Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις"

Transcript

1 202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα υποσύνολο R του καρτεσιανού γινοµένου X X: R X X το οποίο ικανοποιεί τις ακόλουθες ιδιότητες : 1. x X: (x, x) R. (ανακλαστική ιδιόητα) 2. x, y X: (x, y) R = (y, x) R (συµµετρική ιδιότητα) 3. x, y, z X: (x, y) R & (y, z) R = (x, z) R (µεταβατική ιδιότητα) Συµβολισµός : x, y X, αν (x, y) R, τότε ϑα γράφουµε ισοδύναµα : x R y ή x R y ή x y(r) Εστω R µια σχέση ισοδυναµίας επί του συνόλου X. Αν x X, η κλάση ισοδυναµίας του x ως προς την R ορίζεται να είναι το ακόλουθο σύνολο : [x] R = { y X y R x } X Ενα τυχόν στοιχείο µιας κλάσης ισοδυναµίας, δηλαδή ενός υποσυνόλου του X της µορφής [x] R καλείται αντιπρόσωπος της κλάσης ισοδυναµίας. Επειδή x R x, ϑα έχουµε προφανώς ότι x [x] R και άρα το x είναι ένας αντιπρόσωπος της κλάσης ισοδυναµίας του. Θα δούµε αργότερα σε συγκεκριµµένα παραδείγµατα ότι πολλές ϕορές υπάρχει ϕυσική επιλογή αντιπροσώπου µιας κλάσης ισοδυναµίας. Το σύνολο X/R όλων των κλάσεων ισοδυναµίας των στοιχείων του X X/R = { [x] R x X } ως προς τη σχέση ισοδυναµίας R, καλείται σύνολο-πηλίκο του X ως προς την R. Ορίζουµε µια απεικόνιση π R : X X/R, π R (x) = [x] R η οποία καλείται η κανονική προβολή του X στο σύνολο πηλίκο X/R του X ως προς τη σχέση ισοδυναµίας R. Παρατήρηση 1.2. Η απεικόνιση κανονικής προβολής π R : X X/R είναι προφανώς επί. Ενα ϕυσικό ερώτηµα το οποίο προκύπτει είναι ποιά είναι η σχέση µεταξύ δύο κλάσεων ισοδυναµίας. Λήµµα 1.3. Εστω R µια σχέση ισοδυναµίας επί του συνόλου X, και x, y X. 1. x R y [x] R = [y] R. 2. Είτε [x] R = [y] R ή [x] R [y] R =.

2 203 Απόδειξη. 1. = Εστω x R y. Εστω z [x] R. Τότε z R x και άρα από την µαταβατική ιδιότητα ϑα έχουµε z R y. Εποµένως z [y] R και εποµένως [x] R [y] R. Αντίστροφα αν z [y] R, τότε z R y και άρα y R z. Από την µαταβατική ιδιότητα ϑα έχουµε x R z ή ισοδύναµα z R x. Εποµένως z [x] R και άρα [y] R [x] R. Ετσι δείξαµε ότι : [x] R = [y] R. = Εστω [x] R = [y] R. Τότε x [x] R = [y] R και εποµένως x R y. 2. Αρκεί να δείξουµε ότι αν [x] R [y] R, τότε [x] R = [y] R. Εστω z [x] R [y] R. Τότε z [x] R και z [y] R. Αυτό σηµαίνει ότι : z R x και z R y. Ισοδύναµα, επειδή η σχέση R είναι σχέση ισοδυναµίας, x R z και z R y. Από την µεταβατική ιδιότητα τότε ϑα έχουµε x R y και άρα από το 1. ϑα έχουµε [x] R = [y] R. Πόρισµα 1.4. Εστω R µια σχέση ισοδυναµίας επί του µη-κενού συνόλου X. 1. x X: [x] R. 2. Είτε [x] R = [y] R ή [x] R [y] R =. 3. X = x X [x] R. Απόδειξη. 1. Εστω x X. Επειδή x [x] R έπεται ότι [x] R. 2. Το Ϲητούµενο προκύπτει από το 2. του Λήµµατος Επειδή x X, έχουµε x [x] R, έπεται ότι X = x X {x} x X [x] R και άρα ϑα έχουµε X = x X [x] R. Από το παραπάνω Πόρισµα 1.4 ϐλέπουµε ότι το σύνολο-πηλίκο X/R είναι ένα σύνολο υποσυνόλων του X, των κλάσεων ισοδυναµίας των στοιχείων του X ως προς τη σχέση ισοδυναµίας R, το οποίο ικανοποιεί την ακόλουθη ιδιότητα : κάθε στοιχείο του συνόλου X ανήκει σε µία και µόνο µία κλάση ισοδυναµίας. Αυτή η ιδιότητα µας οδηγεί στην έννοια της διαµέρισης ενός συνόλου ιαµερίσεις. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.5. Μια διαµέριση του X είναι µια συλλογή υποσυνόλων = { A i A i X } i I, όπου I είναι ένα σύνολο δεικτών, έτσι ώστε να ικανοποιούνται οι ακόλουθες ιδιότητης : (1) i I: A i. (2) i, j I: i j = A i A j =. (3) X = i I A i. Με άλλα λόγια µια διαµέριση του µη-κενού συνόλου X είναι µια συλλογή µη-κενών υποσυνόλων του X µε την ιδιότητα κάθε στοιχείο του συνόλου X ανήκει σε ένα και µόνο ένα σύνολο της συλλογής. Υπενθυµίζουµε ότι αν X είναι ένα σύνολο, τότε συµβολίζει το πλήθος των στοιχείων του X. X ή #(X) Παρατήρηση 1.6. Εστω X ένα πεπερασµένο σύνολο και = { A i A i X } µια διαµέριση του i I συνόλου X. Τότε προφανώς το σύνολο δεικτών I και κάθε υπσύνολο A i της διαµέρισης είναι πεπερασµένα σύνολα και εποµένως επειδή το X είναι ξένη ένωση των A i : X = i I A i, και A i Aj =, i j ϑα έχουµε : X = i I A i

