EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

Σχετικά έγγραφα
RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result


STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM


ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

2 SFI

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Delta Inconel 718 δ» ¼

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

v w = v = pr w v = v cos(v,w) = v w

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Ανώτερα Μαθηματικά ΙI

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

Blowup of regular solutions for radial relativistic Euler equations with damping

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

p din,j = p tot,j p stat = ρ 2 v2 j,

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Electronic Supplementary Information (ESI)

Base Metal + Alloying Elements

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Προσομοίωση Δημιουργία τυχαίων αριθμών

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

Δυναμικοί τύποι δεδομένων

ÅÊ NEAR (Near-Earth Asteroid Rendezvous) Hayabusa

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

49 12 Vol.49 No  ACTA METALLURGICA SINICA Dec pp II.

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Εφαρμοσμένα Μαθηματικά

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Transcript:

Ù 46 Ù 10 Vol.46 No.10 010 Å 10» Ù 13 19 ß ACTA METALLURGICA SINICA Oct. 010 pp.13 19 ľ TiAl Ä ËÂ Ï Ê ( ¹Â  Š² Û ØÑ, ¹ 100191) Ï Æ Ñ ¾ 1580 É 1650 Ti 47Al Cr Nb Ì ² ÆÑ ¾ Ô. ÜÅ, Ì Á À» β À, À, ¾ β Ð À β À Ç, 1 ÆÑ, À 40 K/cm Í 160 K/cm, ß «ÓÝÁ лÅÓÝÁ. ¾ Å ß ÃѲ, γ ÆÑ ²., ¾ 1 mm/min Ñ Æ,» 40 K/cm (» 1580 ), Æ 74 Ñ Ó Å Æ¹ 45 Ñ ; ³ Í 160 K/cm (» 1650 ), Æ 74 Ñ Ó Æ¹ 90 Ñ. ÆÜ, ¾ Ù β Á ºÆ Õ 110 β Æ, ³ β Á Õ 110 β Æ µ, 001 β Ô ÆÁ ½À. ² TiAl ÑÌ, Æ, Æ, TG13.3 Á ½ A 041 1961(010)10 13 07 EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY XIAO Zhixia, ZHENG Lijing, YANG Lili, YAN Jie, ZHANG Hu Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing, 100191 Correspondent: ZHANG Hu, professor, Tel: (010)8316958, E-mail: zhanghu@buaa.edu.cn Manuscript received 010 06 8, in revised form 010 08 1 ABSTRACT Directional solidification experiments under heating temperatures of 1580 and 1650 were performed on Ti 47Al Cr Nb alloy in order to obtain the evolution of lamellar grains. From microstructural analysis in the mushy zone of directional solidified ingots, β phase was firstly solidified, then phase was formed through peritectic reaction; phase depended on the pre existed β phase on which it nucleated, and only one of the 1 orientation variants was selected during solid state β transformations. As the average temperature gradient of the mushy zone was increased from 40 K/cm to 160 K/cm, the solidification interface morphologies were changed from columnar dendrite to celluar dendrite. Eliminating the influence of cutting plane to the γ lamella orientation, it was shown that the columnar lamellar grains with an angle of approximately 74 to growth direction gradually overgrew the ones with the angle of nearly 45 to the growth direction at the withdrawal rate of 1 mm/min and temperature gradient of 40 K/cm. Increasing temperature gradient to 160 K/cm, the grains with the angle of about 74 progressively rejected other with the angle of nearly 90 to the growth direction. Calculation of the β dendrite preferred growth orientation indicated that β dendrites tend to grow along the 110 β orientation at the present solidification experiments. Increasing temperature gradient, the preferred growth tendency of β dendrite became more drastically, other orientations, such as the 001 β directional orientation, could rapidly be replaced. KEY WORDS TiAl based alloy, directional solidification, lamellar orientation, preferred growth * Õ Áµ : 010 06 8, Õ µ : 010 08 1 : ÌÌ,, 1984 «, ± DOI: 10.374/SP.J.1037.010.00308

