Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (35) No. (2) 2013 *** ***

Σχετικά έγγραφα
Estimators when the Correlation Coefficient. is Negative

Latent variable models Variational approximations.

Latent variable models Variational approximations.

Examples of Cost and Production Functions

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Exam Statistics 6 th September 2017 Solution

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

On Inclusion Relation of Absolute Summability

LAD Estimation for Time Series Models With Finite and Infinite Variance

ΧΡΟΝΟΙ ΑΝΑΜΟΝΗΣ ΜΕΧΡΙ ΤΗΝ ΠΡΩΤΗ ΕΜΦΑΝΙΣΗ ΣΧΗΜΑΤΙΣΜΩΝ ΣΕ ΜΙΑ ΔΙΔΙΑΣΤΑΤΗ ΑΚΟΛΟΥΘΙΑ ΤΡΙΤΙΜΩΝ ΔΟΚΙΜΩΝ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Three-Dimensional Experimental Kinematics

Solution to Review Problems for Midterm III

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

On Generating Relations of Some Triple. Hypergeometric Functions

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Matrices and Determinants

x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα:

program Inner-Product-1 declare m: integer initially assign end 0..P 1 p program Vector-Sum-4 declare i: integer;

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

Spherical Coordinates

Homework 8 Model Solution Section

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

PID.

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

!" # C*D ." + % 67$ '*? ( V #% I!5 I! > 3 . #B % !"#$ % &!$ '( )* *!"#$ $+", -.#/0 .#*..#/0!"#$ B 1G L3:*1( CE CLV )#IB Z 4 Q " +* -1 LTV

Το αντικείμενο αυτό είναι χειροποίητο από 100% οικολογικό βαμβάκι, με φυτικές βαφές και φυτική κόλλα.

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

A Class of Orthohomological Triangles

CONSULTING Engineering Calculation Sheet

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Study on Ascertaining the Amount of the Quality Claims about Large2scale Mechanical and Electrical Engineering Based on the System Efficiency

Example Sheet 3 Solutions

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Homomorphism in Intuitionistic Fuzzy Automata

SPECIAL FUNCTIONS and POLYNOMIALS

Japanese Fuzzy String Matching in Cooking Recipes

= 0.927rad, t = 1.16ms

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

High order interpolation function for surface contact problem

Κεφάλαιο 3. Εξίσωση Καθαρής Συναγωγής Εξίσωση Καθαρής Συναγωγής Ρύπου

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Lecture 2. Soundness and completeness of propositional logic

SONATA D 295X245. caza

α & β spatial orbitals in

EE512: Error Control Coding

Congruence Classes of Invertible Matrices of Order 3 over F 2

Approximation of distance between locations on earth given by latitude and longitude

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Second Order Partial Differential Equations

Power allocation under per-antenna power constraints in multiuser MIMO systems

Histogram list, 11 RANDOM NUMBERS & HISTOGRAMS. r : RandomReal. ri : RandomInteger. rd : RandomInteger 1, 6

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Access Control Encryption Enforcing Information Flow with Cryptography

Geodesic Equations for the Wormhole Metric

Homomorphism of Intuitionistic Fuzzy Groups

EN40: Dynamics and Vibrations

H επίδραση της µεταβολής της γεωµετρίας του πρανούς κατά την ολίσθηση στις προβλέψεις της σεισµικής µετακίνησης µε µοντέλα Mohr- Coulomb

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013


r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

IIT JEE (2013) (Trigonomtery 1) Solutions

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

Outline. Detection Theory. Background. Background (Cont.)

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Stochastic Finite Element Analysis for Composite Pressure Vessel

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

The challenges of non-stable predicates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Prey-Taxis Holling-Tanner

Transcript:

3 35 - shree Uversty Joural or Research a Scetc Stues - Basc Sceces Seres Vol. 35 No. 3 3/ 4 / 9. / / 6..-.... :. - - - - -. - - - - -. - - - - - 9

3 35 - shree Uversty Joural or Research a Scetc Stues - Basc Sceces Seres Vol. 35 No. 3 A Cojuate Graet Metho or Solv Ucostrae Optmzato problems Dr. Sulma M. Mahmoo Dr. Mohama Al Mahra Motawe Receve 6 / /. Accepte 9 / 4 /3 ABSRAC I ths paper, we preset umercal metho or solv ucostrae optmzato problems. he metho s base o a set o cojuate search rectos, a the ths set s upate repeately by eerat ew cojuate raet rectos so that steepest escet coto a Wole- Powell cotos are satse. he metho s teste o set o staar problems. Numercal expermets show that the propose metho ca exact soluto or quaratc uctos, so t ca hh accurate soluto or over quaratc uctos. Moreover, the comparsos wth other avalable results llustrate the applcablty a ececy o the presete metho. Keywors: Search Drectos, Cojuate Drectos, Le Search, Cojuate Graet Metho, Ucostrae Optmzato. Assocate Proessor, Dept. o Mathematcs, Faculty o Scece, shree Uversty, Lattaa, Syra. Assocate Proessor, Dept. o Mathematcs, Faculty o Scece, shree Uversty, Lattaa, Syra. Postrauate stuet, Dept. o Mathematcs, shree Uversty, Lattaa, Syra.

shree Uversty Joural. Bas. Sceces Seres 3 35 :.. M R. [-5] x, x,, ] [ K,. x : R R : :. :.. -.... [] LI [5,4,3] ANDREI. - YUAN [6].