3 204 Η επόµενη Πρόταση µας εξασφαλίζει ότι κάθε διαµέριση του συνόλου X ορίζει µια σχέση ισοδυνα- µίας R επί του X έτσι ώστε οι κλάσεις ισοδυναµίας των στοιχείων του X ως προς την R να συµπίπτουν µε τα υποσύνολα της διαµέρισης. Πρόταση 1.7. Εστω = { A i A i X } µια διαµέριση του µη-κενού συνόλου X. Τότε ορίζοντας i I R := { } (x, y) X X i I : x, y A i αποκτούµε µια σχέση ισοδυναµίας R επί του X. Επιπλέον : 1. x X: [x] R = A i, για κάποιο i I (το i είναι ο µοναδικός δείκτης i I έτσι ώστε x A i ). 2. X/R = ως συλλογές υποσυνόλων του X. Απόδειξη. Εστω x X. Επειδή η συλλογή υποσυνόλων είναι µια διαµέριση του X, έπεται ότι x X = i I A i και άρα υπάρχει δείκτης i I έτσι ώστε : x A i. Τότε προφανώς (x, x) R, δηλαδή x R x και άρα ισχύει η ανακλαστική ιδιότητα. Εστω x, y X και υποθέτουµε ότι (x, y) R, δηλαδή x R y. Τότε εξ ορισµού υπάρχει δείκτης i I έτσι ώστε x, y A i και προφανώς τότε y, x A i. Άρα (y, x) R δηλαδή y R x και έτσι η σχέση R είναι συµµετρική. Εστω (x, y) R και (y, z) R, δηλαδή x R y και y R z. Τότε υπάρχουν δείκτες i, j I έτσι ώστε : x, y A i και y, z A j. Τότε όµως y A i A j. Επειδή όµως A i A j = αν i j, έπεται ότι αναγκαστικά ϑα έχουµε i = j και άρα A i = A j. Εποµένως x, y, z A i το οποίο σηµαίνει ότι (x, z) R, δηλαδή x R z και έτσι η σχέση R είναι µεταβατική. 1. Εστω x X. Τότε υπάρχει µοναδικός δείκτης i I έτσι ώστε : x A i. Θα έχουµε : [x] R = { y X y R x } = { } y X j I : x, y A j Επειδή x A i και A i A j = αν i j, ϑα έχουµε αναγκαστικά i = j και άρα : [x] R = { y X j I : x, y A j } = { y X y Ai } = Ai 2. Επειδή X/R = { [x] R x X } και [x] R = A i, όπου i I είναι ο µοναδικός δείκτης για τον οποίο ισχύει x A i, ϑα έχουµε ότι : X/R = { [x] R x X } = { A i i I } = 1.3. ιαµερίσεις και Σχέσεις Ισοδυναµίας. Συνδυάζοντας το Πόρισµα 1.4 και την Πρόταση 1.7, έχου- µε το ακόλουθο ϐασικό Θεώρηµα : Θεώρηµα 1.8. Εστω X ένα µη-κενό σύνολο. Τότε οι απεικονίσεις Φ : D := { ιαµερίσεις του X } S := { Σχέσεις ισοδυναµίας R επί του X }, Φ( ) = R Ψ : S := { Σχέσεις ισοδυναµίας R επί του X } D := { ιαµερίσεις του X }, Ψ(R) = X/R ορίζουν µια 1-1 και επί αντιστοιχία µεταξύ του συνόλου D των διαµερίσων του X και του συνόλου S των κλασεων ισοδυναµίας επί του X. Απόδειξη. Από το Πόρισµα 1.4 και την Πρόταση 1.7 έπεται ότι οι αντιστοιχίες Φ και Ψ ορίζουν απεικονίσεις Φ: D S, Φ( ) = R και Ψ: S D, Ψ(R) = R := X/R. Για την ολοκλήρωση της απόδειξης, αρκεί να δείξουµε ότι οι απεικονίσεις Φ και Ψ είναι η µία αντίστροφη της άλλης. Με άλλα λόγια αρκεί να δείξουµε ότι : ή ισοδύναµα : D : ΨΦ( ) = και R S : ΦΨ(R) = R D : R = και R S : R R = R Από την Πρόταση 1.7, έπεται ότι για κάθε διαµέρσιη του X, έχουµε X/R = ως υποσύνολα του X. Ετσι ΨΦ( ) = Ψ(R ) = X/R =