14 Ù Ù 46 TiAl ÒÍ ÖÝ Ê Û ÄÕ Ü, à Рر Ô ÖÐ Ô Ð Ò º [1 3], ÖÒ Ò ÓÏÕ. Å ÝÆ TiAl ÒÍ PST(polysynthetically twinned) ÒÒ Đ [4,5], µđ¼æêè Ç, Þ, Ò Ó ÏÕÛ ¼ 0; ÆµĐ¼Æ Ç, ÊÒ ÓÏÕ ÞÐÝÍ. Î Ü Ô¼ ĐÇ Æ ÝÆ, ÂĐÇÆ ÒÖ [4,6 9] Þ Ê [10 13], Ô± Ç Ç, ³ Æ±É TiAl ÒÍ ÒÒ. Kim Õ [1] ¼ TiAl Í Á±, ÅĐÇÆ β Á ĐÁ Ä, ÖÕ 001 β Ç, β ÁÒ (001) Ç 0 45. ÁØ β ÁË Ä, Ê β ÁÄ ĐÒ Ç ((110) β /(0001) ) Ç Ç 0 45. ÅÜ ¼ Đ ÐÒ Æ (HRS) ĐÇ Æ, Ti 44Al Í Đ ¼ 1600 ÀÇ ¼ 90 mm/h ÒÆ β  ÝÆ, Ò γ Ç 0 45, Í Ò Ï. Saari Õ [13] Í Ti 47.5Al W 0.5Si Ê Ti 46Al Mo Nb ³ Ê Cu Ê Ò Æ ĐÇÆ Ú. Đ ¼ 1600 1700 ÀÇ ¼ 1 1 mm/min Ò ÀǺ 140 mm, Í β  Æ, Ô Ä Ç Ç 0 90 Ò, ¹Ô 0 Ò, ÆÔ ß 90 Ò ; ÇÒ Æ Ô Ò Ö, Æ Ç 90 Ò ÝÆÊÍ ÁØ«. Jung Õ [10] Ti 47Al W Í ĐÇÆ Ò, ÕÀÇ 30 mm/h ĐÎ 90 mm/h, β Â Ò Ç [001] β ¼ [111] β, Ç Ç, ¼ Ç 60 90., ÇÒ Æ Í µ, ÞØ Æ ( Ê ) Ò Ä. Æ¹Å Ç 45 Ò ÝÆ, Ö Ç, Õ Ç Ò Ñ, 45 90 Ò Ý Æ, Ï Đ Ç ÇÒ. Î, Ti 47Al Cr Nb Í ( ϼ 47 ), Đ ÛÊ ĐÇÆ. Ó ÄÒ, Ò Å ÇÒ Ä, Â Ò ÇØ ÔÍ, ¼ Ç ½. 1 È º 1.1 Å É Í «( ß, %) ¼ Ti 47Al Cr Nb, ¼ Ë ¼ 99.76% Ò Ú Þ Ti 99.99% Ò Al 99.98% Ò Cr Ø 99.90% Ò Nb. ØÅ Ý Ð, ÛÀ ¼ 0.05% 0.06%( ß). Ƚ¼ 13.5 mm Ò Đ¼ĐÇÆ Í. Ú¼ Y O 3 ² Ò Al O 3 Í, µ ½ 0 mm, ½ 15 mm, 40 mm. ĐÇÆ Ô ÒÛÀ ¼ 0.090% 0.095%. ĐÇÆ Ú Bridgman ĐÇÆ Ð ³, Ú À Î 5 10 3 Pa, ½ Ë Ar Î 0.05 MPa. Î 1580 Ê 1650 TiAl Í 15 min, 1 mm/min Ò ÀÇ 10 mm, À Ô, à Ga In Sn Í Đ, /Đ Á ÝÆ. ¼ Ô Á ÝÆÒÂ Ý ÄĐ ¼ 1580 Ê 1650, Á Ò G º¼ 40 Ê 160 K/cm. Ô Ö Ç, ĐÇ ÔÜÒ,», 1 ml HF+3 ml HNO 3 + 9 ml H O ÍÀĐ, Á ¹¼ (OM) Ô Ò ½Ã. ¼ Æ» Ç ÈÒ², ÖÊÈ Ô Ò Ç Ç½Ï, ¼ Á Ò ÁÈÍ, Û Ë³ Ô Ò Ç. ¼Ò Ç, ¼ JXA 8100 Ý (EPMA) Á Ò. Å Ô ĐÇ Ò¹ ÝÆ, Â Ç À Ç ÇÄ Ò Ê 10, Ò Ç Ê ÀÇ Ç. 1. β µæîí ű /Đ Á ÝÆ Ã, Ti 47Al Cr Nb Í ĐÇÆ β  Æ. β  Á, Ê ÎÒ Þ Ê γ Á, Î Á,»Â β Â Ò Ç È Ä. Î Jung Õ [10] ÄÒ, γ ÇÒ, Ý Ä fcc Ö ÇË γ ÁÒ ÇÊß (γ Á¼ fcc ); ½ TiAl Í L1 0 γ, hcp Ê bcc β ÁÄ {110} β /{0001} /{111} γ Ê 111 β / 11 0 / 110 γ Ç [10,11,14], fcc Ò 111 γ Ê 110 γ Ø bcc Ò 110 β ( / 111 γ ) Ê 111 β ( / 110 γ ) ¼ ݽ Ç (β Á¼ bcc ),, fcc ÇË γ ÁÒ ÇÊß (γ) Ñ bcc (β), Æ bcc Ö ÇËÒ ÇÊß Ù¼ β Â Ò Ç. Ý Â : (1) Ö ĐÇ Ú Ò γ Ç ÇÒ θ, Ù γ Ò {111} γ ÇÒ, Ѽ γ Ò 111 γ Ç ÇÒ, Ù ϕ=90 θ, ¼ Ç [15]

