Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Σχετικά έγγραφα
Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Γραµµική Αλγεβρα

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

ΜΕΜ251 Αριθμητική Ανάλυση

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί Υπολογισµοί)

Επαναληπτικές μέθοδοι για την επίλυση γραμμικών συστημάτων. Μιχάλης Δρακόπουλος

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Επιστηµονικοί Υπολογισµοί Μέθοδοι µεταβλητής παρεκτροπής (Variable Extrapolation)

Επίλυση Γραµµικών Συστηµάτων

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

Αριθμητική Ανάλυση και Εφαρμογές

2η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές)

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ

15 εκεµβρίου εκεµβρίου / 64

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

Επιστηµονικός Υπολογισµός ΙΙ

Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Ιδιοτιμές & Ιδιοδιανύσματα Επαναληπτικές Μέθοδοι

3. Γραμμικά Συστήματα

Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 21Υπολογισµοί)

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα

Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί)

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

1 Ορισµός ακολουθίας πραγµατικών αριθµών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι ( )

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Αριθµητική Ανάλυση ΕΚΠΑ. 11 Μαΐου 2016

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Αριθµητική Ανάλυση ΕΚΠΑ. 18 Απριλίου 2019

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010

ΣΗΜΕΙΩΣΕΙΣ ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΚΑΘΗΓΗΤΗΣ: ΝΙΚΟΛΑΟΣ ΜΙΣΥΡΛΗΣ

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Αριθµητική Ανάλυση. Τµήµα Α ( Αρτιοι) : Καθηγητής Ν.Μισυρλής,Τµήµα Β (Περιττοί) : Επίκ. Αριθµητική Καθηγητής Ανάλυση Φ.Τζαφέρης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6

β) Με τη βοήθεια του αποτελέσµατος της απαλοιφής υπολογίστε την ορίζουσα του πίνακα του συστήµατος. x x = x

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

4 Συνέχεια συνάρτησης

Ειδικά θέματα στην επίλυση

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018

4 Συνέχεια συνάρτησης

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Μάθημα Επιλογής 8 ου εξαμήνου

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Ακουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων:

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

Κεφάλαιο 4. Επίλυση ελλειπτικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές

Παρεµβολή και Προσέγγιση Συναρτήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

Τµήµα Πληροφορικής και Τηλεπικοινωνιών

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

ΜΕΜ251 Αριθμητική Ανάλυση

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

Transcript:

Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 04 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου 04 / 49

Επαναληπτικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων ίνεται το γραµµικό σύστηµα Ax = b όπου A R n n είναι µη ιδιάζων πίνακας και x, b R n. Επαναληπτικές Μέθοδοι Οι επαναληπτικές µέθοδοι χρησιµοποιούνται όταν ο πίνακας A είναι : Μεγάλης τάξης ( 0 0 6 ) Αραιός Συγκεκριµένης δοµής Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου 04 / 49

Βασικές Επαναληπτικές Μέθοδοι Ax = b x = Gx + c R Ax = R b Ορίζουµε την επαναληπτική µέθοδο x = x + τ R (b Ax) x (k+) = x (k) + τ R (b Ax (k) ), k = 0,,, x (k+) = (I τ R A)x }{{} (k) + τ } R {{ b } G τ c τ x (k+) = G }{{} τ x (k) + c τ επαναλ. πίνακας Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου 04 / 49

Γραµµική στατική Επαναληπτική µέθοδος ου ϐαθµού Για τ = x (k+) = Gx (k) + c, k = 0,,, () όπου G = I R A και c = R b x (0) αυθαίρετο, x (), x (), x (), Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου 04 4 / 49

Σύγκλιση της Επαναληπτικής Μεθόδου Θεώρηµα 4.. Η επαναληπτική µέθοδος x (k+) = Gx (k) + c, k = 0,,, συγκλίνει αν και µόνον αν ρ(g) < () όπου ρ(g) = max λ i, η ϕασµατική ακτίνα i λ i ιδιοτιµές του G Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου 04 5 / 49

Απόδειξη Εστω x το όριο της ακολουθίας x (k), k = 0,,,... και e (k) το διάνυσµα του σφάλµατος στην k επανάληψη Αφού προκύπτει ότι e (k) = x (k) x x = Gx + c x (k+) x = G (x (k) x) }{{}}{{} e (k+) e (k) e (k+) = Ge (k) = G e (k ) = = G k+ e (0) e (k) = G k e (0) () Αρα lim k x(k) = x αν και µόνο αν lim k e(k) = 0 ή λόγω της () αν lim k (Gk e (0) ) = 0 για κάθε αυθαίρετο e (0). Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου 04 6 / 49