4 Για να δείξουµε τώρα ότι R S : ΦΨ(R) = R, αρκεί να δείξουµε ότι R R = R. Υπενθυµίζουµε ότι η διαµέριση R, την οποία ορίζει η σχέση ισοδυναµίας R, αποτελείται από τις κλάσεις ισοδυναµίας [x] R των στοιχείων του X. Ετσι εξ ορισµού για την επαγόµενη σχέση ισοδυναµίας R R την οποία ορίζει η R ϑα έχουµε : x, y X: (x, y) R R αν και µόνον αν τα στοιχεία x και y ανήκουν στο ίδιο σύνολο της διαµέρισης R, δηλαδή αν και µόνον αν υπάρχει z X έτσι ώστε x, y [z] R. Αυτό όµως συµβαίνει αν και µόνον αν z R x και z R y και εποµένως αν και µόνον αν x R y αν και µόνον αν (x, y) R. Συνοψίζοντας δείξαµε ότι : x, y X : (x, y) R R (x, y) R Εποµένως R R = R και άρα R S : ΦΨ(R) = R. Ετσι δείξαµε ότι οι απεικονίσεις Φ και Ψ είναι 1-1 και επί και επιπλέον : Ψ = Φ Απεικονίσεις και Σχέσεις Ισοδυναµίας. Εστω f : X Y µια απεικόνιση µεταξύ των µη-κενών συνόλων X, Y. Ορίζουµε µια σχέση επί του συνόλου X ως εξής : R f = { (x, y) X X f(x) = f(y) } Η επόµενη πρόταση δείχνει ότι η σχέση R f είναι µια σχέση ισοδυναµίας επί του X. Πρόταση 1.9. Η σχέση R f είναι µια σχέση ισοδυναµίας επί του X. Επιπλέον, x X: [x] Rf = f 1{ f(x) } = { x X f(x) = f(x ) } και η απεικόνιση f επάγει µια 1-1 και επί απεικόνιση f : X/R f Im(f), f([x] Rf ) = f(x) Επιπλέον αν g : X Z είναι µια απεικόνιση έτσι ώστε να ικανοποιείται η ακόλουθη συνθήκη : τότε υπάρχει µοναδική απεικόνιση x, y X : f(x) = f(y) = g(x) = g(y) ( ) g : X/R f Z, έτσι ώστε : g π f = g όπου π f : X X/R f είναι η απεικόνιση κανονικής προβολής. Απόδειξη. Εστω x X. Τότε x Rf x διότι f(x) = f(x). Άρα η σχέση R f είναι ανακλαστική. Εστω x, y X και υποθέτουµε ότι x Rf y. Τότε f(x) = f(y). Άρα f(y) = f(x) και εποµένως y Rf x, δηλαδή η σχέση R f είναι συµµετρική. Εστω x, y, z X και υποθέτουµε ότι x Rf y και y Rf z. Τότε f(x) = f(y) και f(y) = f(z). Προφανώς τότε f(x) = f(z) και εποµένως x Rf z, δηλαδή η σχέση R f είναι µεταβατική. Ετσι η σχέση R f είναι µια σχέση ισοδυναµίας επί του X. Εστω x X. Τότε : [x] Rf = { y X y Rf x } = { y X f(y) = f(x) } = { y X y f 1 ({f(x)}) } = f 1 ({f(x)}) Ορίζουµε τώρα µια απεικόνιση f : X/R f Im(f), f([x] Rf ) = f(x) Η f είναι καλά ορισµένη: Εστω [x] Rf = [y] Rf. Τότε όπως γνωρίζουµε ϑα ισχύει x Rf y και από τον ορισµό της R f : f(x) = f(y). Ετσι f([x] Rf ) = f(x) = f(y) = f([y] Rf ) και η f([x] Rf ) είναι καλά ορισµένη. Η f είναι 1-1 και επί: Προφανώς η f είναι επί, διότι αν y Im(f), τότε y = f(x) για κάποιο x X, και εποµένως f([x] Rf ) = f(x) = y. Εστω τώρα ότι f([x] Rf ) = f([y] Rf ) και εποµένως f(x) = f(y). Εξ ορισµού ϑα έχουµε τότε x Rf y και από το Λήµµα 1.3 έπεται ότι [x] Rf = [y] Rf. Αυτό δείχνει ότι η f είναι 1-1.