Ù 10 ËË Ó : ÐÅ TiAl ÐË ÅÐ Â 15 cos ϕ = h 1 h + k 1 k + l 1 l (h 1 + k 1 + l 1 ) (h + k + l ) (1), h 1 k 1 l 1, h k l ¼ ÇÒ ÇÊß. h 1 k 1 l 1 ¼ 111 γ, h k l ¼ ¾ ÇÒ ÇÊ ß, ϕ ¼ ¹ ÇÒ, Ú. Ü, à h 1 k 1 l 1 Ê ϕ Ò³, (1) Ä h k l Ò ÇÊß, Ù γ Á fcc Ö ÇË Ò Ç Êß hkl γ ; () ¼ (1) Ý Ä hkl γ Ç γ ÁÒ fcc ¹½ Ç 111 γ Ê 110 γ Ç Ò σ 1 Ê σ ; (3) Î hkl β Đ¼ β Â Ò Ç, ¼ (1) Ý β ÁÒ bcc ¹½ Ç 110 β Ê 111 β ÇÒ ω 1 Ê ω ; (4) σ 1 Ê σ ω 1 Ê ω Á Ò σ 1 Ê σ, ω 1 Ê σ 1 Ø ω Ê σ, Å Ê Â Ë ÇÒ ( Ú ¼ 10 ), ¼ hkl β β Â Ò Ç. ȳ.1 µ¹ Å ± 1 ¼ 40 Ê 160 K/cm Đ ÇÆ Ô Û Ò ÝÆ. ÖÕ Ç ¼ 5 ¹ ±: ½ (I) Õ Ñ¼ Ô Ò (II) Ô ĐÇ (III) /Đ Á (IV) Ê ĐÁ (V). ĐÇÆ Ú, Ô µ à Ga In Sn Í Đ, (I ) Í Ò ÖÊÝÆ. II Àdz½ Ê ÝÆ Ò, ½ Ò ÝÆ ¼³ ÇÒÕ, ÀÇ ÎÕ Ê ÈÒ, Ô. ³Ã III, ĐÒÆ, Ò Ô «Æ Å ÇÒ,, III Ë ( IV ), ±¾ Ì ÒÖ Ç Ò Ô. Á (IV) Ò Đ.. Å Å ÅÇ ± a e»ä G=40 K/cm, Ô ĐÇ Ò Á, ĐÇ III (± 1a È) Û 4 mm ¹Ü ³, ± Ë ÒßÙ Á γ ÇÒ (deg)., Ç 74 Ò Ô Õ ß³ Đ, Ç 47 Ò «Ê; ĐÇ Â ¹ Ǻ Ò (± a);» 4 mm Ò, ± a Ç 41 Ò Æ (± b); Þ ³ 4 mm, ± Û¹³ ÇÒ, Ç 3 Ò¹ Ô Ò Æ (± c);» º 96 mm Ò, ĐÇ ß Ç 74 Ð Ò Æ Å Çº 45 Ò (± e). ± f i»ä G=160 K/cm Ô ĐÇ Ò Á., Â Þ ¹³ ÇÒ, G=40 K/cm ³ Ò, ³± γ Ç Ê Ò,  0, Ä Ç 90 Ò (± f); ĐÇ 4 mm, Ç ÊÒ Ô (º 0 ) ÎÁ Æ, Û¹ Ò (± g). Þ, Ð Ç 74 Ò Ô µ Ç ÊÈÒ ( 87 Ê 84 ), ¼ Ò (± h); ĐÇ º 7 mm, Ç 74 Ð Ò Ô Æ Å Ç º 90 Ò (± i). ± 3 Ä Ö± f Ç 0 Ò Ç ÒÔÜ ÁÝÆ., ĐÇÆ Ò ³, Î ÎÁÉ..3» TiAl Í ÒÆ Ä Æ Ñ½, ³Æ± Þ Ò γ Ç. ± 4 ¼³ Ô Á ÝÆ. G=40 K/cm, Á Ë Ï Ï Á ÊÈÒ β  (± 4a), Á β  ºÄ ÈÒ Á,  ± 4c. G=160 K/cm, Ô Á β ÁÒ«Ô Þ ÝÆ, ¹, Á Þ º β ÁÒ 1» 40 É 160 K/cm Ñ Æ Ó Ú ß ÜÅ Fig.1 Macrostructure of the directionally solidified ingots with temperatures gradients G of 40 K/cm (a) and 160 K/cm (b) (I unfused zone, II transition zone, III directionally solidification zone, IV solid/liquid dual phase zone, V liquid zone)