. - [-7].. Graet Vector : R,, K, x x. : x R,,, : x. 4. Lear Fucto : : C 4. :.. x c,,..., C c x, C C : [] essa Matrx : 3 : R : x x x M x x x x x L x x R L x x L x x O L M x

shree Uversty Joural. Bas. Sceces Seres 3 35 Quaratc Fucto : : 4 : C 4.3. C : j j x x. j x j j x j L j x j, j j j : 4.3 C, 4.4. j x j c,,..., x j : 4.3 j,, j,...,, x x j, j j,..., :. :[] j, 5 A δ A. : δ A δ >, δ., δ δ Aδ A Local Mmum : 6 : R ε >, 4.5 <. E Global Mmum < ε : 7 3

. [] Statoary Pot : 8 A { :. C [] Sale Pot : 9. [] :, Y R. AY he Numercal Soluto : }... : Lm < ε. ε > < ε., Y R : -.. : :, Y A AY : A, A A A : R,...,, R 4

shree Uversty Joural. Bas. Sceces Seres 3 35,...,, A A R 5.b λ 5.a 5.a λ λ L A [ λ ] A λ : A A. 5.b λ A A. : :,,...,,,,..., 5. : Φ,,,..., 5.3 : Φ Φ,,,..., 5.4 Φ Φ,,,... : m.,,,..., :. 5. : 5. :,,,..., 5.5 : 4.3 C C, C : 5.4 5

C C 5.6 : 5.6 5.7. > : - 5.5 5.7 5.8 : A 5.a 5.8 C C 4.3 R.. : 5.9.,...,,... -. 6

shree Uversty Joural. Bas. Sceces Seres 3 35 ε >, Φ Φ : : R :. :,, M M, M :,,,- :.:, - - :3 :4 :5,,, < ε :6. : :3 e, e,..., e. : e e e, 3,...,,... 4.3. : ψ,, :., :,, R 7

U W U : ψ ψ W U,,. W, ψ U, U U U C U 4.3 j, Φ j., U U C [ U U : : ]. : : j e e j,...,, :.- Φ : : :,..., :,,...,,, 5. 5. 5. 5. :. : : <, > :[] -a 5. 8

35 3 Sceces Seres shree Uversty Joural. Bas. 9 -b [] : c>, > < c 5.3 -c Wole-Powell :[6] δ 5.4 σ 5.5 - Wole-Powell :[6] δ 5.6 σ 5.7 /, δ.σ δ, a : : < : a b c c,, c :c :, : 5.8, /, δ < < δ : δ.5.4 5.5 5.8 : 5.9, σ δ, < < σ : σ

. 5.4 5.6 5.5 : < σ < : 5. 5.9 5.7 σ δ, σ,,,,. : PW.5 PROGRAM Rosebroch_Fucto ; Uses Wcrt; ype termextee; M Array [..3,..3] of extee; VAR,Y: Array [..5] of extee; s,s: Array [..3] of extee; Det, orm,orm, S,S,e :extee;,j,,,,:teer; IM:M ; l:text; FUNCION x,y:extee:extee; Be :sqry-xxsqr-x; E; FUNCION x,y:extee:extee; Be :4x-yxxx-; E; FUNCION x,y:extee:extee; Be :--yxx; E; FUNCION x,y:extee:extee; Be :4-y3xx E; FUNCION x,y:extee:extee; Be :-4x e; FUNCION x,y:extee:extee; Be :-4x E; FUNCION x,y:extee:extee; Be : E; Proceure vrvar IM:M; be Det:x[],y[]x[],y[]-x[],y[]x[],y[]; IM[,]: x[],y[]/det; IM[,]: -x[],y[]/det; IM[,]:-x[],y[]/Det; IM[,]: x[],y[]/det; 3

shree Uversty Joural. Bas. Sceces Seres 3 35 e; FUNCION hx,y:extee:extee; Be h:-s-es-xs-sesxes-sqresxy E; FUNCION hx,y:extee:extee; Be h:sssqrs-sesx-4sses-sqresxy E; BEGIN {ma} wrtel'rosebroch Powell ew metho to solve m'; wrtel''; assl,'e:\roseb.at'; rewrtel; x[]:.5 ;y[]:.5; :; x[3]:x[];y[3]:y[]; s[]:;s[]:; s[]:;s[]:; :; :; REPEA x[]:x[3]; y[]:y[3]; or : to o be s[]:s[];s[]:s[]; s:s[];s:s[]; e:; repeat e:e-hx[],y[]/hx[],y[]; : utl Abshx[],y[]<.; wrtel'ala',,'',e::5; []:[] es; Y[]:Y[]eS; e; INVRIM; s[]:-m[,]x[],y[]m[,]x[],y[]; S[]:-M[,]x[],y[]M[,]x[],y[]; wrtel' Det',,'',et::5; wrtel''; wrtel' M ',,'',M[,]::5,' M',,'',M[,]::5; wrtel' M ',,'',M[,]::5,' M',,'',M[,]::5; s:s[]; s:s[] ; e:; Repeat e:e-hx[],y[]/hx[],y[]; : utl Abshx[],y[]<.; wrtel'ala',,'',e::5,' ',; [3]:[] es; Y[3]:Y[]eS; :; orm:sqrtsqrx[3],y[3]sqrx[3],y[3]; wrtel' ',,'',[3]::8,'; Y',,'',Y[3]::8,' ',x[3],y[3],' ',orm:; wrtel' Iterato ',,' '; real ; utl orm<.e-8 ; closel END. : SD Itr. NKK :. K, N K 3

PW.5 tr. tr... Math 5 K K tr. 9,8,5,3,.4 [7,8].7,6,5, [9] [] K K 3.,,3,3,4 4 [] SD tr. K.,,,,3,4 9,8,7,6,3, 5,3,4 9,8,3,3,4 [] tr. K K tr. K K 9,8,6,3, 6. 9,8,3, [3] [6] K K 3,,3,,3,4 9,8,7,5,3,.,,3,4 7.,,,3,4 8 [4] 3.. 4,3,4 9 8 : [8] Coc : x x, x, :[9] Rosebroc : [ / ] [ x, x x ] 3

shree Uversty Joural. Bas. Sceces Seres 3 35.,...,.> Extee Rosebroc :4 :[8],m3 Beale : 3 m [ ], y.5, y.5, y3 y x x,,..,m,..65 3,.5 : [8] roometrc : 4 j [ ], cos x cos x s x,,, [ / ] j.,..., : [9] Cube : 5 [ x, 3 x x ].,..., : [9] Freueste a Roth : 6 { 3 x x [5 x x ] x} { 9 x [ x x 4] }. : m3, [9] Brow Baly Scale m [ ], 5,4 : 7 6, x, 3 xx x 6 x x x x,., 6 6 : 3 [5] Box hree-dmesoal :[5] [exp.x exp.x [exp.x exp.x [exp.3x exp.3x. x x 3 x 3 3 6 exp. exp ] exp.3 exp 3] 8 exp. exp ],,, 33

[ x [ x x : 4 [5] Woo :9 x ] 4. x ] [/ [ 9 x x 4 x x 4 3 ] ],,, x 3, [7,8] : Quas-Newto Quas-Newto rust Reo rust Reo ء Metho [8] Methos [7] Itr. Itr. Itr..359E-6 5.4378E-6 9 4.6355E-9 -,.937E-6 9 7.35E-6 3 7.473E-, 5.47E-7 8 3.37E-5 6 8,- 3.584E-6 3.58E-6 4 3-3.6,5.6 4.857E-5 5 8.56E-7 9 5.937E-8 8, - 8.333E-7 6.639E-7 4.43E-8 5,.834E-7 59.943E-7 48 5.8483E-4 7 /,/ 6.33E-6 47.863E-6 33.87E-4 8 /5,/5 3 4.[9] : ن rust Reo Methos[9] Itr. Itr..864E-.94E- 36 5.3849E-34 7.863E-6 9 -., 9.547E-6.58E- 43 6 -., 5 6.995E-7 7.95E- 5 7.876E-3 3.379E- 4 -.5, 6.E-.778E- 4.65E-33.68E- 4, 7.[] :3 rust Reo Methos[] K K N K K N. 99E- 37 59 3.387E-4 5 34 39. 4E- 9 8 37.3558E-37 7 33 4 3 7. 55E-6 8 5 8 7 4 48 5. 993E-4 5 35 46 9.667E-9 6 36 8 7. 788E- 39 9 58 9.667E-3 3 3 9,3.5,.5 3 :5. -,,-,, 3,, -.5 34

shree Uversty Joural. Bas. Sceces Seres 3 35 3, [] :4 6 New quas-newto methos[] Itr. K K SD N Itr. K K SD N 9 5 3 8 5 3 5 56 5 5 6 4 4 4 6 4 3 33 3 8 3 33 6 3 38 4 58 8 8 8 7 3 4 3 7 5 4 5 49 8 53 93 54 47 8 93 8 36 47 9.5, 4 :6. -,,, -, 5,,, 4,3.[] :5 Alorthm QNP Methos[] Itr. K Itr. K.49E- -----.3E- -- 4 3 --- 77 7 --- 365 3.77E-9 3 4 8 3 7 73 68 7 97.97E-35 8 4 3 7. 5E- 3 53 6.7E-3 3 8. 5-4 4 8 38 9.667E-3 4 5 9,.5 5 :7.,3,4,3,,, < 5 Nomootoe rust Reo [3] [3] :6 /m Itr. K K N /m Itr. K K N / 39 4 38 78 / 7 68 7 75 /3 4 5 5 3 /3 5 4 5 9 3 3/ 8 83 83 66 3/ 3 84 3 97 8 4/6 4 4 4 84 4/6 6 4 6 48 9 3, 6 :8.,3,,3,-, 35

[6] :7 < 5 A Cojuate Graet Metho [6] Itr. K K N Itr. K K N 3 57 68 5 7 6 7 68 7 36 57 3 7 3 3 55 34 89 3 9 3 6 3 7 3 3 5 39 5 44 8 4 3 6 38 98 4 6 44 6 5 9,.5, 7 :9.,,,,, 5, 6 Nomootoe Globalzato Metho [4] [4] :8 K K K K 7.658E-6 8.9387E-37 3 5 8.43E-5 9.939E-38 3 5 3 9. 6635-3 3 7 3 3 4 6 5 8 6 7 7. 3734E-6 3 4.7E-3 3 43 6 8.36-3 4 33 3.983E-3 4 5 8 9,.5,.5 8 :. 3,3,3,3 -,,,,.5,.5 36

shree Uversty Joural. Bas. Sceces Seres 3 35.4,,, :.3,, 8 : 37

.4 3,3,3,3 9 :3 :. 8....3... :. MURRAY, W., Numercal Methos or Ucostrae Optmzato, Acaemc Press. Loo a New Yor, 97.. L G., a C., We Z., New Cojuacy Coto a Relate New Cojuate Graet Methos For Ucostrae Optmzato, Joural o Computatoal a Apple Mathematcs 7 53 539. 3. ANDREI N., Accelerate Cojuate Graet Alorthm wth Fte Derece essa/vector Prouct Approxmato or Ucostrae Optmzato, Joural o Computatoal a Apple Mathematcs 3 9 57-58. 4. ANDREI N., Accelerato o Cojuate Graet Alorthms or Ucostrae Optmzato, Apple Mathematcs a Computato 3 9 36 369. 5. ANDREI N., Accelerate Scale Memoryless BFGS Precotoe Cojuate Graet Alorthm or Ucostrae Optmzato, Europea Joural o Operatoal Research 4 4 4. 38

shree Uversty Joural. Bas. Sceces Seres 3 35 6. YUAN G., Lu., We Z., A Cojuate Graet Metho wth Descet Drecto For Ucostrae Optmzato, Joural o Computatoal a Apple Mathematcs 33 9 59-53. 7. u C., Ya Y., Coverece O Coc Quas-Newto rust Reo Methos For Ucostrae Mmzato, Math. Appl. 998 7 76. 8. Wa F., Zha K. a a., A Fractoal Proramm Alorthm Base O Coc Quas-Newto rust Reo Metho For Ucostrae Mmzato, Apple Mathematcs a Computato 8 6 6 67. 9. ZANG J., ZANG K., QU S., A Nomootoe Aaptve rust Reo Metho For Ucostrae Optmzato Base O Coc Moel, Apple Mathematcs a Computato 7 465 473.. FU J., SUN W., Nomootoe aaptve trust-reo metho or ucostrae optmzato problems, Apple Mathematcs a Computato 63 5 489-54.. WEI Z., LI G., QI L., New Quas-Newto Methos or Ucostrae Optmzato Problems, Apple Mathematcs a Computato 75 6 56-88.. Wu., Su L., A Quas-Newto Base Patter Search Alorthm or Ucostrae Optmzato, Apple Mathematcs a Computato 83 6 685 694. 3. QING-JUN W., Nomootoe trust reo alorthm or ucostrae optmzato problems, Apple Mathematcs a Computato 7 474-48. 4. ZOU Q., SUN W., QI L., A Nomootoe Globalzato Alorthm Wth Precotoe Graet Path For Ucostrae Optmzato, Apple Mathematcs a Computato 7 457-464. 5. FAN S.-K. S., ZAARA E., A hybr smplex search a partcle swarm optmzato or ucostrae optmzato, Europea Joural o Operatoal Research 8 7 57-548. 39