5 206 Τέλος έστω g : X Z µια απεικόνιση για την οποία ισχύει η σχέση ( ). Ορίζουµε τότε απεικόνιση g : X/R f Z, g([x] Rf ) = g(x) Η g είναι καλά ορισµένη διότι αν [x] Rf = [y] Rf, τότε όπως γνωρίζουµε ϑα ισχύει x Rf y και από τον ορισµό της R f : f(x) = f(y). Λόγω της συνθήκης ( ) ϑα έχουµε τότε και g(x) = g(y), δηλαδή g([x] Rf ) = g(x) = g(y) = g([y] Rf ) και η g είναι καλά ορισµένη. Επιπλέον (g π f )(x) = g(π f (x)) = g([x] Rf ) = g(x), x X = g π f = g Αν h: X/R f Z είναι µια άλλη απεικόνιση έτσι ώστε h π f = g, τότε, x X: h([x] Rf ) = h(π f (x)) = (h π f )(x) = g(x) = (g π f )(x) = g(π f (x)) = g([x] Rf ) = g = h και άρα η g είναι η µοναδική απεικόνιση : X/R f Z η οποία ικανοποιεί την ιδιότητα g π f = g. Ορισµός Η σχέση ισοδυναµίας R f η οποία ορίζεται στο σύνολο X µέσω µιας απεικόνισης f : X Y καλείται η επαγόµενη από την f σχέση ισοδυναµίας στο σύνολο X. Παράδειγµα Εστω R µια σχέση ισοδυναµίας επί του συνόλου X. Τότε η απεικόνιση κανονικής προβολής π R : X X/R, π R (x) = [x] R επάγει στο X την ίδια σχέση ισοδυναµίας : R = R πr. Πράγµατικά : x RπR y π R (x) = π R (y) [x] R = [y] R x R y Από την Πρόταση 1.9 έπεται ότι κάθε απεικόνιση f : X Y µπορεί να γραφεί ως σύνθεση f = i f π Rf (1) µιας απεικόνισης «Επι» π Rf : X X/R f, π Rf (x) = [x] Rf (2) µιας απεικόνισης «1-1 και Επι» f : X/R f Im(f), f([x] Rf ) = f(x) (3) µιας απεικόνισης «1-1» Σχηµατικά : i : Im(f) Y, X f i(y) = y Y π Rf X/R f f i Im(f) Παρατηρούµε ότι αν η f είναι απεικόνιση επί, τότε η επαγόµενη απεικόνιση f : X/R f Y είναι 1-1 και επί. Συµπερασµατικά : 1. Κάθε σχέση ισοδυναµίας R σε ένα σύνολο X ορίζει µια απεικόνιση επί, την π R : X X/R, της οποίας η επαγόµενη σχέση ισοδυναµίας επί του X συµπίπτει µε την R. 2. Κάθε απεικόνιση επί f : X Y ορίζει µια σχέση ισοδυναµίας επί του X, την R f, η οποία επάγει µια απεικόνιση επί π Rf : X X/R f και υπάρχει µια 1-1 και επί απεικόνιση f : X/R f Y.