u h 16 u 46 9 D o ~NX;5&"XW {m"h> Fig. Metallographes of the transverse sections with different distances d from the position denoted by dashed lines in Fig.1a and b of directionally solidified ingots at G=40 K/cm (a e) and G=160 K/cm (f i) (numbers shown in Fig. mean the angles (deg) between the grain orientation and growth direction) n < m, n γ Y B V ' #:O n k,\ < L, # { Y Blackburn :O== {0001} //{111} R h11 0i //h110, \ ' #:O n /γ 6 9. >Æ, 3 bv? 7j ` : On /γ a 6'z^Y<:, B} 3 β,\ + Y β (5m ^, # p\ d 1 `, Æk L Ed ` :O n. Singh q D 0, 3r\PqRIY< qq8 *hn5 [3 næ< A, In:O::!! "\Pn β I n:o, Æ 3 I <LnI= k. YÆ<m 1DK, 3d Bk A,, I!F " n β I\PY<, V!:Otjd β I:OnFZ, 3 \ ^ 1 ` % `. β J, <a, z^ \ d - a 6 ', Æ ' #:O n 6'. +γ γ [5] [16] D 3 qqo $ h \#X; NA 0 m+[m 5 N +*\m"h> Fig.3 Metallograph of the section cut along the grain lamellar which orientation aligned at 0 angle to the growth direction in Fig.h fp IyN (% 4b). V, kl3sxa`5 A Ti 47Al Cr Nb U#nÆ<m1kI#n, u</ Vd L L+β L+β+ β+ n F E. 5 8a, dæ< 'r, Y<\ Yd jpzj,\ 0 pzj,\ n. 3 H>0 3.1 BÆN #[ β J YIÆ< n TiAl U#, /V β m ^, { Y Burgers :O== {11 0} //{0001} R h111i //h11 0i, - β,\ + D g\ 1 ` ' #:O n ; R<^, Y +γ β β [10] F A )-8MÆTK! TiAl U#Æp, M! J Y β Ir q h001i OY<, 07 Burgers :O==, Dz^\ $Bk O B 0 k 45 n /γ 6yN, ebv E γ 6$B k On==<# JV d. Bk!5 RHO q Æ< D % β I n 5 Y < O. Henry q 3 fcc 9n Al U# OÆ< E, 3(5 R(Æ< qa, nu#.o _Æd_ ( < k *s " q ) Y, Dd J, n 5 Y < O [001] O 0 [110] O. Jung q 0 A e 6Gl n OÆ<bvn5 E, 35 ( 3. β [17 19] Al Al [10]

Ù 10 ËË Ó : ÐÅ TiAl ÐË ÅÐ Â 17 4» 40 K/cm É 160 K/cm Ñ À ÜÅ Fig.4 Microstructures of the specimens in IV zones shown in Fig.1 with G of 40 K/cm (a), (c) and 160 K/cm (b) 300 K/cm, ÀÇ 30 mm/h ĐÎ 90 mm/h, β Â Ò Ç [001] β ¼ [111] β.,  β ÁÒ Ç 001 β, Ò Ò Ç ³½ ÍËÜ. β Á Ç Đ Þ Ò γ Ç, Î, 1. Ò ± Ä ÒÛ¹ Ò, Ý β Á Ò Ç,  1 Ê. Ò ± e Ê i Ä Ò, γ ÇÒ θ È. 1 Ý Ä γ Á fcc Ç hkl γ 111 γ Ê 110 γ Ç Ò σ 1 Ê σ ;» Ý, Å β Â Ö 001 β Ø 110 β Ç, Ý ºØ 110 β Ê 111 β ÇÒ ω 1 Ê ω ; 1 Ä ω 1 Ê ω Á Ò σ 1 Ê σ, ω 1 Ê σ 1 Ø ω Ê σ, Ò ÉÞ Ê, Þ ÉÊ 7, Ó Â Ç ÀÇ Ç 0 10 Ò, ¼ ω 1 σ 1 Ø ω σ, Ý Í. Ý Ã, Đ ¼ 1580, Ô ĐÇ Ë 001 β Ê 110 β ÇÒÂ. ± e Ã, Ö 001 β Ç Ò ( Ç Çº 45 Ò ) Ò ³ÂÖ 110 β ÇÒ ( Ç Çº 74 Ò ) Ò Á. Đ, Đ ¼ 1580, 001 β ÇÁ, β  ¾Á Ö 110 β Ç. ε, Ö 001 β Ç ÒÂ, Ê ÎÒ ½ Ç 0 Ò ÝÆ. ¼ Jung Õ [11] ÒÒ, 1580 ÒĐ Ò ±º 40 K/cm Ð, Ò Ç¼ 0 Ò ĐÒ. Æ, Đ Î 1650, Á Ò Đ, Þ½ Ç 0 Ò ÝÆ. Ã, Đ, Ô ĐÇ Ë β Â Ò Ç ¼ 110 β, ½Ä Ö 001 β Å Ç ÒÂ, ĐÇ Â Ù Ä Å ÇÒ ÞÎ Á Æ, ± 3 Ǻ 0 Ò. Ý Ä TiAl Í Á Ò, Ä γ ÇÒÍ. TiAl Í γ ÁÊ β ÁÄ {110} β /{0001} /{111}γ Ê 111 β / 11 0 / 110 γ Ç [10,11,14], Å β ÁÒ Ç 001 β ¼ 110 β, Ú¼ γ Á β ÁÒ Đ, γ Ò ÇÞ Ä., ¼ 40 K/cm, Ô Ý Ö 001 β Ê 110 β ¹ Ç Ò β Â, Þ 110 β Ç, ÇÒ ¼ Ç 74 Ð Ò Ô «Æ ŠǺ 45 Ò, ; Î 160 K/cm, Å ÇÒ ĐÇ Â ÎÁ Æ, Ô Ý Ö 110 β Ç Ò β Â, ÇÒ ¼ Ç

18 Ù Ù 46 1 ÆÊ γ ÀÑ Æ 111 γ É 110 γ Ñß Ü Table 1 Calculated angular relations between possible growth direction and the 111 γ, and 110 γ The grain with Angle between Possible orientation Set of angle Set of angle G different lamellar the growth index in between the growth between the growth K/cm orientations, θ direction and growth direction, direction and the direction and the the 111 γ, ϕ hkl γ 111 γ ( / 110 β ), σ 1 110 γ ( / 111 β ), σ 40 74 16 1 γ 15.79, 54.74, 78.90 19.47, 45, 76.37, 90 40 47 43 310 γ 43.09, 68.58 6.57, 47.87, 63.44, 77.08 40 49 41 50 γ 41.37, 71.4 3.0, 48.96, 66.80, 74.77 160 74 16 1 γ 15.79, 54.74, 78.90 19.47, 45, 76.37, 90 160 80 10 33 γ 10.03, 60.50, 75.75 5.4, 41.08, 81.33, 90 160 84 6 554 γ 5.77, 64.76, 73.48 9.50, 38.43, 85.01, 90 ² β Á Ñ Æ Table Theoretical angles and estimated PGD (the preferred growth direction) of the β dendrites under different G The grain with Theoretical angle Theoretical angle Estimated PGD G different lamellar between PGD and between PGD and of the β K/cm orientations, θ the 110 β ( / 111 γ ), ω 1 the 111 β ( / 110 γ ), ω dendrite, hkl β 40 74 grain 60 90 110 β 40 47 grain 45 54.74 001 β 40 49 grain 45 54.74 001 β 160 74 grain 60 90 110 β 160 80 grain 60 90 110 β 160 84 grain 60 90 110 β 74 Ð Ò Ô µ Æ Å Çº 90 Ò Æ., β Â Ö 110 β Ç, 001 β Õ Å Ç ¾Á Æ. Æ Ò ÇÒ Đ Ò. ¼ Ê [0] : G v T 0 D L (), G ¼ /Đ ³ÖĐÁ, v ¼, D L ¼ĐÁÀ ÅÇ ß, T 0 ¼. Đ Á G, Á Ø /Đ ³ÖĐÁ G Þ Đ, Æ G v ( ÔÞ É, ÎÆ Ñ ¼«ÔÞ ), Ê ÇÒ Ä ± Â Ò Ç, ½ ºÇ ³ Ò 001 Ç (bcc ). Æ Õ [1] ¼ ĐÇÆ Ò Ò Tb- DyFe ÌÏÏ Í Ò Ç Ç ÉĐÒ È, ÀÇ Đ¼ 1 mm/min, G L 1000 K/cm Í «Ô, Ü Ç Ç¼ 110 Ç, Ö Îº 700 K/cm, «Â, Ü Ç Ç¼ 11 Ç, ³ µ Ö º 400 K/cm, ÒÞÂ, Ç 11 Ç Æ. β Á Ç Ò Ô Ý³ µ, Ú Ã, Å ½ß ³ÍÐ, β Á ³Ö 001 β Ç, Ò γ Ò Ç. Î, Ð Ò ½ß ÊÀÇ, β ÁÖ 001 β Ç, Å Ç ¼ Ý. 4 ³¼ (1) Ti 47Al Cr Nb Í G ¼ 40 Ê 160 K/cm Ò ĐÇÆ Â Á¼ β Á, Á, β Ñ Á β Á È, 1 ± Đ Ç Ò. /Đ ÔÞÂ Ñ ¼«ÔÞÂ. () ¼ 40 K/cm, Ç 74 Ð Ò Ô «Æ ŠǺ 45 Ò, ; Î 160 K/cm, Ç 74 Ð Ò Ô µ Æ Å Çº 90 Ò Æ.  ÇÝ Đ, Ú

Ù 10 ËË Ó : ÐÅ TiAl ÐË ÅÐ Â 19, β Â»Ç Ö 110 β Ç, β Â Ö 110 β Ç, 001 β Õ Å Ç ¾Á Æ. Á [1] Yamaguchi M, Inui H, Ito K. Acta Mater, 000; 48: 307 [] Dimiduk D M. Mater Sci Eng, 1999; A63: 81 [3] Kim Y W. JOM, 1995; 47: 39 [4] Yamaguchi M, Johnson D R, Lee H N, Inui H. Intermetallics, 000; 8: 511 [5] Kishida K, Johnson D R, Masuda Y, Umeda H, Inui H, Yamaguchi M. Intermetallics, 1998; 6: 679 [6] Johnson D R, Inui H, Muto S, Omiya Y, Yamanaka T. Acta Mater, 006; 54: 1077 [7] Lee H N, Johnson D R, Inui H, Oh M H, Wee D M, Yamaguchi M. Mater Sci Eng, 00; A39 331: 19 [8] Takeyama M, Yamamoto Y, Morishima H, Koike K, Chang S Y, Matsuo T. Mater Sci Eng, 00; A39 331: 7 [9] Lee H N, Johnson D R, Inui H, Oh M H, Wee D M, Yamaguchi M. Acta Mater, 000; 48: 31 [10] Jung I S, Oh M H, Park N J, Kumar K S, Wee D M. Met Mater Int, 007; 13: 455 [11] Jung I S, Jang H S, Oh M H, Lee J H, Wee D M. Acta Mater, 00; 39 331: 13 [1] Kim M C, Oh M H, Lee J H, Inui H, Yamaguchi M, Wee D M. Mater Sci Eng, 1997; A39 40: 570 [13] Saari H, Beddoes J, Seo D Y, Zhao L. Intermetallics, 005; 13: 937 [14] Sastry S M L, Lipsitt H A. Metall Trans, 1977; 8A: 99 [15] Pan J S, Tong J M, Tian M B. Fundamentals of Materials Science. 3rd Ed. Beijing: Tsinghua University Press, 00: 40 (, Ð, Ð. ¹ ÑÇ, Ú 3. º: ¼ à Í, 00: 40) [16] Singh A K, Muraleedharan K, Banerjee D. Scr Mater, 003; 48: 767 [17] Henry S, Jarry P, Rappaz M. Metall Trans, 1998; A9: 807 [18] Henry S, Jarry P, Rappza M. Metall Trans, 1997; A8: 07 [19] Henry S, Minghetti T, Rappaz M. Acta Mater, 1998; 46: 6431 [0] Hu H Q. The Principle of Metal Solidification. nd Ed., Beijing: China Machine Press, 000: 119 ( Á. Ú µì. Ú. º: Ó Ã Í, 000: 119) [1] Jiang C B, Zhou S Z, Zhang M C, Wang R. Acta Metall Sin, 1998; 34: 164 ( Æ,, Ù», Ä. Ú, 1998: 34: 164)