..Απόδειξη Συνεπώς από προηγούµενο ϑεώρηµα έχουµε ότι αναγκαία συνθήκη για να ισχύει lim k G k = 0 είναι η ρ(g) <. Αν τώρα υποθέσουµε ότι ρ(g) <, τότε ο I G είναι µη ιδιάζων και το σύστηµα (I G)x = k έχει µία και µοναδική λύση. Αν όµως ρ(g) < τότε lim G k = 0 ή k lim G k = 0. k Επειδή G k e (0) G k e (0) συνεπάγεται ότι lim G k e (0) = 0, οπότε k από την () προκύπτει ότι lim e (k) = 0 ή lim x (k) = x, k k δηλαδή ότι η ε.µ. () συγκλίνει. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου 04 7 / 49

Σύγκλιση της ε.µ. Ικανή και αναγκαία συνθήκη : ρ(g) < Ικανή συνθήκη : G α < Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου 04 8 / 49

Κριτήριο διακοπής της σύγκλισης k επανάληψη x (k) = x (k) x (k) x (k). x (k) n k + επανάληψη x (k+) x (k+) x (k+). x (k+) n = x (k+) x (k+) x (k) α < ɛ, ɛ = 0 d ή όπου α = ή ή. x (k+) x (k) α x (k+) α < ɛ, ɛ = 0 d Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου 04 9 / 49

Ταχύτητα σύγκλισης µιας επαναληπτικής µεθόδου Στην πράξη εκτός από την εξασφάλιση της σύγκλισης µιας ε.µ., µας ενδιαφέρει η ταχύτητα µε την οποία συγκλίνει η µέθοδος που χρησιµοποιούµε. Με άλλα λόγια επιθυµούµε να µελετήσουµε την ταχύτητα µε την οποία e (k) 0 για k. Από την () έχουµε ότι αν x (0) x, τότε e (k) e (0) Gk. (4) Ετσι η G k δίνει το µέγεθος µε το οποίο η norm του σφάλµατος έχει ελαττωθεί σε ένα κλάσµα έστω ϱ της e (0). Η ελάττωση αυτή µπορεί να επιτευχθεί αν διαλέξουµε το k έτσι ώστε G k ϱ. (5) Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 0 / 49

Μέση ταχύτητα σύγλισης Για όλα λοιπόν τα αρκετά µεγάλα k ώστε G k η παραπάνω ανισότητα είναι ισοδύναµη µε την log ϱ k k log Gk (6) όπου ξ συµβολίζει τον ελάχιστο ακέραιο µεγαλύτερο του ξ. Η (6) δίνει τον ελάχιστο αριθµό επαναλήψεων για τη σύγκλιση της () Παρατηρούµε ότι ο αριθµός αυτός είναι αντιστρόφως ανάλογος προς την ποσότητα ( k log Gk ). Ετσι οδηγούµαστε στον ορισµό της µέσης ταχύτητας σύγκλισης που είναι η ποσότητα R k (G) = k log Gk. (7) Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 / 49

Ασυµπτωτική ταχύτητα σύγλισης Ορίζουµε ως ασυµπτωτική ταχύτητα σύγκλισης ή ταχύτητα σύγκλισης, την ποσότητα R(G) = lim R k (G) = logρ(g) (8) k καθόσον µπορεί να αποδειχθεί ότι ρ(g) = lim k ( G k k ). Για µια (όχι και τόσο καλή) προσέγγιση του αριθµού των επαναλήψεων που χρειάζεται η () για να συγκλίνει χρησιµοποιείται, σύµφωνα µε την (6), ο τύπος k logρ R(G). (9) Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 / 49

Συµπέρασµα Από τον ανωτέρω τύπο και την (8) συµπεραίνουµε ότι όσο µικρότερη είναι η ϕασµατική ακτίνα του επαναληπτικού πίνακα G τόσο ταχύτερα ϑα συγκλίνει ασυµπτωτικά η επαναληπτική µέθοδος. Ωστόσο για να εκτιµήσουµε την αποτελεσµατικότητα µιας επαναληπτικής µεθόδου ϑα πρέπει να λαβουµε υπόψη τόσο την ταχύτητα σύγκλισής της όσο και την υπολογιστική πολυπλοκότητα που απαιτεί η κάθε επανάληψη. Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 / 49

Βασικές Επαναληπτικές Μέθοδοι Ορίζουµε την επαναληπτική µέθοδο x (k+) = x (k) + τ R (b Ax (k) ), k = 0,,, (0) x (k+) = (I τ R A)x }{{} (k) + τ } R {{ b } () G τ c τ x (k+) = G }{{} τ x (k) + c τ επαναλ. πίνακας Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 4 / 49

Βασική διάσπαση του πίνακα A A = D C L C U D = a a 0 a 0 a nn 0 a 0 0 C L = a a 0 0... a n a n a n... a n,n 0 Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 5 / 49

Βασική διάσπαση του πίνακα A A = D C L C U 0 a 0 0 C L = a a 0 0... a n a n a n... a n,n 0 C U = 0 a a a n 0 a a n 0 a n 0... an,n 0 Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 6 / 49

Χρήσιµες µορφές πολλαπλασιασµού πίνακα µε διάνυσµα στους τύπους των επαναληπτικών µεθόδων (D x) i = a ii x i, i =,,, n Θέτουµε και τότε έχουµε i (C L x) i = a ij x j, j= n (C U x) i = a ij x j, j=i+ L = D C L U = D C U i =,,, n i =,,, n Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 7 / 49

Χρήσιµες µορφές πολλαπλασιασµού πίνακα µε διάνυσµα στους τύπους των επαναληπτικών µεθόδων Θέτουµε και τότε έχουµε L = D C L U = D C U (D x) i = a ii x i, i =,,, n i a ij (L x) i = x j, a ii (U x) i = j= n j=i+ a ij a ii x j, i =,,, n i =,,, n Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 8 / 49

Επαναληπτική µέθοδος Επιταχυντική Jacobi (Jacobi Overrelaxation (JOR)) x (k+) = x (k) + τ R (b Ax (k) ), k = 0,,, () Αν στην () διαλέξουµε τον R έτσι ώστε R = D τότε προκύπτει ή Αναλύοντας περισσότερο την (4) λαµβάνουµε x (k+) = (I τ D A }{{} )x (k) + τ D b }{{} () B τ c τ x (k+) = B τ x (k) + c τ, k = 0,,, (4) x (k+) = [( τ)i + τb]x (k) + τ c, (5) όπου B = L + U, L = D C L, U = D C U και c = D b. (6) Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 9 / 49

Επαναληπτική µέθοδος Jacobi(J) Αν τ = τότε προκύπτει η ε.µ Jacobi η οποία γράφεται: όπου x (k+) = Bx (k) + c, m = 0,,, B = I D A = I D (D C L C U ) = D C }{{} L + D C U = L + U }{{} L U είναι ο επαναληπτικός πίνακας της ε.µ. Jacobi. Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 0 / 49

Σύγκλιση της ε.µ. (J) Ικανή και αναγκαία συνθήκη : Ικανή συνθήκη : Επειδή Η ε.µ. (J) συγκλίνει αν ισχύει max i=()n n j = }{{} j i ρ(b) < ρ(b) B = max a ij a ii < ή a ii i=()n n j = }{{} j i n a ij a ii j = }{{} j i a ij <, για κάθε i Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 / 49

Σύγκλιση της ε.µ. (J) Αυστηρά διαγωνίως υπερτερών πίνακας αν ισχύει a ii > n j = }{{} j i a ij, για κάθε i τότε ο πίνακας A λέγεται αυστηρά διαγωνίως υπερτερών (α.δ.υ). Αρα αν ο A είναι α.δ.υ. τότε ισχύει δηλ. η ε.µ. J συγκλίνει. ρ(b) B < Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 / 49

Επαναληπτική µέθοδος Jacobi(J) Υπό µορφή πινάκων : Υπό µορφή συνιστωσών : x (k+) i x (k+) = (L + U)x (k) + c, k = 0,,, x (k) x (k+) x (k) x (k+) x (k) = i = j= x (k). x (k) i x (k) i x (k) i+. x (k) n a ij x (k) j a ii n j=i+ x (k+). x (k+) i x (k+) i x (k+) i+. x (k+) n = x (k+) a ij x (k) j + bi, i = ()n a ii a ii Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 / 49

Επαναληπτική µέθοδος (J) Παράδειγµα ίνεται το γραµµικό σύστηµα x x = x +x x = 0 x +x = Να δειχθεί ότι η µέθοδος του Jacobi συγκλίνει και να ϐρεθούν οι τρείς πρώτες επαναλήψεις, αν x (0) = (, 0, ). Λύση Ο επαναληπτικός πίνακας της µεθόδου Jacobi είναι ο 0 B = I D A = L + U = 0 0 0 0 Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 4 / 49

Επαναληπτική µέθοδος (J) Επίσης B = B =. Οι ιδιοτιµές του Β είναι 0, και -, εποµένως ρ(b) = < x (k+) = ( + x(k) ) x (k+) = (x(k) + x (k) ), k = 0,,... x (k+) = ( + x(k) ). Για x (0) = (, 0, ) T, δηλαδή για x (0) =, x (0) = 0 και x (0) = έχουµε k = 0 x () = ( + x(0) ) = ( + 0) = x () = (x(0) + x (0) ) = ( + ) = x () = ( + x(0) ) = ( + 0) = Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 5 / 49

Επαναληπτική µέθοδος (J) k = k = x () = ( + x() ) = ( + ) = x () = (x() + x () ) = ( + ) = x () = ( + x() ) = ( + ) = x () = ( + x() ) = ( + ) = 4 x () = (x() + x () ) = ( + ) = x () = ( + x() ) = ( + ) = 4. Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 6 / 49

Αλγόριθµος της ε.µ Jacobi(J). ιάβασε n, ɛ, maxiter. Για i = ()n επανάλαβε ιάβασε x0 i ιάβασε b i για j = ()n επανάλαβε ιάβασε a ij. itcount = 0 4. Οσο ισχύει itcount maxiter επανάλαβε 4. Για i = ()n επανάλαβε i x i = j= a ij a ii x0 j n j=i+ a ij a ii x0 j + bi a ii 4. itcount = itcount + 4. Αν x x0 < ɛ τότε Για i = ()n επανάλαβε Τύπωσε x i Τέλος. 4.4 Για i = ()n επανάλαβε x0 i = x i 5. Τύπωσε( Οχι σύγκλιση µετά από maxiter επαναλήψεις ) 6. Τέλος Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 7 / 49

Επαναληπτική µέθοδος Επιταχυντική Gauss-Seidel (EGS) x (k+) = x (k) + τ R (b Ax (k) ), k = 0,,, (7) Αν διαλέξουµε τον R έτσι ώστε R = D C L (8) τότε προκύπτει x (k+) = x (k) + τ(i L) D (b Ax (k) ) (9) ή x (k+) = L τ,x (k) + τ(i L) c (0) όπου L τ, = I τ(i L) D A και c = D b. () Εκφράζοντας τον L τ, σε όρους των L και U έχουµε Οπότε έχουµε L τ, = I τ(i L) (I L U) = ( τ)i + τ(i L) U. () x (k+) = ( τ)x (k) + L x (k+) + (τ ) L x (k) + τ U x (k) + τ c. () Η ανωτέρω µέθοδος καλείται Επιταχυντική Gauss-Seidel(EGS) και για τ = προκύπτει η γνωστή µέθοδος Gauss-Seidel(GS) Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 8 / 49

Επαναληπτική µέθοδος Gauss-Seidel (GS) Υπό µορφή πινάκων : Υπό µορφή συνιστωσών : x (k+) = (I L) U x (k) + c, k = 0,,, }{{} L x (k+) = Lx (k+) + Ux (k) + c, k = 0,,, x (k) x (k+) x (k) x (k+) x (k+) i x (k) = i = x (k). x (k) i x (k) i x (k) i+. x (k) n a ij x (k+) j a ii x (k+). x (k+) i x (k+) i x (k+) i+. x (k+) n = x (k+) j= j=i+ Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 9 / 49 n a ij x (k) j + bi, a ii a ii i = ()n

Σύγκλιση της ε.µ. Gauss-Seidel Ικανή και αναγκαία συνθήκη : ρ(l ) < Ικανή συνθήκη : Αν ο A είναι α.δ.υ. τότε ισχύει L < δηλ. η ε.µ. GS συγκλίνει. Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 0 / 49

Επαναληπτική µέθοδος Gauss-Seidel(GS) Για τ = προκύπτει ο τύπος της ε.µ GS όπου c = D b. x (k+) = L x (k+) + U x (k) + c, (4) Επαν. µέθοδοι EGS και GS υπό µορφή συνιστωσών EGS i x (k+) i = j= ^a ijx (k+) j GS για τ = προκύπτει +( τ)x (k) i i +(τ )( i x (k+) i = ^a ijx (k+) j + j= j= ν j=i+ ^a ijx (k) j )+τ( ν j=i+ ^a ijx (k) j )+τ ^b i, i = ()n (5) ^a ijx (k) j + ^b i, i = ()n. (6) όπου ^a ij = aij a ii και ^b i = bi a ii. ιδάσκοντες: Καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Εισαγωγή Φ.Τζαφέρης στον ΠρογραµµατισµόΑριθµητική (ΕΚΠΑ) Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 / 49

Παρατηρήσεις Για την ύπαρξη των δύο ανωτέρω µεθόδων ϑα πρέπει να υπάρχει ο (D C L ) ή det(d C L ) = detd 0 πράγµα που ισχύει αν όλα τα διαγώνια στοιχεία του Α είναι διάφορα του µηδενός. Παρατηρούµε ότι στις ε.µ. EGS και GS οι αριθµητικές πράξεις επηρεάζονται αν εναλλάξουµε τη σειρά των εξισώσεων του συστήµατός µας. Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 / 49

Επαναληπτική µέθοδος Gauss-Seidel (GS) Παράδειγµα ίνεται το γραµµικό σύστηµα x x = x +x x = 0 x +x = Να δειχθεί ότι η µέθοδος του GS συγκλίνει και να ϐρεθούν οι τρείς πρώτες επαναλήψεις, αν x (0) = (, 0, ). Λύση Ο επαναληπτικός πίνακας της µεθόδου GS είναι ο L = (I L) U = 0 0 0 0 0 0 0 0 0 0 0. Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 / 49

Επαναληπτική µέθοδος Gauss-Seidel (GS) Από τη σχέση (I L)X = I υπολογίζεται εύκολα ο (I L). Εποµένως L = 0 0 0 4 0 0 0 0 0 = 0 0 0 0 0 0 4 8 4 Οι ιδιοτιµές του L είναι οι 0, 0, / εποµένως ρ(l ) = / < που αποδεικνύει ότι η GS συγκλίνει. Παρατηρούµε ότι ρ(l ) = [ρ(b)] για το παρόν παράδειγµα.. x (k+) = ( + x(k) ) x (k+) = (x(k+) + x (k) ), k = 0,,... x (k+) = ( + x(k+) ). Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 4 / 49

Επαναληπτική µέθοδος Gauss-Seidel (GS) Για x (0) = (, 0, ) T, δηλαδή για x (0) =, x (0) = 0 και x (0) =, έχουµε k = 0 k = x () = ( + x(0) ) = ( + 0) = x () = (x() + x (0) ) = ( + ) = 4 x () = ( + x() ) = ( + 4 ) = 7 8 x () = ( + x() ) = ( + 4 ) = 7 8 x () = (x() + x () ) = (7 8 + 7 8 ) = 7 8 x () = ( + x() ) = ( + 7 8 ) = 5 6 Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 5 / 49

Επαναληπτική µέθοδος Gauss-Seidel (GS) k = Παρατήρηση x () = ( + x() ) = ( + 7 8 ) = 5 6 x () = (x() + x () ) = (5 6 + 5 6 ) = 5 6 x () = ( + x() ) = 5 ( + 6 ) =. Η µέθοδος GS συγκλίνει πολύ γρηγορότερα από τη µέθοδο Jacobi προς την ακριβή λύση (,, ) T του συστήµατος. Αυτό αναµενόταν αφού R(L ) = R(B). Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 6 / 49

Αλγόριθµος της ε.µ Gauss-Seidel(GS). ιάβασε n, ɛ, maxiter. Για i = ()n επανάλαβε για j = ()n επανάλαβε ιάβασε a ij ιάβασε b i ιάβασε x0 i. itcount = 0 4. Οσο ισχύει itcount maxiter επανάλαβε 4. Για i = ()n επανάλαβε i x i = j= a ij a ii x j n j=i+ a ij a ii x0 j + bi a ii 4. itcount = itcount + 4. Αν x x0 < ɛ τότε Για i = ()n επανάλαβε Τύπωσε x i Τέλος. 4.4 Για i = ()n επανάλαβε x0 i = x i 5. Τύπωσε( Οχι σύγκλιση µετά από maxiter επαναλήψεις ) 6. Τέλος Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 7 / 49

Επαναληπτική Επιταχυντική µέθοδος της ιαδοχικής Υπερµείωσης (Extrapolated Successive Overrelaxation (ESOR)) x (k+) = x (k) + τ R (b Ax (k) ), k = 0,,, (7) Είναι δυνατόν να ϐρεθούν δύο άλλες µέθοδοι αν εισάγουµε µία παράµετρο στη µορφή του R. Ετσι αν ϑέσουµε R = D ωc L (8) στην (7), όπου ω είναι ένας πραγµατικός αριθµός του οποίου ο ϱόλος στη ϕάση αυτή είναι να διαταράξει τον R έτσι ώστε να προσεγγίζει καλύτερα τον Α τότε έχουµε x (k+) = x (k) + τ(i ωl) D (b Ax (k) ), k = 0,,... (9) ή x (k+) = L τ,ω x (k) + τ(i ωl) c (0) όπου L τ,ω = I τ(i ωl) D A. () Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 8 / 49

Επαναληπτική Επιταχυντική µέθοδος της ιαδοχικής Υπερµείωσης (Extrapolated Successive Overrelaxation (ESOR)) Προκειµένου να ϐρούµε την εξίσωση των συνιστωσών η (9) µπορεί να γραφτεί σαν x (k+) = ( τ)x (k) + ωlx (k+) + (τ ω)lx (k) + τ Ux (k) + τ c () οπότε έχουµε x (k+) i = ( τ)x (k) i +τ i + ω ^a ij x (k+) i j + (τ ω) n j=i+ j= j= ^a ij x (k) j ^a ij x (k) j + τ ^b i, i =,,..., n. () Κατά την υλοποίηση της ESOR είναι δυνατόν να γίνει εξοικονόµηση των υπολογισµών αν αποθηκευτεί η ποσότητα Lx (k) προκειµένου να χρησιµοποιηθεί στην επόµενη επανάληψη. Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 9 / 49

Επαναληπτική µέθοδος της ιαδοχικής Υπερµείωσης (Successive Overrelaxation (SOR) ) Αν ϑέσουµε τ = ω στην ESOR λαµβάνουµε τη δηµοφιλή Successive Overrelaxation(SOR) µέθοδο, η οποία δίνεται διαδοχικά από τους τύπους x (k+) = x (k) + ω(i ωl) D (b Ax (k) ) (4) x (k+) = L ω x (k) + ω(i ωl) c (5) όπου ή L ω = I ω(i ωl) D A. (6) L ω = (I ωl) [( ω)i + ωu] είναι ο επαναληπτικός πίνακας της ε.µ. SOR. Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 40 / 49

Επαναληπτική µέθοδος ( Successive Overrelaxation (SOR)) Επίσης η SOR γράφεται και σαν x (k+) = (I ωl) [( ω)i + ωu]x (k) + ω(i ωl) c (7) ή x (k+) = ( ω)x (k) + ω[lx (k+) + Ux (k) + c]. (8) Παρατηρήστε ότι η ποσότητα της αγκύλης είναι η GS µέθοδος, συνεπώς η (8) λαµβάνει τη µορφή x (k+) = ( ω)x (k) + ωx (k+) GS (9) όπου x (k+) GS συµβολίζει την k + επανάληψη της GS µεθόδου. Η (9) υπήρξε η αφετηρία της ανακάλυψης της SOR µεθόδου. Τέλος, υπό µορφή συνιστωσών η SOR δίνεται από τους τύπους x (k+) i = ( ω)x (k) i i + ω j= ^a ij x (k+) j + ω n j=i+ ^a ij x (k) j + ω^b i, i =,,..., n. (40) Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 4 / 49

Σύγκλιση της ε.µ. SOR Αν λ i είναι οι ιδιοτιµές του L ω, τότε det(l ω) = n λ i i= Αλλά det(l ω) = det { (I ωl) [( ω)i + ωu] } det { (I ωl) } det {( ω)i + ωu} = ( ω) n = ( ω) n Αρα n n [ρ(l ω)] n λ i = λ i = ( ω) n = ω n i= i= ω ρ(l ω) Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 4 / 49

Σύγκλιση της ε.µ. SOR Για να συγκλίνει η ε.µ. SOR ϑα πρέπει να ισχύει ρ(l ω ) < Αρα ή ω < 0 < ω < Εποµένως, αν η ε.µ. SOR συγκλίνει τότε 0 < ω <. Η ϐέλτιστη τιµή ω b της παραµέτρου ω προσδιορίζεται έτσι ώστε να ελαχιστοποιείται η ϕασµατική ακτίνα ρ(l ω ) του επαναληπτικού πίνακα της ε.µ. SOR. Η µελέτη της ρ(l ω ) σαν συνάρτηση της ω ϕαίνεται στο ακόλουθο σχήµα. Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 4 / 49

Μελέτη της ϕασµατικής ακτίνας ρ(l ω ) S(L ω).0 (, ) (, µ ) (ω b, ω b ).0 ω b.0 ω ω b = + ρ(b), ρ(l ω b ) = ω b Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 44 / 49

Επαναληπτική µέθοδος SOR Υπό µορφή πινάκων ή x (k+) = ( ω)x (k) + ωx (k+) GS, k = 0,,, x (k+) = ( ω)x (k) + ω(lx (k+) + Ux (k) + c), k = 0,,, Υπό µορφή συντεταγµένων x (k+) i = ( ω)x (k) i i + ω( j= i = ()n a ij x (k+) j a ii n j=i+ a ij x (k) j + b i ) a ii a ii Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 45 / 49

Επαναληπτική µέθοδος SOR Παράδειγµα ίνεται το γραµµικό σύστηµα x x = x +x x = 0 x +x = Να δειχθεί ότι η µέθοδος του SOR συγκλίνει και να ϐρεθούν οι τρείς πρώτες επαναλήψεις, αν x (0) = (, 0, ). Λύση Η µέθοδος SOR δίνεται από το ακόλουθο επαναληπτικό σχήµα : x (k+) = ( ω)x (k) + ωx (k+) GS, όπου x (k+) GS είναι το επαναληπτικό διάνυσµα που προκύπτει από την εφαρµογή της Gauss-Seidel µεθόδου. Εποµένως, για το τριδιαγώνιο σύστηµα του προηγούµενου παραδείγµατος, η SOR παράγει το επαναληπτικό σχήµα : Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 46 / 49

Επαναληπτική µέθοδος SOR x (k+) = ( ω)x (k) + ω ( + x(k) ) x (k+) = ( ω)x (k) + ω (x(k+) + x (k) ), k = 0,,... x (k+) = ( ω)x (k) + ω ( + x(k+) ). Η ϐέλτιστη τιµή του ω δίνεται από τον τύπο (Θεώρηµα.4.6) ω b = + ρ(b) ή ενώ ω b = = + 4 +.76. ρ(ω b ) = ω b 0.76. Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 47 / 49

Επαναληπτική µέθοδος SOR Λαµβάνοντας, x (0) = (, 0, ) T, δηλαδή, x (0) =, x (0) = 0 και x (0) = έχουµε για k = 0 x () 4 = ( + ) + + ( + 0) = + = + 0.44 x () 4 = ( + ) 0 + + ( + 4( + ) + ) = ( + ) 0.8984 x () 4 = ( + ) + + 4( + ) ( + ( + ) ) = 4 ( + ) 0.8995 Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 48 / 49

Αλγόριθµος της ε.µ SOR. ιάβασε n, ω, ɛ, maxiter. Για i = ()n επανάλαβε για j = ()n + επανάλαβε ιάβασε a ij ιάβασε x0 i. itcount = 0 4. Οσο ισχύει itcount maxiter επανάλαβε 4. Για i = ()n επανάλαβε x i = ( ω)x0 i+ i +ω( j= a ij a ii x j n j=i+ a ij a ii x0 j + bi a ii ) 4. itcount = itcount + 4. Αν x x0 < ɛ τότε Για i = ()n επανάλαβε Τύπωσε x i Τέλος. 4.4 Για i = ()n επανάλαβε x0 i = x i 5. Τύπωσε( Οχι σύγκλιση µετά από maxiter επαναλήψεις ) 6. Τέλος Ανάλυση (ή Επιστηµονικοί 8 εκεµβρίου Υπολογισµοί) 04 49 / 49