6 Πράξεις. Στην παρούσα παράγραφο ϑα µελετήσουµε σύντοµα την έννοια της πράξης επί ενός συνόλου καθώς και την έννοια της πράξης η οποία είναι συµβατή µε µια σχέση ισοδυναµίας. Ορισµός Μια (διµελής) πράξη επί ενός συνόλου X είναι µια απεικόνιση µ : X X X, (x, y) µ(x, y) Συνήθως µια πράξης µ επι ενός συνόλου X παρίσταται µε ένα εκ των συµβόλων : µ =,,, #,, +,,,... Αντίστοιχα, το αποτέλεσµα της πράξης στο Ϲεύγος στοιχείων (x, y) του X, συµβολίζεται ως εξής : µ(x, y) = x y, x y, x y, x#y, x y, x + y, x y, x y,... Ορισµός Εστω X ένα µη-κενό σύνολο, και µια πράξη επί του X. : X X X, 1. Η πράξη καλείται προσεταιριστική αν ισχύει : x, y, z X : 2. Η πράξη καλείται µεταθετική αν ισχύει : x, y X : (x, y) = x y x (y z) = (x y) z x y = y x 3. Υποθέτουµε ότι η πράξη επί του X είναι προσεταιριστική. α. Ενα στοιχείο e X καλείται ουδέτερο στοιχείο του X ως προς την πράξη, αν ισχύει : x X : x e = x = e x Υπενθυµίζουµε αν υπάρχει ουδέτερο στοιχείο για την πράξη στο σύνολο X, τότε αυτό είναι µοναδικό. ϐ. Αν e X είναι ένα ουδέτερο στοιχείο της πράξης, και x X, τότε ένα στοιχείο x X καλείται αντίθετο του x, αν ισχύει : x x = e = x x Υπενθυµίζουµε ότι επειδή η πράξη επί του X είναι προσεταιριστική, αν e είναι το ουδέτερο στοιχείο της, τότε αν υπάρχει το αντίθετο στοιχείο x του x X, τότε αυτό είναι µοναδικό Πράξεις συµβιβαστές µε σχέσεις ισοδυναµίας. Υποθέτουµε τώρα ότι : X X X είναι µια πράξη επί του συνόλου X. Εστω R X X µια σχέση ισοδυναµίας επί του συνόλου X. Στα επόµενα εδάφια σηµαντικό ϱόλο ϑα παίξουν πράξεις επί συνόλων οι οποίες είναι συµβιβαστές µε µια δοσµένη σχέση ισοδυναµίας µε την έννοια του ακόλουθου ορισµού. Ορισµός Η σχέση ισοδυναµίας R είναι συµβιβαστή µε την πράξη αν ισχύει : x, y, z, w X : x R z και y R w = x y R z w Πρόταση Εστω : X X X µια πράξη επί του συνόλου X, και έστω R X X µια σχέση ισοδυναµίας επί του συνόλου X η οποία είναι συµβιβαστή µε την πράξη. 1. Ορίζοντας : X/R X/R X/R, ([x] R, [y] R ) := [x] R [y] R = [x y] R αποκτούµε µια πράξη επί του συνόλου-πηλίκο X/R. 2. Αν η πράξη επί του X είναι προσεταιριστική ή µεταθετική, τότε η πράξη επί του X/R είναι προσεταιριστική ή µεταθετική αντίστοιχα.

7 Εστω e X ένα ουδέτερο στοιχείο για την πράξη επί του X. Τότε το [e] R X/R είναι ουδέτερο στοιχείο για την πράξη επί του X/R. 4. Υποθέτουµε ότι η πράξη έχει ένα ουδέτερο στοιχείο e X, και έστω x ένα στοιχείο του X για το οποίο υπάρχει ένα αντίθετο στοιχείο x X. Τότε το στοιχείο [x ] R είναι ένα αντίθετο στοιχείο του [x] R για την πράξη επί του X/R. Απόδειξη. 1. Αρκεί ο ορισµός [x] R [y] R = [x y] R να είναι ανεξάρτητος της επιλογής αντιπροσώπων των κλάσεων ισοδυναµίας. ηλαδή αρκεί να δείξουµε ότι : x, y, z, w X : [x] R = [z] R και [y] R = [w] R = [x y] R = [z w] R Ισοδύναµα αρκεί να δείξουµε ότι x, y, z, w X : x R z και y R w = x y R z w Η τελευταία συνεπαγωγή όµως ισχύει ακριβώς διότι η σχέση R είναι συµβιβαστή µε την πράξη. Τα υπόλοιπα µέρη της Πρότασης προκύπτουν άµεσα από τους ορισµούς και αφήνονται ως άσκηση. Η επαγόµενη πράξη στο σύνολο-πηλίκο X/R µιας συµβιβαστής µε την πράξη σχέσης ισοδυναµίας R επί του X σχηµατικά περιγράφεται µε το ακόλουθο µεταθετικό διάγραµµα X X X π R π R π R X/R X/R X/R δηλαδή : (π R π R ) = π R, όπου η απεικόνιση π R π R ορίζεται ως (π R π R )(x, y) = ([x] R, [y] R ). Φυσικά δεν είναι όλες οι πράξεις σε ένα σύνολο συµβιβαστές µε µια δοσµένη σχέση ισοδυναµίας επί του συνόλου. Ας δούµε ένα παράδειγµα µιας σχέσης ισοδυναµίας R που ορίζεται επί ενός συνόλου X, η οποία δεν είναι συµβιβαστή µε µία από τις πράξεις του συνόλου : Παράδειγµα Επί του συνόλου των ακεραίων αριθµών ϑεωρούµε τις γνωστές πράξεις της πρόσθεσης και πολλαπλασιασµού : Επιπλέον, ϑεωρούµε την ακόλουθη διαµέριση του Z: + : Z Z Z, (z 1, z 2 ) z 1 + z 2 : Z Z Z, (z 1, z 2 ) z 1 z 2. Z = A B, όπου A = {0, ±1}, B = {±2, ±3, ±4,... }. Η προηγούµενη διαµέριση, χορηγεί τη σχέση ισοδυναµίας R = {(α, β) α, β A} {(γ, δ) γ, δ B}. Η πράξη της πρόσθεσης δεν είναι συµβιβαστή µε τη σχέση R, αφού [0] R = [1] R, ενώ [0] R = [0 + 0] R [2] R = [1 + 1] R. Αλλά η πράξη του πολλαπλασιασµού είναι συµβιβαστή µε τη σχέση R, αφού [0] R = [1] R = [ 1] R, όπως επίσης [±2] R = [±3] R = [±4] R =... και όλα τα δυνατά γινόµενα α β, όπου α, β A ή B αντιστοίχως δίνουν και πάλι στοιχείο από το A ή το B αντιστοίχως. Ισως το πιο χαρακτηριστικό παράδειγµα πράξης η οποία είναι συµβιβαστή µε µια σχέση ισοδυναµίας είναι το ακόλουθο : Παράδειγµα Εστω n 1. Στο σύνολο Z ϑεωρούµε τη σχέση R n η οποία ορίζεται ως εξής : a, b Z : a Rn b n a b

8 209 Τότε η R n είναι µια σχέση ισοδυναµίας επί του Z, και είναι εύκολο να διαπιστωθεί ότι η R n είναι συµβιβαστή µε την πράξη της πρόσθεσης και πολλαπλασιασµού ακεραίων. Παρατήρηση Εστω : X X X µια πράξη επί του συνόλου X, και έστω R X X µια σχέση ισοδυναµίας επί του συνόλου X η οποία είναι συµβιβαστή µε την πράξη. Τότε η πράξη [x] R [y] R := [x y] R επί του X/R είναι η µοναδική πράξη επί του X/R η οποία ικανοποιεί την παραπάνω σχέση. ηλαδή αν : X/R X/R X/R, ([x] R, [y] R ) := [x] R [y] R είναι µια πράξη επί του X/R για την οποία ισχύει : [x] R [y] R = [x y] R, [x] R, [y] R X/R, τότε : [x] R, [y] R X/R. = : X/R X/R X/R, δηλαδή : [x] R [y] R = [x] R [y] R Το παρακάτω πρόβληµα ϑα αναλυθεί διεξοδικά αργότερα - στην ϑεωρία (κανονικών) υποοµάδων µιας οµάδας : Πρόβληµα Εστω : G G G µια πράξη επί του µη κενού συνόλου G. Εστω H G ένα µη-κενό υποσύνολο του G. Αν το Ϲεύγος (G, ) είναι οµάδα, και R H είναι η σχέση τότε : x, y G : x RH y x 1 y H (1) Πότε η σχέση R H είναι σχέση ισοδυναµίας επί του συνόλου G; (2) Αν η σχέση R H είναι σχέση ισοδυναµίας επί του συνόλου G, πότε η R H είναι συµβιβαστή µε την πράξη της G;

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά

Διαβάστε περισσότερα

Α Δ Ι Θ Θ Α Ε Ι Μ : https://sites.google.com/site/maths4edu/home/algdom114

Α Δ Ι Θ Θ Α Ε Ι Μ :  https://sites.google.com/site/maths4edu/home/algdom114 Α Δ Ι Θ Θ Α Ε 2013-2014 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 12 Μαρτίου 2014 19:26

Διαβάστε περισσότερα

Σχέσεις Ισοδυναµίας και Πράξεις

Σχέσεις Ισοδυναµίας και Πράξεις Κεφάλαιο 1 Σχέσεις Ισοδυναµίας και Πράξεις Στο παρόν Κεφάλαιο ϑα αναπτύξουµε τα ϐασικά στοιχεία από τη ϑεωρία σχέσεων µερικής διάταξης, σχέσεων ισοδυναµίας και διαµερίσεων οι οποίες ορίζονται επί ενός

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα Αλγεβρικες οµες Ι Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 4 εκεµβρίου 2012

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου 2016

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Σχέσεις Ισοδυναµίας, Πράξεις και Μονοειδή

Σχέσεις Ισοδυναµίας, Πράξεις και Μονοειδή Κεφάλαιο 1 Σχέσεις Ισοδυναµίας, Πράξεις και Μονοειδή 11 Συνοπτική Θεωρία Στην παρούσα ενότητα υπενθυµίζουµε εν συντοµία ϐασικές έννοιες και αποτελέσµατα αναφορικά µε : (α) τις σχέσεις µερικής διάταξης

Διαβάστε περισσότερα

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m ) 302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Ασκησεις Βασικης Αλγεβρας

Ασκησεις Βασικης Αλγεβρας Ασκησεις Βασικης Αλγεβρας Αποστολος Μπεληγιαννης Απόστολος Μπεληγιάννης Καθηγητής Τµήµα Μαθηµατικών Πανεπιστήµιο Ιωαννίνων Ασκήσεις Βασικής Αλγεβρας Ιωαννινα εκεµβριος 2015 Ασκήσεις Βασικής Αλγεβρας Συγγραφή

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Κεφάλαιο 6 Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Στο παρόν Κεφάλαιο ϑα µελετήσουµε τις ϐασικές ιδιότητες της οµάδας πηλίκο µιας οµάδας ως προς µια κανονική υποµάδα, ϑα αποδείξουµε τα ϐασικά ϑεωρήµατα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: υϊκοί Χώροι και Χώροι Πηλίκα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: υϊκοί Χώροι και Χώροι Πηλίκα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: υϊκοί Χώροι και Χώροι Πηλίκα Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 6 υϊκοι Χωροι και Χωροι Πηλικα Στο παρόν Κεφάλαιο ϑα µελετήσουµε

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα

Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα Κεφάλαιο 1 Εισαγωγικές Εννοιες Σ αυτό το κεφάλαιο ϑα αναφερθούµε συνοπτικά σε ϐασικές έννοιες για σύνολα και απεικονίσεις. Επιπλέον, ϑα αναφερθούµε στη µέθοδο της επαγωγής, η οποία αποτελεί µία από τις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai017/lai017html Παρασκευή 17 Νοεµβρίου 017

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 2 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

f(x) = e x g(y) = log e y f(x 1 ) = f(x) 1 f(x k ) = f(x) k

f(x) = e x g(y) = log e y f(x 1 ) = f(x) 1 f(x k ) = f(x) k 287 13. Οµοµορφισµοί Οµάδων Στην παρούσα ενότητα ϑα µελετήσουµε απεικονίσεις µεταξύ οµάδων οι οποίες ϑα µας επιτρέψουν τη σύγκριση και την ταξινόµηση διάφορων κλάσεων οµάδων, ως προς τις δοµικές τους ιδιότητες.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση

Διαβάστε περισσότερα

Πρώτα και Μεγιστοτικά Ιδεώδη

Πρώτα και Μεγιστοτικά Ιδεώδη Κεφάλαιο 10 Πρώτα και Μεγιστοτικά Ιδεώδη Στο παρόν Κεφάλαιο ϑα µελετήσουµε ειδικούς τύπους ιδεωδών σε έναν δακτύλιο και την επίδραση που έχουν οι επιπλέον ιδιότητες τις οποίες ικανοποιούν τα ιδεώδη αυτά

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii18/laii18html Παρασκευή 9 Μαρτίου 18 Ασκηση 1 Θεωρούµε

Διαβάστε περισσότερα

Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί

Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί Κεφάλαιο 0 Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί Στο παρόν εισαγωγικό Κεφάλαιο, υπενθυµίζουµε, κατά κύριο λόγο χωρίς αποδείξεις, ϐασικές γνώσεις από : τη στοιχειώδη ϑεωρία συνόλων και απεικονίσεων,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi06/asi06.html Πέµπτη Απριλίου 06 Ασκηση. Θεωρούµε τα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οµοµορφισµοί Οµάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 287 13. Οµοµορφισµοί Οµάδων Στην παρούσα ενότητα

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Τάξη στοιχείων και Οµάδων - Κυκλικές (Υπο-)Οµάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 222 3.1. ύναµη

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Κατασκευή νέων τοπολογικών χώρων Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 23 Νοεµβρίου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 31 Μαρτίου 2016 Υπενθυµίζουµε

Διαβάστε περισσότερα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Κεφάλαιο 7 ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϑεµελιώδη έννοια του δακτυλίου, ϑα αναπτύξουµε τις ϐασικές ιδιότητες δακτυλίων και ϑα αναλύσουµε µια σειρά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 23 Νεµβρίου 2016 Ασκηση 1. Αν N, να

Διαβάστε περισσότερα

= s 2m 1 + s 1 m 2 s 1 s 2

= s 2m 1 + s 1 m 2 s 1 s 2 ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 7 Πινακες και Γραµµικες Απεικονισεις Στα προηγούµενα

Διαβάστε περισσότερα

Id A A, a Id A (a) := a, τ : A A, a b, όπου b είναι εκείνο το στοιχείο του A µε σ(b) = a. 7. Οµάδες µεταθέσεων (µετατάξεων)

Id A A, a Id A (a) := a, τ : A A, a b, όπου b είναι εκείνο το στοιχείο του A µε σ(b) = a. 7. Οµάδες µεταθέσεων (µετατάξεων) 250 7. Οµάδες µεταθέσεων µετατάξεων 7.1. Οι πρώτες έννοιες. Ας είναι A ένα µη κενό σύνολο και S A το σύνολο των «ένα προς ένα» και «επί» απεικονίσεων από το σύνολο A στον εαυτό του. Πρόταση 7.1. Το σύνολο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt204/nt204.html htts://sites.google.com/site/maths4eu/home/4

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 5 Γραµµικες Απεικονισεις Στην άλγεβρα, και γενικότερα στα Μαθηµατικά,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 7 Απριλίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 11 Μαίου 2018

Διαβάστε περισσότερα

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 22 Μαΐου 2013 Ασκηση 1. (1) Να λυθεί η γραµµική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις Επαναληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015/nt015.html Τρίτη Ιουνίου 015 Ασκηση 1. (1) Να λυθεί η γραµµική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 ιανυσµατικοι Υποχωροι και Κατασκευες Το παρόν

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii19/laii19html Παρασκευή 1 Μαρτίου 19 Υπενθυµίσεις

Διαβάστε περισσότερα

p (R 1 (R 2 R 3 )) q pr 1 r 1, r 1 R 2 r 2, r 2 R 3 q p (R 1 R 2 ) r 2 και r 2 R 3 q p ((R 1 R 2 ) R 3 ) q άρα R 1 (R 2 R 3 ) (R 1 R 2 ) R 3

p (R 1 (R 2 R 3 )) q pr 1 r 1, r 1 R 2 r 2, r 2 R 3 q p (R 1 R 2 ) r 2 και r 2 R 3 q p ((R 1 R 2 ) R 3 ) q άρα R 1 (R 2 R 3 ) (R 1 R 2 ) R 3 Τμήμα Μαθηματικών Σχολή Θετικών Επιστημών Α.Π.Θ. Το Συντακτικό Μονοειδές Μιας Γλώσσας Ελένη Ζαβρακλή Σημειώσεις από το βιβλιο: Αυτόματα, Γλώσσες, Γραμματικές Σ.Μποζαπαλίδη Θεσσαλονίκη 2016 Βασικές Εννοιες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 14 εκεµβρίου 2018 Ασκηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9: Επαγόµενοι Χαρακτήρες και το Θεώρηµα του Frobenius

ΚΕΦΑΛΑΙΟ 9: Επαγόµενοι Χαρακτήρες και το Θεώρηµα του Frobenius ΚΕΦΑΛΑΙΟ 9: Επαγόµενοι Χαρακτήρες και το Θεώρηµα του Frobenus Στο κεφάλαιο αυτό εισάγουµε τους επαγόµενους αρακτήρες µε τη βοήθεια των οποίων αποδεικνύουµε το θεώρηµα των συµπληρωµάτων του Frobenus Οι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συγγραφική Οµάδα : ΗΜΗΤΡΙΟΣ ΒΑΡΣΟΣ ΗΜΗΤΡΙΟΣ ΕΡΙΖΙΩΤΗΣ ΙΩΑΝΝΗΣ ΕΜΜΑΝΟΥΗΛ ΜΙΧΑΗΛ ΜΑΛΙΑΚΑΣ ΑΝΤΩΝΙΟΣ ΜΕΛΑΣ ΟΛΥΜΠΙΑ ΤΑΛΕΛΛΗ 2 Πρόλογος Το ϐιβλίο αυτό στοχεύει στη διδασκαλία ενός

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 6 Νοεµβρίου 0 Ασκηση. Θεωρούµε

Διαβάστε περισσότερα

Οµάδες Μεταθέσεων. Κεφάλαιο Συνοπτική Θεωρία. S(X ) = { f : X X f : απεικόνιση «1-1» και «επί» }

Οµάδες Μεταθέσεων. Κεφάλαιο Συνοπτική Θεωρία. S(X ) = { f : X X f : απεικόνιση «1-1» και «επί» } Κεφάλαιο 4 Οµάδες Μεταθέσεων 4.1 Συνοπτική Θεωρία Οι οµάδες µεταθέσεων επί ενός συνόλου και ιδιαίτερα επί του πεπερασµένου συνόλου { 12 n } αποτελούν µια από τις ϐασικότερες κλάσεις οµάδων. Στην παρούσα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Χώροι. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Χώροι. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Διανυσµατικοί Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 2 ιανυσµατικοι Χωροι Στο παρόν Κεφάλαιο ϑα ορίσουµε την πολύ ϐασική

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Χώροι L p. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Χώροι L p. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Χώροι L p Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα