2. Θα δείξουμε με ένα (αντι)παράδειγμα ότι γενικά η ένωση R = i I R i δεν είναι σχέση ισοδυναμίας επί του συνόλου X. Αντιπαράδειγμα: Έστω X = {1, 2, 3} και θεωρούμε τα παρακάτω υποσύνολα του καρτεσιανού γινομένου X X: R 1 = { (1, 1), (2, 2), (3, 3), (1, 2), (2, 1) } και R 2 = { (1, 1), (2, 2), (3, 3), (2, 3), (3, 2) } Τότε R = R 1 R2 = { (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2) } Παρατηρούμε ότι τα (1, 2), (2, 3) R αλλά το (1, 3) / R και άρα η R δεν είναι σχέση ισοδυναμίας αφού δεν ισχύει η μεταβατική ιδιότητα. Παρατήρηση: Διαπιστώνουμε στο (αντι)παράδειγμα αυτό ότι η ένωση σχέσεων ισοδυναμίας R είναι ανακλαστική και συμμετρική σχέση. Γενικά εύκολα βλέπουμε ότι η ένωση σχέσεων ισοδυναμίας επί ενός μη-κενού συνόλου ικανοποιεί την ανακλαστική και συμμετρική ιδιότητα, αλλά όπως είδαμε στο παραπάνω αντιπαράδειγμα, δεν ικανοποιεί γενικά την μεταβατική ιδιότητα. Ασκηση 6. Θεωρούμε το σύνολο X = { 1, 2, 3, 4}. 1. Έστω η σχέση Λύση. R = { (1, 1), (2, 1), (3, 1), (2, 4), (4, 2), (3, 3), (4, 1), (2, 3) } X X Να βρεθεί η μικρότερη σχέση ισοδυναμίας R επί του X η οποία περιέχει τη σχέση R. 2. Έστω η σχέση R = { (1, 1), (2, 3), (4, 1) } X X Να βρεθεί η μικρότερη σχέση ισοδυναμίας R επί του X η οποία περιέχει τη σχέση R. 1. H μικρότερη σχέση ισοδυναμίας R επί του X η οποία περιέχει τη σχέση R θα πρέπει να περιέχει και τα ζεύγη (1, 3), (1, 4), (3, 2), (1, 2). Άρα θα πρέπει να περιέχει και τα ακόλουθα: (2, 1) R R = (2, 2) R (1, 2) R R (4, 2) R R (2, 4) R R = (4, 4) R

7 (3, 1) R R (1, 4) R R = (3, 4) R = (4, 3) R Επομένως η μικρότερη σχέση ισοδυναμίας R επί του X η οποία περιέχει τη σχέση R θα πρέπει να περιέχει όλα τα διατεταγμένα ζεύγη στοιχείων του X. Άρα R = X X 2. Όμοια όπως παραπάνω βρίσκουμε ότι η μικρότερη σχέση ισοδυναμίας R επί του X η οποία περιέχει τη σχέση R είναι R = { (1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (3, 2), (1, 4), (4, 1) } 7 Ασκηση 7. Να περιγραφούν όλες οι πιθανές σχέσεις ισοδυναμίας επί ενός συνόλου X με πλήθος στοιχείων X = 1, X = 2, X = 3, και X = 4. Λύση. Υπενθυμιζουμε ότι υπάρχει μια 1-1 και επί αντιστοιχία μεταξύ των σχέσεων ισοδυναμίας R επί ενός συνόλου X και των διαμερίσεων Δ επί του X: R X X Δ R = X/R = { [x] R X x X } Δ = { A i X i I } R Δ = {(x, y) X X i I : x, y A i } Θα χρησιμοποιήσουμε την παραπάνω αντιστοιχία για να περιγράψουμε τις ζητούμενες σχέσεις ισοδυναμίας. Έστω X = {a}. Τότε X X = {(a, a)} και άρα έχουμε μόνο μια σχέση ισοδυναμίας την R = X X. Έστω X = {a, b}. Τότε X X = {(a, a), (a, b), (b, a), (b, b)}. Για να βρούμε όλες τις σχέσεις ισοδυναμίας του X αρκεί να βρούμε όλες τις διαμερίσεις του. Στη περίπτωση αυτή έχουμε τη διαμέριση Δ 1 = {a, b} = X και άρα την σχέση ισοδυναμίας R 1 = X X, και τη διαμέριση Δ 2 = {{a}, {b}} όπου η σχέση ισοδυναμίας είναι R 2 = {(a, a), (b, b)}. Έστω X = {a, b, c}. Τότε οι διαμερίσεις του συνόλου X και οι αντίστοιχες σχέσεις ισοδυναμίας είναι Δ 1 = { a, b, c } = X X R 1 = X X Δ 2 = { {a, b}, {c} } R 2 = { (a, b), (b, a), (a, a), (b, b), (c, c) } Δ 3 = { {a, c}, {b} } R 3 = { (a, c), (c, a), (a, a), (c, c), (b, b) } Δ 4 = { {b, c}, {a} } R 4 = { (b, c), (c, b), (b, b), (c, c), (a, a) } Δ 5 = { {a}, {b}, {c} } R 5 = { (a, a), (b, b), (c, c) } Έστω X = {a, b, c, d}. Τότε οι διαμερίσεις του συνόλου X είναι οι ακόλουθες: Δ 1 = { a, b, c, d } = X X Δ 2 = { {a, b, c}, d } Δ 3 = { {b, c, d}, {a} } Δ 4 = { {a, c, d}, {b} } Δ 5 = { {a, b, d}, {c} } Δ 6 = { {a, b}, {c, d} } Δ 7 = { {a, c}, {b, d} } Δ 8 = { {a, d}, {b, c} } Δ 9 = { {a, b}, {c}, {d} } Δ 10 = { {a, c}, {b}, {d} } Δ 11 = { {a, d}, {b}, {c} } Δ 12 = { {b, c}, {a}, {d} } Δ 13 = { {b, d}, {a}, {c} } Δ 14 = { {c, d}, {a}, {b} } Δ 15 = { {a}, {b}, {c}, {d} }

8 8 Επομένως προκύπτουν 15 σχέσεις ισοδυναμίας R Δi, των οποίων αφήνεται ως άσκηση. 1 i 15, επί του συνόλου X, η περιγραφή Ασκηση Στο σύνολο N N, όπου N = { 0, 1, 2, 3, }, ορίζουμε τη σχέση R: Λύση. (a, b), (c, d) N N : (a, b) R (c, d) a + d = b + c Δείξτε ότι η R είναι μια σχέση ισοδυναμίας στο N N και περιγράψτε το σύνολο πηλίκο (N N)/R. 2. Στο σύνολο Z Z ορίζουμε τη σχέση S: (x, y), (a, b) Z Z : (x, y) S (a, b) xb = ya Δείξτε ότι η S είναι μια σχέση ισοδυναμίας στο Z Z και περιγράψτε το σύνολο πηλίκο (Z Z )/S. 1. Για κάθε (a, b), (c, d), (e, f) N N έχουμε: Ανακλαστική ιδιότητα: Επειδή a + b = b + a έπεται ότι (a, b) (a, b). Συμμετρική ιδιότητα: Αν (a, b) (c, d) τότε a + d = b + c = c + b = d + a = (c, d) (a, b) Μεταβατική ιδιότητα: Αν (a, b) (c, d) και (c, d) (e, f) τότε έχουμε a + d = b + c c + f = d + e = a + d + f = b + c + f = b + d + e = a + d + f = b + d + e = (a, b) (e, f) Άρα η R είναι μια σχέση ισοδυναμίας στο N N. Έστω (a, b) N N. Τότε η κλάση ισοδυναμίας του (a, b) ως προς τη σχέση R είναι το ακόλουθο σύνολο: [(a, b)] = { (c, d) N N (a, b) (c, d) } = { (c, d) N N a + d = b + c } = { (c, d) N N a b = c d } Για να περιγράψουμε το σύνολο πηλίκο του N N ως προς την R ορίζουμε τη παρακάτω αντιστοιχία: f : (N N)/R Z, [(a, b)] R f([(a, b)] R ) = a b και θα δείξουμε ότι η f είναι μια καλά ορισμένη, ένα προς ένα και επί απεικόνιση. Καλά ορισμένη: Έστω [(a, b)] = [(c, d)]. Τότε (a, b) R (c, d) = a + d = b + c = a b = c d = f([(a, b)]) = f([(c, d)]) και άρα η f είναι καλά ορισμένη. Ένα προς ένα: Έστω f([(a, b)]) = f([(c, d)]). Τότε a b = c d = a + d = b + c = (a, b) (c, d) = [(a, b)] = [(c, d)] Συνεπώς η f είναι ένα προς ένα.

9 9 Επί: Έστω k Z. Αν k 0 τότε f([(k, 0)]) = k 0 = k ενώ αν k < 0 τότε f([(0, κ)]) = 0 ( κ) = k. Άρα η f είναι επί. Επομένως το σύνολο πηλίκο (N N)/R είναι σε 1-1 και επί αντιστοιχία με το σύνολο Z των ακεραίων αριθμών. 2. Για κάθε (x, y), (a, b), (c, d) Z Z έχουμε: Ανακλαστική ιδιότητα: Επειδή x y = y x έπεται ότι (x, y) (x, y). Συμμετρική ιδιότητα: Αν (x, y) (a, b) τότε x b = y a = a y = b x = (a, b) (x, y) Μεταβατική ιδιότητα: Έστω (x, y) (a, b) και (a, b) (c, d). Τότε έχουμε x b = y a = x b d = y a d = y b c = (x d) b = (y c) b a d = b c = x d = y c διότι b 0 = (x, y) (c, d) Άρα η S είναι μια σχέση ισοδυναμίας στο Z Z. Για να περιγράψουμε το σύνολο πηλίκο του Z Z ως προς την S ορίζουμε τη παρακάτω αντιστοιχία: f : Z Z /S Q, [(x, y)] S f([(x, y)] S ) = x y και θα δείξουμε ότι είναι μια καλά ορισμένη, ένα προς ένα και επί απεικόνιση. Καλά ορισμένη: Έστω [(x, y)] = [(a, b)]. Τότε (x, y) S (a, b) = x b = y a = x y = a b = f([(x, y)]) = f([(a, b)]) και άρα η f είναι καλά ορισμένη. Ένα προς ένα: Έστω f([(x, y)]) = f([(a, b)]). Τότε x y = a = x b = a y = (x, y) (a, b) = [(x, y)] = [(a, b)] b Συνεπώς η f είναι ένα προς ένα. Επί: Έστω p q Q. Άρα p, q Z με q 0 και τότε f([(p, q)]) = p q. Άρα η f είναι επί. Επομένως το σύνολο πηλίκο Z Z /S είναι σε 1-1 και επί αντιστοιχία με το σύνολο των ρητών αριθμών Q. Ασκηση 9. Θεωρούμε το σύνολο CS(Q) των ακολουθιών Cauchy ρητών αριθμών. Υπενθυμίζουμε ότι μια ακολουθία (r n ) n N, r n Q, n N, ρητών αριθμών ονομάζεται ακολουθία Cauchy ακριβώς τότε όταν ε Q, ε > 0, n 0 N : m, n n 0 είναι r n r m < ε.

10 10 Στο σύνολο CS(Q) ορίζουμε τη σχέση R CS(Q) CS(Q) ως εξής: (r n ) n N R (r n) n N η (r n r n) n N είναι μια μηδενική ακολουθία: lim (r n r n) = 0 (1) Να δειχθεί ότι η R είναι μια σχέση ισοδυναμίας επί τού CS(Q). (2) Να περιγραφεί το σύνολο πηλίκο CS(Q)/R. Λύση. (1) Δείχνουμε ότι η R είναι μια σχέση ισοδυναμίας στο σύνολο CS(Q). (αʹ) Για κάθε (r n ) n N CS(Q), ισχύει ότι (r n ) n N R (r n ) n N, αφού όλοι οι όροι τής ακολουθίας (r n r n ) n N είναι ίσοι με μηδέν και ως εκ τούτου η (r n r n ) n N είναι μια μηδενική ακολουθία. Ώστε η σχέση R διαθέτει την ανακλαστική ιδιότητα. (βʹ) Αν (r n ) n N R(r n) n N, τότε η ακολουθία (r n r n) n N είναι μια μηδενική ακολουθία και γι αυτό και η ακολουθία (r n r n) n N = (r n r n ) n N είναι επίσης μια μηδενική ακολουθία. Επομένως, (r n) n N R (r n ) n N. Ώστε η σχέση R διαθέτει την συμμετρική ιδιότητα. (γʹ) Αν (r n ) n N R (r n) n N και (r n) n N R (r n ) n N, τότε οι ακολουθίες (r n r n) n N και (r n r n ) n N είναι μηδενικές ακολουθίες. Αλλά όπως γνωρίζουμε και το άθροισμά τους, δηλαδή η ακολουθία (r n r n) n N + (r n r n ) n N = (r n r n ) n N είναι επίσης μια μηδενική ακολουθία και γι αυτό θα έχουμε (r n ) n N R (r n ) n N. Ώστε η σχέση R διαθέτει τη μεταβατική ιδιότητα. (2) Είναι γνωστό από τον Απειροστικό Λογισμό ότι κάθε ακολουθία Cauchy ρητών αριθμών (r n ) n N συγκλίνει στο σύνολο R των πραγματικών αριθμών και άρα θα έχουμε lim r n R. Αυτό μας επιτρέπει να ορίσουμε μια αντιστοιχία Φ: CS(Q)/R R, Φ ( [(r n ) n N ] ) = lim r n (αʹ) Η Φ είναι καλά ορισμένη απεικόνιση: Έστω (r n ) n N και (r n) n N δύο ακολουθίες Cauchy ρητών αριθμών και υποθέτουμε ότι οι αντίστοιχες κλάσεις ισοδυναμίας [(r n ) n N ] και (r n) n N ] είναι ίσες (ως στοιχεία του συνόλου πηλίκο CF/R). Τότε όπως γνωρίζουμε (βλέπε Λήμμα 1.9 των Σημειώσεων Θεωρητικών Θεμάτων), θα έχουμε [(r n ) n N ] = [(r n) n N ] = (r n ) n N R (r n) n N = lim(r n r n) = 0 Χρησιμοποιώντας γνωστές ιδιότητες ορίων, η τελευταία σχέση δίνει ότι lim r n = lim r n. Αυτό όμως σημαίνει Φ ( [(r n ) n N ] ) = Φ( ( [(r n) n N ] ) και άρα η Φ είναι μια καλά ορισμένη απεικόνιση. (βʹ) Η Φ είναι 1-1: Έστω (r n ) n N και (r n) n N δύο ακολουθίες Cauchy ρητών αριθμών και υποθέτουμε ότι Φ ( [(r n ) n N ] ) = Φ ( (r n) n N ]). Τότε lim r n = lim r n και επομένως η ακολουθία (r n r n) n N είναι μηδενική: lim(r n r n) = 0. Τότε όμως θα έχουμε (r n ) n N R (r n) n N και επομένως [(r n ) n N R ][(r n) n N ]. Αυτό σημαίνει ότι η Φ είναι 1-1. (γʹ) Η Φ είναι επί: Έστω r R ένας πραγματικός αριθμό. Από τον Απειροστικό λογισμό γνωρίζουμε ότι ο r είναι όριο μιας ακολουθίας Cauchy: r = lim r n, όπου (r n ) n N είναι μια ακολουθία Cauchy ρητών αριθμών. Τότε Φ ( [(r n ) n N ] ) = r και επομένως η απεικόνιση Φ είναι επί. Επομένως το σύνολο πηλίκο CS(Q)/R είναι σε 1-1 και επί αντιστοιχία με το σύνολο R των πραγματικών αριθμών. Ασκηση 10. Έστω K ένα σώμα (K = Q, R, C), και έστω H(t) ένα τυχόν πολυώνυμο υπεράνω του K. Στο σύνολο των πολυωνύμων K[t], ορίζουμε μια σχέση R ως εξής: P(t), Q(t) K[t] : P(t) R Q(t) H(t) P(t) Q(t) (1) Να δείξετε ότι η σχέση R είναι μια σχέση ισοδυναμίας επί του K[t]. (2) Να εξετασθεί αν η σχέση R είναι συμβιβαστή με τις πράξης πρόσθεσης και πολλαπλασιασμού πολυωνύμων. (3) Αν K = R και H(t) = t 2 + 1, ποιό είναι το σύνολο πηλίκο R[t]/R;

11 Λύση. (1) Δείχνουμε ότι η σχέση R είναι σχέση ισοδυναμίας επί του R[t]. (αʹ) Προφανώς για κάθε πολυώνυμο P(t) ισχύει P(t) R P(t) διότι H(t) P(t) P(t). (βʹ) Έστω ότι για τα πολυώνυμα P(t) και Q(t) ισχύει ότι P(t) R Q(t), δηλαδή H(t) P(t) Q(t). Τότε προφανώς H(t) Q(t) P(t) και άρα Q(t) R P(t). (γʹ) Έστω ότι για τα πολυώνυμα P(t), Q(t) και R(t) ισχύει ότι P(t) R Q(t) και Q(t) R R(t), δηλαδή H(t) P(t) Q(t) και H(t) Q(t) R(t). Τότε προφανώς θα έχουμε H(t) [P(t) Q(t) + Q(t) R(t)], δηλαδή H(t) P(t) R(t) και επομένως P(t) R R(t). (2) Έστω P(t), Q(t), R(t), S(t) πολυώνυμα και υποθέτουμε ότι: P(t) R Q(t) & R(t) R S(t) και άρα H(t) P(t) Q(t) & H(t) R(t) S(t) Τότε υπάρχουν πολυώντυμα F(t) και G(t) έτσι ώστε: Τότε θα έχουμε P(t) Q(t) = F(t) H(t) & R(t) S(t) = G(t) H(t) ( ) (P(t) + R(t)) (Q(t) + S(t)) = P(t) Q(t) + R(t) S(t) = F(t) H(t) + G(t) H(t) = (F(t) + G(t)) H(t) δηλαδή H(t) (P(t) + R(t)) (Q(t) + S(t)) και επομένως P(t) + R(t) R Q(t) + S(t), δηλαδή η πράξη της πρόσθεσης πολυωνύμων είναι συμβιβαστή με την σχέση ισοδυναμίας R. Παρόμοια από τις σχέσεις ( ) θα έχουμε: και άρα P(t)R(t) Q(t)R(t) = F(t)R(t)H(t) & R(t)Q(t) S(t)Q(t) = G(t)Q(t)H(t) P(t)R(t) Q(t)S(t) = ( F(t)R(t)+G(t)Q(t) ) H(t) = H(t) ( P(t)R(t) Q(t)S(t) ) = P(t)R(t) R Q(t)S(t) Δηλαδή η πράξη του πολλαπλασιασμού πολυωνύμων είναι συμβιβαστή με την σχέση ισοδυναμίας R. (3) Έστω P(t) R[t] τυχόν πολυώνυμο. Από την Ευκλείδεια διαίρεση πολυωνύμων, θα έχουμε: P(t) = P (t)(t 2 + 1) + R(t), όπου R(t) = 0 ή deg R(t) < 2 Επομένως το υπόλοιπο R(t) θα είναι ένα πολυώνυμο της μορφής R(t) = a + bt, Έτσι από την παραπάνω σχέση θα έχουμε a, b R P(t) (a + bt) = P (t)(t 2 + 1) = t P(t) (a + bt) = P(t) R (a + bt) = P(t) R[t] : [P(t)] R = [a + bt] R όπου a + bt είναι το υπόλοιπο της διαίρεσης του πολυωνυμου P(t) με το πολυώνυμο t 2 + 1, και επομένως το σύνολο πηλίκο έχει ισοδύναμα την ακόλουθη περιγραφή R[t]/R = { [a + bt] R R[t] a, b R } Με βάση τα παραπάνω ορίζουμε μια απεικόνιση Φ: R[t]/R C, Φ([P(t)] R ) = Φ([a + bt] R ) = a + bi (αʹ) Η απεικόνιση Φ είναι καλά ορισμένη: Έστω [a + bt] R = [a + b t] R. Τότε ως γνωστόν, θα έχουμε a+bt R a +b t, κα άρα (a+bt) (a +b t) = F(t)(t 2 +1), για κάποιο ππολυώνυμο F(t) R[t]. Τ ποτε υπολογίζοντας ρτην παραπάνω σχέση στην φανταστική μονάδα, θα έχουμε: (a + bi) (a + b i) = F(i)(i 2 + 1) = 0 και επομένως (a + bi) = (a + b i). Αυτό σημαίνει ότι Φ([a + bt] R ) = Φ([a + b t] R ), και άρα η Φ είναι καλά ορισμένη. (βʹ) Η απεικόνιση Φ είναι 1-1: Έστω Φ([a+bt] R ) = Φ([a +b t] R ), και επομένως a+bi = a +b i. Τότε όμως θα έχουμε a = a και b = b και επομένως [a + bt] R = [a + b t] R. Άρα η απεικόνιση Φ είναι

12 12 (γʹ) Η απεικόνιση Φ είναι επί: Αν z = a + bi C είναι ένας μιγαδικός αριθμός, θεωρούμε το πολυώνυμο P(t) = a + bt. Τότε Φ([P(t)] R ) = P(i) = a + bi και άρα η απεικόνιση Φ είναι επί. Επομένως η απεικόνιση Φ είναι 1-1 και επί. Σχόλιο 1. Ας δούμε πως δουλεύει η απεικόνιση Φ της Άσκησης 10, σε μια ειδική αλλά χαρακτηριστική περίπτωση. Θεωρούμε το πολυώνυμο t 2. Τότε σύμφωνα με την απόδειξη της Άσκησης 10, για να υπολογίσουμε την τιμή Φ([t 2 ] R ), εκτελούμε την Ευκλείδεια Διαίρεση του πολυωνύμου t 2 με το πολυώνυμο t 2 + 1: t 2 = 1(t 2 + 1) 1 και τότε γνωρίζουμε ότι [t] 2 R = [t] R [t] R = [t 2 ] R = [ 1] R Άρα Φ([t 2 ] R ) = 1. Από την άλλη πλευρά, επειδή η πράξη πολλαπλασιασμού πολυωνύμων είναι συμβιβαστή με την σχέση ισοδυναμίας R, θα έχουμε τον ακόλουθο καλά ορισμένο πολλαπλασιασμό στο σύνολο πηλίκο [P(t)] R [Q(t)] R = [P(t) Q(t)] R Ιδιαίτερα θα έχουμε [t] R [t] R = [t 2 ] R, και άρα: Φ([t] R [t] R ) = Φ([t 2 ] R ) = 1 = i 2 = i i = Φ([t] R ) Φ([t] R ) Γενικότερα μπορούμε να δούμε εύκολα ότι η 1-1 και επί απεικόνιση Φ διατηρεί τος πράξεις πρόσθεσης και πολλαπλασιασμού στα σύνολα R[t]/R και C, δηλαδή: Φ([P(t) R ] + [Q(t) R ]) = Φ([P(t) R ]) + Φ([Q(t) R ]) & Φ([P(t) R ] [Q(t) R ]) = Φ([P(t) R ]) Φ([Q(t) R ]) Όπως θα δούμε και αργότερα αυτό σημαίνει ότι οι αλγεβρικές δομές (R[t]/R, +, ) και (C, +, ) έχουν τις ίδιες αλγεβρικές ιδιότητες και επομένως μπορούμε να τις ταυτίσουμε μέσω της 1-1 και επί απεικόνισης Φ η οποία διατηρεί τις πράξεις.¹ Με βάση αυτή τη ταύτιση τον ρόλο της φανταστικής μονάδας παίζει η κλάση ισοδυναμίας [t] R του πολυώνυμου t. Σχόλιο 2. Οι παραπάνω Άσκήσεις 8, 9 και 10 κατασκευάζουν : (1) Το σύνολο Z των ακεραίων αριθμών από το σύνολο N των φυσικών αριθμών ως σύνολο-πηλίκο μιας κατάλληλης σχέσης ισοδυναμίας R 1 επί του N N. (2) Το σύνολο Q των ρητών αριθμών από το σύνολο των ακεραίων αριθμών ως σύνολο-πηλίκο μιας κατάλληλης σχέσης ισοδυναμίας R 2 επί του Z Z. (3) Το σύνολο R των πραγματικών αριθμών από το σύνολο Q των ρητών αριθμών, σε δύο βήματα: το πρώτο βήμα είναι η κατασκευή συνόλου CS(Q) των ακολουθιών Cauchy ρητών αριθμών, και το δεύτερο βήμα είναι η κατασκευή του συνόλου-πηλίκο μιας κατάλληλης σχέσης ισοδυναμίας R 3 επί του συνόλου CS(Q). Το σύνολο των ακολουθιών Cauchy ρητών αριθμών κατασκευάζεται από το Q ως το εξής υποσύνολο CS(Q) του συνόλου Q Q των ακολουθιών ρητών αριθμών: CS(Q) = { (r n ) n N Q Q ε Q +, n N : r n r m < ε, m, n n 0 } ¹Οι τριάδες (R[t]/R, +, ) και (C, +, ) έχουν την αλγεβρική δομή του μεταθετικού δακτυλίου με μονάδα, ειδικότερα του σώματος, και όπως θα δούμε αργότερα, η απεικόνιση Φ είναι ένας ισομορφισμός δακτυλίων.

13 (4) Το σύνολο C των μιγαδικών αριθμών από το σύνολο R των πραγματικών αριθμών, σε δύο βήματα: το πρώτο βήμα είναι η κατασκευή του συνόλου R[t] των πολυωνύμων με συντελεστές πραγματικούς αριθμούς, και το δεύτερο βήμα είναι η κατασκευή του συνόλου-πηλίκο μιας κατάλληλης σχέσης ισοδυναμίας R 4 επί του συνόλου R[t]. Το σύνολο R[t] των πολυωνύμων με συντελεστές πραγματικούς αριθμούς κατασκευάζεται από το σύνολο R των πραγματικών αριθμών ως το εξής υποσύνολο R[t] του συνόλου R R των ακολουθιών πραγματικών αριθμών αριθμών: R[t] = { (r n ) n N R R n N : r m = 0, m > n } Αποδεικνύεται εύκολα ότι οι σχέσεις ισοδυναμίας R i, 1 i 4, είναι συμβιβαστές με τις πράξεις της πρόσθεσης και πολλαπλασιασμού στα σύνολα N N, Z Z, CS(Q), και R[t] οι οποίες επάγονται διαδοχικά με φυσικό τρόπο από τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασμού φυσικών αριθμών. Έτσι τα αντίστοιχα σύνολα πηλίκα είναι εφοδιασμένα με πράξεις πρόσθεσης και πολλαπλασιασμού οι οποίες αντιστοιχούν με τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασμού στα σύνολα N, Q, R, και C μέσω των 1-1 και επί απεικονίσεων που κατασκευάστηκαν στις ασκήσεις 8, 9, και 10. Έτσι ξεκινώντας από το σύνολο των φυσικών αριθμών (μαζί με το 0) και τις πράξειες πρόσθεσης και πολλαπλασιασμού φυσικών αριθμών, μπορούμε με τις παραπάνω κατασκευές να ορίσουμε τα σύνολα Z των ακεραίων αριθμών, Q των ρητών αριθμών, R των πραγματικών αριθμών, και C των μιγαδικών αριθμών, τα οποία είναι εφοδιαμσένα με τις γνωστές πράξεις πρόσθεσης και πολλαπλασιασμού. 13 Ασκηση 11. Εξετάστε στις παρακάτω περιπτώσεις αν η διμελής πράξη επί του συνόλου G είναι προσεταιριστική, μεταθετική, υπάρχει ουδέτερο στοιχείο και αν, κάθε στοιχείο έχει αντίστροφο. (1) G = Z και a b = ab. (2) G = Z και a b = a b. (3) G = R + και a b = ab. (4) G = Q και a b = ab. (5) G = R και a b = ab. (6) G = Z + και a b = 2 ab. (7) G = Z + και a b = a b. (8) G = C και a b = a + b. Λύση. (1) Ο πολλαπλασιασμός μεταξύ ακεραίων αριθμών είναι προσεταιριστικός. Το στοιχείο e = 1 είναι το ουδέτερο της πράξης αφού 1 x = x 1 = x, x Z. Όμως για κάθε x Z δεν υπάρχει αντίστροφο στοιχείο ως προς τον πολλαπλασιαμό που να ανήκει στο Z. Για παράδειγμα το 6 Z και από την εξίσωση 6 x = 1 έπεται ότι x = 1 και / Z. (2) Για κάθε a, b, c Z έχουμε (a b) c = (a b) c = a b c και a (b c) = a (b c) = a b + c Συνεπώς η πράξη a b = a b δεν είναι προσεταιριστική. Έστω x G έτσι ώστε a x = a = x a για κάθε a G. Τότε από τη σχέση a x = a έχουμε ότι x = 0 ενώ από τη σχέση x a = a έπεται ότι x = 2a. Άρα θα έπρεπε το a = 0, που είναι άτοπο. Συνεπώς στο σύνολο G = Z η πράξη a b = a b δεν είναι προφανώς μεταθετική, δεν υπάρχει ουδέτερο στοιχείο και άρα ούτε αντίστροφο. (3) Η προσεταιριστική και μεταθετική ιδιότητα προφανώς ισχύουν, το ουδέτερο στοιχείο είναι το e = 1 R +, και για κάθε a R + το αντίστροφο στοιχείο είναι το a = 1 a R+. (4) Η προσεταιριστική και η μεταθετική ιδιότητα ισχύουν, το ουδέτερο στοιχείο είναι το e = 1, αλλά αν κ λ Q τότε το αντίστροφο στοιχείο a = λ κ μπορεί να μην ορίζεται γιατί το κ μπορεί να είναι ίσο με μηδέν. Αντίθετα όμως στο σύνολο Q κάθε στοιχείο έχει αντίστροφο με το πολλαπλασιαμό.

14 14 (5) Πολύ εύκολα διαπιστώνουμε ότι το σύνολο G = R με πράξη τον πολλαπλασιασμό a b = ab ικανοποίει τις ζητούμενες ιδιότητες. (6) Η πράξη είναι μεταθετική δίοτι a b = 2 ab = 2 ba = b a αλλά δεν είναι προσεταιριστική. Έστω x Z + έτσι ώστε a x = a = x a για κάθε a Z +. Τότε 2 ax = a και άρα 2 ax = a = (e ln 2 ) ax = a = e ax ln 2 = a = ax ln 2 = ln a = x = ln a a ln 2 Αντίστροφα έχουμε a ln a a ln 2 = 2a ln a a ln 2 = (e ln 2 ln a a ) a ln 2 = e ln a = a Επομένως το ουδέτερο στοιχείο είναι το e = ln a a ln 2. Τέλος για κάθε a Z+ από a a = ln a υπολογίζουμε το αντίστροφο στοιχείο a ln 2 a του a. (7) Για κάθε a, b, c Z + έχουμε ότι και (a b) c = a b c = (a b ) c = a bc a (b c) = a b c = a bc τη σχέση Όμως υπάρχουν b, c Z + έτσι ώστε bc b c και άρα η πράξη δεν είναι προσεταιριστική. Επίσης η πράξη δεν είναι ούτε μεταθετική. Έστω x Z + έτσι ώστε a x = a = x a για κάθε a Z +. Τότε από τη σχέση a x = a έχουμε ότι a x = a και άρα x = 1, ενώ από τη σχέση x a = a έπεται ότι x a = a. Άρα για x = 1 έχουμε a = 1, που είναι άτοπο. Συνεπώς στο σύνολο G = Z + με πράξη a b = a b δεν υπάρχει ουδέτερο στοιχείο και άρα ούτε αντίστροφο. (8) Η προσεταιριστική και μεταθετική ιδιότητα προφανώς ισχύουν. Επίσης υπάρχει μιγαδικός αριθμός e = 0 + 0i = 0 C έτσι ώστε a e = a + 0 = a = 0 + a = e a για κάθε a C και άρα το e = 0 είναι το ουδέτερο στοιχείο. Τέλος, για κάθε a = m + ni C υπάρχει ο μιγαδικός αριθμός a = a = m ni C έτσι ώστε a + ( a) = 0 και άρα κάθε στοιχείο έχει αντίστροφο. Ασκηση 12. Έστω G = R \ { 1} (δηλαδή G είναι το σύνολο όλων των πραγματικών αριθμών εκτός από το 1), και ορίζουμε x, y G : x y = x + y + xy Να δείξετε ότι η παραπάνω απεικόνιση είναι μια πράξη επί του G. Να εξετασθεί αν η πράξη είναι προσεταιριστική ή μεταθετική. Να εξετασθεί αν υπάρχει στοιχείο e G έτσι ώστε: x e = x = e x, x G. Αν ένα τέτοιο στοιχείο υπάρχει, είναι μοναδικό; Σ αυτή την περίπτωση να εξετασθεί αν για κάθε x G, υπάρχει y G έτσι ώστε: x y = e = y x. Τέλος να εξετασθεί αν η εξίσωση: έχει (μοναδική) λύση στο σύνολο G. a x = b Λύση. Έστω x, y G. Θα δείξουμε πρώτα ότι το x y G, δηλαδή ότι η είναι διμελής πράξη. Αν λοιπόν x y / G τότε x + y + xy = 1 = x (1 + y) + y + 1 = 0 = (x + 1) (y + 1) = 0 = x + 1 = 0 ή y + 1 = 0 και άρα x = 1 ή y = 1. Σε κάθε περίπτωση όμως έχουμε άτοπο διότι x, y G, δηλαδή x 1 και y 1. Επομένως δείξαμε ότι η απεικόνιση ορίζει μια (διμελή) πράξη : G G G επί του G. Έστω x, y, z G. Έχουμε:

15 15 Η πράξη είναι προσεταιριστική: Η πράξη είναι μεταθετική: x (y z) = x (y + z + yz) = x + y + z + yz + xy + xz + xyz = (x + y + xy) z = (x y) z x y = x + y + xy = y + x + yx = y x Άρα η πράξη είναι προσεταιριστική και μεταθετική. Ουδέτερο στοιχείο: Έστω στοιχείο e G έτσι ώστε x e = x = e x, x G. Τότε e (1 + x) = 0 x + e + ex = x = e + ex = 0 = = e = x 0 Το στοιχείο e = 0 G πράγματι ικανοποιεί τις σχέσεις x 0 = x x = x, x G. Συνεπώς το e = 0 είναι το ουδέτερο στοιχείο της πράξης. Αντίστροφο στοιχείο: Έστω x G και υποθέτουμε ότι υπάρχει ένα y G έτσι ώστε x y = 0. Τότε x + y + x y = 0 = y (1 + x) = x = y = x 1 + x G διότι διαφορετικά, αν x x 1+x / G, δηλαδή 1+x = 1, τότε καταλήγουμε στο άτοπο x = x + 1. Αντίστροφα θα έχουμε: x x 1 + x = x + x 1 + x + x ( x) = x + x2 x x 2 = 0 = x 1 + x 1 + x 1 + x x Επομένως για κάθε x G, υπάρχει y = x 1+x G έτσι ώστε: x y = 0 = y x, δηλαδή: x = x 1 + x Η Εξίσωση a x = b: Για κάθε a, b G έχουμε: Διαφορετικά: a x = b = a + x + ax = b = x + ax = b a = x (1 + a) = b a = x = b a 1 + a G a x = b = a (a x) = a b = (a a) x = a 1 + a b = 0 x = a 1 + a + b + a 1 + a b = x = b a 1 + a G

16 16 Άρα η εξίσωση a x = b έχει μοναδική λύση την x = b a 1 + a Ασκηση 13. Έστω ότι K συμβολίζει ένα από τα ακόλουθα σώματα Q, R, C, και έστω M m n (K) το σύνολο των m n πινάκων με στοιχεία από το K. Υπενθυμίζουμε ότι δύο πίνακες A, B M m n (K) καλούνται ισοδύναμοι αν υπάρχει αντιστρέψιμος n n πίνακας P και αντιστρέψιμος m m πίνακας Q έτσι ώστε: (1) Δείξτε ότι ορίζοντας: Q 1 A P = B A B ο πίνακας Α είναι ισοδύναμος με τον B αποκτούμε μια σχέση ισοδυναμίας στο σύνολο M m n (K). (2) Να περιγραφεί το σύνολο πηλίκο M m n (K)/. (3) Είναι η πρόσθεση, και ο πολλαπλασιασμός πινάκων (όταν m = n), συμβιβαστή πράξη με την σχέση ισοδυναμίας πινάκων; Λύση. 1. Έστω A, B, C M m n (K). Έχουμε: Ανακλαστική ιδιότητα δηλαδή A A : Θεωρούμε τους πίνακες I m =..... M m m (K) και I n =..... M n n (K) Τότε Im 1 του. A I n = I m A I n = A και άρα A A, δηλαδή ο πίνακας A είναι ισοδύναμος με τον εαυτό Συμμετρική ιδιότητα δηλαδή A Β B A : Επειδή A B υπάρχουν αντιστρέψιμοι πίνακες P M n n (K) και Q M m m (K) έτσι ώστε Q 1 A P = B = Q B P 1 = A = (Q 1 ) 1 B P 1 = A = B A Μεταβατική ιδιότητα δηλαδή A Β και B C A C : Επειδή A Β και B C, υπάρχουν αντιστρέψιμοι πίνακες P 1, P 2 M n n (K) και Q 1, Q 2 M m m (K) έτσι ώστε Q 1 1 A P 1 = B Q 1 2 B P 2 = C = Q 1 2 Q 1 1 A P 1 P 2 = C = (Q 1 Q 2 ) 1 A (P 1 P 2 ) = C = A C Άρα η σχέση είναι σχέση ισοδυναμίας στο M m n (K). 2. Από την Γραμμική Άλγεβρα, γνωρίζουμε ότι: A B r(a) = r(b) ( )

17 όπου r(a) είναι η βαθμίδα του πίνακα A. Ως συνέπεια έχουμε ότι αν A M m n (K) και r(a) = r, τότε r(a) min{m, n} και Α I r = όπου α αριθμός 1 εμφανίζεται r φορές. Ορίζουμε μια αντιστοιχία Φ : M m n (K)/ {0, 1, 2,, min{m, n}}, Φ ( [A] ) = r(a) (1) Η Φ είναι καλά ορισμένη απεικόνιση: Έστω A, B M m n (K), και έστω ότι οι κλάσεις ισοδυναμίας τους ως προς την σχέση ισοδυναμίας είναι ίσες: [A] = [B]. Τότε όπως γνωρίζουμε, ισχύει ότι A B και επομένως από την σχέση ( ) θα έχουμε r(a) = r(b). Αυτό σημαίνει ότι Φ ( [A] ) = Φ ( [B] ) και επομένως η Φ είναι μια καλά ορισμένη απεικόνιση. (2) Η Φ είναι 1-1: Έστω A, B M m n (K) και υποθέτουμε ότι Φ ( [A] ) = Φ ( [B] ), δηλαδή r(a) = r(b). Τότε από την σχέση ( ) θα έχουμε A B και επομένως [Α] = [Β], δηλαδή η απεικόνιση Φ είναι 1-1. (3) Η Φ είναι επί: Έστω r {0, 1, 2,, min{m, n}}. Τότε ο m n πίνακας I r έχει βαθμίδα r(i r ) = r και προφανώς: Φ([I r ]) = r. Επομένως η απεικόνιση Φ είναι μια 1-1 και επί αντιστοιχία μεταξύ του συνόλου πηλίκο M m n (K)/ και του συνόλου {0, 1, 2,, min{m, n}}: Φ : M m n (K)/ { 0, 1, 2,, min{m, n} } 3. Θεωρούμε τους πίνακες: ( ) 0 1 A = = B, Γ = 0 0 ( ) και Δ = ( ) Τότε A B και Γ Δ διότι r(a) = r(b) = 1 και r(γ) = r(δ) = 1. Όμως r(aγ) = 0 1 = r(bδ) αφού ( ) ( ) A Γ = και Β Δ = Συνεπώς AΓ BΔ και άρα ο πολλαπλασιασμός πινάκων (όταν m = n) δεν είναι συμβιβαστή πράξη με την σχέση ισοδυναμίας πινάκων. Θεωρούμε τους πίνακες A, Γ και Δ όπως παραπάνω. Τότε A A και Γ Δ αλλά r(a + Γ) = 1 2 = r(a + Δ), αφού A + Γ = ( ) και Α + Δ = ( ) Επομένως A + Γ Α + Δ και άρα η πρόσθεση πινάκων (όταν m = n) δεν είναι συμβιβαστή πράξη με την σχέση ισοδυναμίας πινάκων. 17

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου 2016

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014 Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου

Διαβάστε περισσότερα

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Α Δ Ι Ε Υ Μ Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 28 Ι 2014 Το παρόν κείμενο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 1 Μαρτίου 2019 Ασκηση

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Α Δ Ι Θ Θ Α Ε Ι Μ : https://sites.google.com/site/maths4edu/home/algdom114

Α Δ Ι Θ Θ Α Ε Ι Μ :  https://sites.google.com/site/maths4edu/home/algdom114 Α Δ Ι Θ Θ Α Ε 2013-2014 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 12 Μαρτίου 2014 19:26

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 23 Νοεµβρίου

Διαβάστε περισσότερα

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai208/lai208html Παρασκευή 2 Οκτωβρίου 208 Ασκηση Να γράψετε

Διαβάστε περισσότερα

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι,

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 16 Μαρτίου 2018

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: n N {0}, ( ) + n = = n + ( ) και ( ) + ( ) = (**) Ονομάζουμε επικεφαλής συντελεστή ενός μη μηδενικού πολυωνύμου f, τον συντελεστή f(i)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ιδεώδη και Περιοχές κυρίων Ιδεωδών Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0},

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης Γραµµικη Αλγεβρα Ι Ακαδηµαϊκο Ετος 2011-2012 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml 21-2 - 2012

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

(β ) ((X c Y ) (X c Y c )) c

(β ) ((X c Y ) (X c Y c )) c Λύσεις Ασκήσεων στα Θεμέλια των Μαθηματικών II Ρωμανός-Διογένης Μαλικιώσης Παρασκευή, 29 Οκτωβρίου 2010 Άσκηση 1. Απλοποιήστε τις ακόλουθες εκφράσεις (α ) (D c F ) c (D F ) (β ) ((X c Y ) (X c Y c )) c

Διαβάστε περισσότερα

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 17 Ιανουαρίου 2014

Α Δ Ι. Παρασκευή 17 Ιανουαρίου 2014 Α Δ Ι Α - Φ 10 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 17 Ιανουαρίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 1 Μαρτίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 14 εκεµβρίου 2018 Ασκηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html Παρασκευή 23 Μαρτίου

Διαβάστε περισσότερα

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13 Γραμμική Άλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/2014 1 / 13 Εισαγωγή Τι έχουμε μάθει; Στο πρώτο μάθημα Γραμμικής Άλγεβρας

Διαβάστε περισσότερα

A, και εξετάστε αν είναι διαγωνίσιμη.

A, και εξετάστε αν είναι διαγωνίσιμη. Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a) 11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html Παρασκευή 9 Μαρτίου 2018 Ασκηση

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

a = a a Z n. a = a mod n.

a = a a Z n. a = a mod n. Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai217/lai217html Παρασκευή 17 Νοεµβρίου 217 Ασκηση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε

Διαβάστε περισσότερα

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ). Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Τα πρώτα μαθήματα, σχεδόν σε όλους τους κλάδους των μαθηματικών, περιέχουν, ή θεωρούν γνωστές, εισαγωγικές έννοιες που αφορούν σύνολα, συναρτήσεις, σχέσεις ισοδυναμίας, αλγεβρικές δομές, κλπ.

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014 Α Δ Ι Α - Φ 11 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 24 Ιανουαρίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 23 Μαρτίου 2018

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 26 Μαίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 0-4 (εκδοχή 5--04) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόµενα σελίδα Ασκήσεις ιαιρετότητα στους ακέραιους, ισοτιµίες Ασκήσεις Ακέραιοι odulo, Θεώρηµα του Euler 7

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}. Αλγεβρα ΙΙ, Εαρινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Φροντιστήριο 1. 1. Δίνεται η ομάδα G = Z 4 Z 8, το στοιχείο a = (1, 2) της G, και η υποομάδα H =< a > της G. Εστω G 1 = G/H.

Διαβάστε περισσότερα

n = r J n,r J n,s = J

n = r J n,r J n,s = J Ανάλυση Fourer και Ολοκλήρωμα Lebesgue (2011 12) 4ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω E [a, b] με µ (E) = 0. Δείξτε ότι το [a, b] \ E είναι πυκνό υποσύνολο του [a, b]. Υπόδειξη. Θεωρήστε ένα μη κενό

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 17 Νοεµβρίου

Διαβάστε περισσότερα

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου

Διαβάστε περισσότερα

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη

Διαβάστε περισσότερα

Σχέσεις Ισοδυναµίας και Πράξεις

Σχέσεις Ισοδυναµίας και Πράξεις Κεφάλαιο 1 Σχέσεις Ισοδυναµίας και Πράξεις Στο παρόν Κεφάλαιο ϑα αναπτύξουµε τα ϐασικά στοιχεία από τη ϑεωρία σχέσεων µερικής διάταξης, σχέσεων ισοδυναµίας και διαµερίσεων οι οποίες ορίζονται επί ενός

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii19/laii19html Παρασκευή 1 Μαρτίου 19 Υπενθυµίσεις

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai017/lai017html Παρασκευή 17 Νοεµβρίου 017

Διαβάστε περισσότερα

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha.

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha. Αλγεβρα ΙΙ Εαρινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Ομάδες-Πηλίκο: Κρατήσαμε σταθερή μια ομάδα G με ταυτοτικό το ι και μια υποομάδα H της G. Συμβολίσαμε με G 1 το G/H (το σύνολο των αριστερών συμπλόκων

Διαβάστε περισσότερα

1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1

1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1 1 Πολυώνυμα και συσχετικός χώρος Ορισμός 3.1 Ενα μονώνυμο N στις μεταβλητές x 1, x 2,..., x n είναι ένα γινόμενο της μορφής x m 1 2...x m n n, όπου όλοι οι εκθέτες είναι φυσικοί αριθμοί. Ο βαθμός του μονωνύμου

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα ΠΑΡΑΡΤΗΜΑ Αʹ Στοιχεία από την Άλγεβρα Στο Παράρτημα αυτό, το οποίο παρατίθεται για να συμβάλει στην αυτοδυναμία του βιβλίου, ο αναγνώστης θα μπορεί να προστρέχει για αρωγή σε έννοιες και αποτελέσματα που

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K =

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K = Α Δ Ι Α - Φ 5 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 29 Νοεμβρίου 2013 Ασκηση

Διαβάστε περισσότερα

a b b < a > < b > < a >.

a b b < a > < b > < a >. Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε

Διαβάστε περισσότερα

Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2017/lai2017.html Παρασκευή 22 εκεµβρίου 2017

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii18/laii18html Παρασκευή 9 Μαρτίου 18 Ασκηση 1 Θεωρούµε

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Άσκηση 1.9 (σελ. 17), από τις σημειώσεις του Σκανδάλη. Εστω A, B δεδομένα σύνολα. Θα χρησιμοποιήσουμε τα αξιώματα αλλά αναφερόμενοι, αποκλειστικά, είτε

Διαβάστε περισσότερα

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Συμβολισμοί Σε αναλογία με τους ορισμούς συμβολίζουμε μια ακολουθία: 1 είτε μέσω του διανυσματικού ορισμού, παραθέτοντας αναγκαστικά

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 12 Ο Δ Π Μ δακτύλιο με τις πράξεις τού R και

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα

Διαβάστε περισσότερα

9 Πολυώνυμα Διαίρεση πολυωνύμων

9 Πολυώνυμα Διαίρεση πολυωνύμων 4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα