Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized hypergeometric function

Σχετικά έγγραφα
HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Zeta. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

1. For each of the following power series, find the interval of convergence and the radius of convergence:

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

On Generating Relations of Some Triple. Hypergeometric Functions

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation


GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Bessel function for complex variable

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

A study on generalized absolute summability factors for a triangular matrix

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Homework for 1/27 Due 2/5

IIT JEE (2013) (Trigonomtery 1) Solutions

EN40: Dynamics and Vibrations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Approximation of distance between locations on earth given by latitude and longitude

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Solutions to Exercise Sheet 5

Solve the difference equation

α β

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Example Sheet 3 Solutions

2 Composition. Invertible Mappings

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

Degenerate Perturbation Theory

Matrices and Determinants

Finite Field Problems: Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Derivation of Optical-Bloch Equations

( y) Partial Differential Equations

Homework 3 Solutions

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

p n r

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Inverse trigonometric functions & General Solution of Trigonometric Equations

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Homework 4.1 Solutions Math 5110/6830

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

The Simply Typed Lambda Calculus

Homework 8 Model Solution Section

Math221: HW# 1 solutions

Presentation of complex number in Cartesian and polar coordinate system

LAD Estimation for Time Series Models With Finite and Infinite Variance

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

CRASH COURSE IN PRECALCULUS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

4.6 Autoregressive Moving Average Model ARMA(1,1)

Second Order RLC Filters

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Every set of first-order formulas is equivalent to an independent set

On Inclusion Relation of Absolute Summability

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

1. Matrix Algebra and Linear Economic Models

Trigonometric Formula Sheet

Section 8.3 Trigonometric Equations

Ψηφιακή Επεξεργασία Εικόνας

Fractional Colorings and Zykov Products of graphs

SPECIAL FUNCTIONS and POLYNOMIALS

Areas and Lengths in Polar Coordinates

Outline. Detection Theory. Background. Background (Cont.)

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

The Neutrix Product of the Distributions r. x λ

Certain Sequences Involving Product of k-bessel Function

Other Test Constructions: Likelihood Ratio & Bayes Tests

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Forced Pendulum Numerical approach

Assalamu `alaikum wr. wb.

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

Notes on the Open Economy

Math 6 SL Probability Distributions Practice Test Mark Scheme

C.S. 430 Assignment 6, Sample Solutions

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Uniform Convergence of Fourier Series Michael Taylor

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Transcript:

HyergeometricPFQ Notatios Traditioal ame Geeralied hyergeometric fuctio Traditioal otatio F a 1,, a ; b 1,, b ; Mathematica StadardForm otatio HyergeometricPFQa 1,, a, b 1,, b, Primary defiitio 07.31.0.0001.01 F a 1,, a ; b 1,, b ; a j k k b j k k 1 1 1 1 Re b j a j 0 ; 1 I the cases 1 the series above does ot coverge but it (together with symbol) ca be used as asymtotic series, where, whe eeded a Borel summatio is imlicitly uderstood. 07.31.0.000.01 F a 1,, a ; b 1,, b ; a j k k b j k k ; a j a j For a i, b j m ; m beig oositive itegers ad ak a k a k bk b k m b k the fuctio F a 1,, a ; b 1,, b ; caot be uiuely defied by a limitig rocedure based o the above defiitio because the two variables a i, b j ca aroach oositive itegers, m; m at differet seeds. For the above coditios we defie: 07.31.0.0003.01 F a 1,, a i,, a ; b 1,, b j,, b ; a j k k b j k k ; a i b j m m m

htt://fuctios.wolfram.com Geeral characteristics Some abbreviatios 07.31.04.0001.01 a 1,, a a 1 a Domai ad aalyticity F a 1,, a ; b 1,, b ; is a aalytical fuctio of a 1,, a, b 1,, b ad which is defied i 1. I the cases for fixed a 1,, a, b 1,, b, it is a etire fuctio of. If arameters a k iclude egative itegers, the fuctio F a 1,, a ; b 1,, b ; degeerates to a olyomial i. 07.31.04.000.01 a 1 a b 1 b F a 1,, a ; b 1,, b ; Symmetries ad eriodicities Mirror symmetry 07.31.04.0003.0 F a 1,, a ; b 1,, b ; F a 1,, a ; b 1,, b ; ; 1, 1 Permutatio symmetry 07.31.04.0004.01 F a 1, a,, a k,, a j,, a ; b 1,, b ; F a 1, a,, a j,, a k,, a ; b 1,, b ; ; a k a j k j 07.31.04.0005.01 F a 1,, a ; b 1, b,, b k,, b j,, b ; F a 1,, a ; b 1, b,, b j,, b k,, b ; ; b k b j k j Periodicity No eriodicity Poles ad essetial sigularities With resect to For 1 ad fixed a l, b j i oolyomial cases (whe a 1 a ), the fuctio F a 1,, a ; b 1,, b ; does ot have oles ad essetial sigularities. 07.31.04.0006.01 ig F a 1,, a ; b 1,, b ; ; 1 a 1,, a For ad fixed a l, b j i oolyomial cases (whe a 1 a ), the fuctio F a 1,, a ; b 1,, b ; has oly oe sigular oit at. It is a essetial sigular oit. 07.31.04.0007.01 ig F a 1,, a ; b 1,, b ;, ; a 1,, a

htt://fuctios.wolfram.com 3 If arameters a k iclude r egative itegers Α k, the fuctio F a 1,, a ; b 1,, b ; is a olyomial ad has ole of order miα 1,, Α r at. 07.31.04.0008.01 ig F a 1,, a ; b 1,, b ;, Α ; a 1,, a Α mia s1,, a sr a sk With resect to a l The fuctio F a 1,, a ; b 1,, b ; as a fuctio of a l, 1 l, has oly oe sigular oit at a l. It is a essetial sigular oit. 07.31.04.0009.01 ig al F a 1,, a ; b 1,, b ;, ; 1 l With resect to b j The fuctio F a 1,, a ; b 1,, b ; as a fuctio of b j, 1 j, has a ifiite set of sigular oits: a) b j k ; k, are the simle oles with residues 1k k F a 1,, a ; b 1,, b j1, k, b j1,, b ; ; b) b j is the oit of accumulatio of oles, which is a essetial sigular oit. 07.31.04.0010.01 ig b j F a 1,, a ; b 1,, b ; k, 1 ; k,, ; 1 j 07.31.04.0011.01 res b j F a 1,, a ; b 1,, b ; k 1k F a 1,, a ; b 1,, b j1, k, b j1,, b ; ; k 1 j k Brach oits With resect to The fuctio F a 1,, a ; b 1,, b ; does ot have brach oits for ad has two brach oits: 1, for 1 i oolyomial case (whe a 1 a ) 07.31.04.001.01 F a 1,, a ; b 1,, b ; ; 07.31.04.0013.01 1 F a 1,, a 1 ; b 1,, b ; 1, ; a 1,, a 1 07.31.04.0014.01 1 1 F a 1,, a 1 ; b 1,, b ;, 1 log ; Ψ Ψ Ψ b j a j a 1,, a 1 07.31.04.0015.01 1 F a 1,, a 1 ; b 1,, b ;, 1 s ; 1 Ψ b j a j r s r s 1 gcdr, s 1 a 1,, a 1

htt://fuctios.wolfram.com 4 07.31.04.0016.01 1 F a 1,, a 1 ; b 1,, b ;, log ; ai,a j a i a j 1 i 1 1 j 1 i j a 1 a 1 07.31.04.0017.01 1 F a 1,, a 1 ; b 1,, b ;, lcms 1,, s 1 ; a l r l r l, s l s l 1 gcdr l, s l 1 1 l 1 a 1,, a 1 s l With resect to a l The fuctio F a 1,, a ; b 1,, b ; as a fuctio of a l, 1 l, does ot have brach oits. 07.31.04.0018.01 al F a 1,, a ; b 1,, b ; ; 1 l With resect to b j The fuctio F a 1,, a ; b 1,, b ; as a fuctio of b j, 1 j, does ot have brach oits. 07.31.04.0019.01 b j F a 1,, a ; b 1,, b ; ; 1 j Brach cuts With resect to For all oegative iteger a k, the fuctio F a 1,, a ; b 1,, b ; i the cases 1 is a sigle-valued fuctio o the -lae cut alog the iterval 1,, where it is cotiuous from below. I the cases this fuctio does ot have brach cuts. 07.31.04.000.01 1 F a 1,, a 1 ; b 1,, b ; 1,, ; a 1,, a 1 07.31.04.001.01 F a 1,, a ; b 1,, b ; ; 07.31.04.00.01 lim Ε0 1 F a 1,, a 1 ; b 1,, b ; x Ε 1 F a 1,, a 1 ; b 1,, b ; x ; x 1 07.31.04.006.01 lim Ε0 1 F a 1,, a 1 ; b 1,, b ; x Ε b k 1 ak 1,1 G 1,1 Π 1 x 1, b 1,, b a 1,, a 1 ; x 1

htt://fuctios.wolfram.com 5 07.31.04.003.01 lim Ε0 1 F a 1,, a 1 ; b 1,, b ; x Ε b k 1 ak 1 a k b j a k 1 a j a k Π a kx a k 1F a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; 1 x ; j,k,j,k 1 j 11 k 1 a j a k x 1 With resect to a l The fuctio F a 1,, a ; b 1,, b ; as a fuctio of a l, 1 l, does ot have brach cuts. 07.31.04.004.01 al F a 1,, a ; b 1,, b ; ; 1 l With resect to b j The fuctio F a 1,, a ; b 1,, b ; as a fuctio of b j, 1 j, does ot have brach cuts. 07.31.04.005.01 b j F a 1,, a ; b 1,, b ; ; 1 j Series reresetatios Geeralied ower series Exasios at geeric oit 0 For the fuctio itself 07.31.06.0045.01 k 0 F a 1,, a ; b 1,, b ; b j k 1F 1 1, a 1,, a ; 1 k, b 1,, b ; 0 0 k ; 1 1 0 1, 07.31.06.0046.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 1 a j a k b j a k 1 0 a k arg 0 Π 0 a k arg 0 1 Π a k j 0 j j j 0 1F a k b 1 1,, a k b 1, j a k ; 1a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; 1 0 0 j ; 0 1 j,k,j,k 1 j 11 k 1 a j a k Exasios o brach cuts for 1

htt://fuctios.wolfram.com 6 For the fuctio itself 07.31.06.0047.01 1F a 1,, a 1 ; b 1,, b ; b k 1 k G 1,1 1,1 1 ak x argx Π Π 1 a 1 k,, 1 a 1 k 0, 1 b 1 k,, 1 b k xk ; x 1 07.31.06.0048.01 1F a 1,, a 1 ; b 1,, b ; 07.31.06.0049.01 b k 1 ak 1 k G 1,1 1,1 argx Π 1 Π 1 x 1, k b 1,, k b k a 1,, k a 1 x k ; x 1 1F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 1 x u u a k a j a k Π a k u 0 u b j a k argx 1Floor Π x a k 1F u a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; 1 x x u ; j,k,j,k 1 j 11 k 1 a j a k x 1 Exasios at 0 07.31.06.0001.01 F a 1,, a ; b 1,, b ; 1 07.31.06.000.01 F a 1,, a ; b 1,, b ; a j b j a j k k b j k k a j a j 1 b j b j 1 ; 1 1 ; 1 1 07.31.06.0003.01 F a 1,, a ; b 1,, b ; 1 O Exasios at 1 for 1 The oit 1 is the ed oit of the brach cut for the fuctio 1 F a 1,, a 1 ; b 1,, b ;, where it has a 1 rather comlicated behavior. The corresodig geeral formula (for oiteger Ψ b j aj ) icludes two major terms - regular ad sigular which are a aalytical fuctios. Moreover, the sigular term has reresetatio of the form cost 1 Ψ 1 O 1 ad regular term is bouded ear oit 1. A more detailed descritio of this behavior is reseted below. At the sigular oit 1 the fuctio 1 F a 1,, a 1 ; b 1,, b ; is cotiuous for ReΨ 0, bouded for ReΨ 0, Ψ 0 ad has, i geeral, a logarithmic sigularity for Ψ 0 while for ReΨ 0 it has a ower sigularity of order Ψ to which for iteger Ψ a logarithmic sigularity ca also occur. The geeral formulas

htt://fuctios.wolfram.com 7 07.31.06.0004.01 1F a 1,, a 1 ; b 1,, b ; b j F a 1,, a 1 ;, 1, b 1,, b ; 07.31.06.0005.01 1F a 1,, a 1 ; b 1,, b ; b k 1 Ψ g k Ψ 1 k g k 0 1 k 1 ak ; 1 k k r a 1 k r a Ψ r k 1 1 1 g k r k Ψ r k j j a1,, a 1, b 1,, b 1 k Ψ r k j 0 j a 1 Ψ j a Ψ k k r b j 1 k r a j 1 lim m Ψ r k 1F k r a 1, k r a,, r a 1, m; k r b 1, k r b,, r b, k m r Ψ 1; 1 g 0 Ψ Ψ k1 a1,, a 1, b 1,, b b 1 a 3 1 k1 b j k 1 j j 3 a j k 1 k 1 k 0 k 1 k 1 j b j j 3 a j a 3 b 1 k 1 1 k k b a 4 1 k b j k j 3 j 4 a j k k k 3 0 k k3 1 j 3 b j j 4 a j a 4 b k 1 k3 k3 b a 1 k b j k j a j k k k 1 0 k k1 b a 1 k1 b 1 a 1 k1 1 b j j a j a b k 1 k k1 k1 1 Ψ b j a j Ψ Rea 3 0 Rea 1 0 The logarithmic cases

htt://fuctios.wolfram.com 8 07.31.06.0006.01 1F a 1,, a 1 ; b 1,, b ; b k Ψ 1 k j 1 j j 1 Ψ j j log1 1 j 1 ak j 0 j 0 ; 1 1 Ψ b j a j 1 1 k j 1 j j a 1 j a j k j Ψ 1 k a1,, a 1, b 1,, b ; Rea 3 j k a 1 Ψ k a Ψ 1 Ψ a 1 Ψ j a Ψ j k j 1 Rea 1 j j 1 j k a1,, a 1, b 1,, b j j j Ψ k j1 a 1 Ψ k a Ψ k j j k k a1,, a 1, b 1,, b Ψj k 1 Ψj Ψ 1 Ψj a 1 Ψ Ψj a Ψ ; a 1 Ψ k a Ψ k Rea 3 j Ψ Rea 1 j Ψ 1 Ψ1 a 1 Ψ j a Ψ j j j j Ψ j j k k a1,, a 1, b 1,, b Ψ a 1 Ψ k a Ψ k 07.31.06.0007.01 1F a 1,, a 1 ; b 1,, b ; b k a 1 Ψ j a Ψ j 1 j j k j 1 1 Ψ k a1,, a 1, b 1,, b j j Ψ a 1 Ψ k a Ψ k 1 ak j 0 k j1 j j k log1 Ψj k 1 Ψj Ψ 1 Ψj a 1 Ψ Ψj a Ψ a 1 Ψ k a Ψ k k a1,, a 1, b 1,, b 1 j Ψ 1 j a 1 j a k j Ψ 1 k a1,, a 1, b 1,, b 1 j j k a 1 Ψ k a Ψ j 0 ; 1 1 1 Ψ b j a j 1 Ψ

htt://fuctios.wolfram.com 9 07.31.06.0008.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak Ψ 1 1 Ψ h j 1 j j u j v j log1 1 j j 0 j 0 ; 1 1 1 1 j a 1 Ψ j a Ψ j j Ψ 1 j j k k a1,, a 1, b 1,, b Ψ b j a j 1 h j j a 1 Ψ k a Ψ k a 1 Ψ jψ a Ψ jψ u j 1 j j Ψ j j Ψ k jψ 1 k j Ψ 1 k a1,, a 1, b 1,, b a 1 Ψ k a Ψ k jψ Ψ j 1 Ψ k k a1,, a 1, b 1,, b Ψj 1 Ψj a 1 Ψj a Ψj k Ψ 1 ; a 1 Ψ k a Ψ k 1 Ψ1 a 1 Ψ jψ a Ψ jψ Rea 3 j Rea 1 j v j j j Ψ jψ Ψ j k k a1,, a 1, b 1,, b Ψ a 1 Ψ k a Ψ k 07.31.06.0009.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak Ψ 1 j 1 k 1 Ψ k a1,, a 1, b 1,, b 1 j j Ψ 1 a 1 Ψ j a Ψ j j 0 j k a 1 Ψ k a Ψ k 1 j k a 1 Ψ 1 j k a k a1,, a 1, b 1,, b j Ψ j k k a 1 Ψ k a Ψ j Ψ log1 Ψj k 1 Ψj Ψ 1 Ψj k a 1 Ψj k a 1 j Ψ 1 j k a 1 Ψ1 1 j k a k a1,, a 1, b 1,, b 1 j j k k a 1 Ψ k a Ψ j k ; 1 1 1 Ψ b j a j 1 Ψ

htt://fuctios.wolfram.com 10 07.31.06.0010.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak a 1 j a j j j k log1 Ψj 1 Ψj a 1 Ψj a Ψj k 1 k a1,, a 1, b 1,, b j 0 j a 1 k a k 1 j j k j1 k j 1 a 1 k a k 1 1 Ψ b j a j 1 Ψ 0 1 k a1,, a 1, b 1,, b 1 j ; The major terms i the geeral formula for exasios of fuctio 1F a 1,, a 1 ; b 1,, b ; at 1 07.31.06.0011.01 1F a 1,, a 1 ; b 1,, b ; 1 F a 1,, a 1 ; b 1,, b ; 11 O 1 1 Ψ b j a j Ψ 07.31.06.001.01 1 1F a 1,, a 1 ; b 1,, b ; Ψ 1 k 3 ak b k Ψ k k a1,, a 1, b 1,, b 1 O 1 k a 1 Ψ k a Ψ Ψ Ψ 1 ak 1 k 3 ak 1 Ψ b j a j 1 ReΨ 0 Rea 3 0 Rea 1 0 07.31.06.0013.01 1 1F a 1,, a 1 ; b 1,, b ; 1 F a 1,, a 1 ; b 1,, b ; 11 O 1 1 Ψ b j a j Ψ 0 1 Exasios at for 1 b j 1 a j b k 1 Ψ 1 O 1 ; b k 1 Ψ 1 O 1 ; log1 1 O 1 ; The geeral formulas 07.31.06.0014.01 1F a 1,, a 1 ; b 1,, b ; b k F a 1,, a ; b 1,, b ;,, ; 0, 1

htt://fuctios.wolfram.com 11 07.31.06.0015.01 1F a 1,, a 1 ; b 1,, b ; b k ower a 1,, a ; F b 1,, b ;,, ; 0, 1 Case of simle oles 07.31.06.0016.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak a 1 k 1 a j a k b j a k a k 1 1 j,k,j,k 1 j 11 k 1 a j a k 07.31.06.0017.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 j,k,j,k 1 j 11 k 1 a j a k 07.31.06.0018.01 1F a 1,, a 1 ; b 1,, b ; a k a k b j 1 1 ak a j 1 a 1 k 1 a j a k b k 1 1 ak i 0 1 j,k,j,k 1 j 11 k 1 a j a k 07.31.06.0019.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak b j a k a k a k 1 a k b j 1 a k b j a k 1 ak a j 1 a k a j i 0 Res 0; 1 a 1,, 1 a 1 ; ; 1 b 1,, 1 b ; a 1 k 1 a j a k b j a k a k a k i a k b j 1 i 1 i ak a j 1 i i 1 a k, 1, i; ; ; ; 1F a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; 1 ; 0, 1 j,k,j,k 1 j 11 k 1 a j a k Case of oles of order r i the oits a r k ; r, 3, 4 k 07.31.06.000.01 1F a 1,, a 1 ; b 1,, b ; b k ower a 1,, a ; F b 1,, b ;,, ; 0, 1 a k a k1 k r a k a 1 r 1 k 1 j,k,j,k r1 j 1r1 k 1 a j a k r, 3, 4 The major terms for exasios of fuctio 1 F a 1,, a 1 ; b 1,, b ; at

htt://fuctios.wolfram.com 1 07.31.06.001.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak j,k,j,k 1 j 11 k 1 a j a k a 1 k 1 a j a k b j a k a k 1 O 1 ; 07.31.06.00.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 k r1 a 1 k a j a k b j a k a k 1 O 1 r1 Res 0; a 1,, a 1 ; a ; b 1,, b ; j1, j 1, 0; 1 O 1 j ; a k a k1 k r a k a 1 r 1 k 1 j,k,j,k r1 j 1r1 k 1 a j a k r, 3, 4 07.31.06.003.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 a 1 k ak a 1 b k a 1 a 1 1 O 1 1 a a 1 1 a k 3 ak a a a 1 b k a a log Ψa a 1 1 1 Ψa Ψa k a Ψb k a k 3 1 O 1 a 1 k 1 a j a k k 3 b j a k a k 1 O 1 ; a a 1 a k a 1 3 k 1 j,k,j,k 3 j 13 k 1 a j a k

htt://fuctios.wolfram.com 13 07.31.06.004.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 a 1 k ak a 1 b k a 1 a 1 1 O 1 1 a a 1 1 a k 3 ak a a a 1 b k a a log Ψa a 1 1 1 Ψa Ψa k a Ψb k a k 3 1 O 1 1 a a 1 1 a 3 k 4 ak a 3 a 3 a a 3 a 1 b k a 3 a 3 1 log Ψa 3 a 1 1 Ψa 3 a 1 Ψa 3 Ψa k a 3 Ψb k a 3 k 4 5 Π 6 Ψ1 a 3 a 1 1 Ψ 1 a 3 a 1 Ψ 1 a 3 Ψ 1 a k a 3 Ψ 1 b k a 3 1 k 4 O 1 1 a 1 k 1 a j a k a k k 4 b j a k 1 O 1 ; a a 1 a 3 a a k a 1 4 k 1 j,k,j,k 4 j 14 k 1 a j a k

htt://fuctios.wolfram.com 14 07.31.06.005.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 a 1 k ak a 1 b k a 1 a 1 1 O 1 1 a a 1 1 a k 3 ak a a a 1 b k a a log Ψa a 1 1 1 Ψa Ψa k a Ψb k a k 3 1 O 1 1 a a 1 1 a 3 k 4 ak a 3 a 3 a a 3 a 1 b k a 3 a 3 1 log Ψa 3 a 1 1 Ψa 3 a 1 Ψa 3 Ψa k a 3 Ψb k a 3 k 4 5 Π 6 Ψ1 a 3 a 1 1 Ψ 1 a 3 a 1 Ψ 1 a 3 Ψ 1 a k a 3 Ψ 1 b k a 3 1 k 4 O 1 1 1 a 1 a a 3 a 1 4 a 4 k 5 ak a 4 6 a 4 a 3 a 4 a a 4 a 1 b k a 4 a 4 3 1 log Ψa 4 a 1 1 Ψa 4 a 1 Ψa 4 a 3 1 Ψa 4 Ψa k a 4 Ψb k a 4 k 5 1 3 Ψ 1 a 4 Ψ 1 a 4 a 1 1 Ψ 1 a 4 a 1 Ψ 1 a 4 a 3 1 Ψ 1 a k a 4 Ψ 1 b k a 4 k 5 7 Π log Ψa 4 a 1 1 Ψa 4 a 1 1 Ψa 4 a 3 1 Ψa 4 Ψa k a 4 Ψb k a 4 k 5 1 Ψ a 4 a 1 1 Ψ a 4 a 1 Ψ a 4 a 3 1 Ψ a 4 Ψ a k a 4 Ψ b k a 4 Ζ3 k 5 1 O 1 a 1 k 1 a j a k k 5 b j a k a k 1 O 1 ; a a 1 a 3 a a 4 a 3 a k a 1 5 k 1 j,k,j,k 5 j 15 k 1 a j a k Exasios at for olyomial cases

htt://fuctios.wolfram.com 15 07.31.06.006.01 F, a, a 3,, a ; b 1,, b ; k a k 1F 1, 1 b 1,, 1 b ; 1 a, 1 a 3,, 1 a ; 11 b k ; Asymtotic series exasios Exasios for 07.31.06.007.01 F a 1,, a ; b 1,, b ; b j ower a 1,, a ; F b 1,, b ;,, ex a 1,, a ; F b 1,, b ;,, ; 07.31.06.008.01 b j F a 1,, a ; b 1,, b ; a j Χ 1 O 1 b j a j a k a j a k b j a k a k 1 O 1 ; j,k,j,k 1 j 1 k a j a k Exasios for 1 07.31.06.009.01 1 F 1 a 1,, a ; b 1,, b 1 ; b j ower a 1,, a ; F b 1,, b 1 ;,, trig a 1,, a ; F,, b 1,, b 1 ; ; 07.31.06.0030.01 F 1 a 1,, a ; b 1,, b 1 ; 1 b j Π a k Χ Π Χ 1 O 1 Π Χ 1 O 1 1 b j a k a k a j a k 1 b j a k a k 1 O 1 ; j,k,j,k 1 j 1 k a j a k 07.31.06.0031.01 F 1 a 1,, a ; b 1,, b 1 ; 1 b j Π a k Χ cosπ Χ 1 O 1 c 1 siπ Χ 1 O 1 1 b j a k a k a j a k 1 b j a k a k 1 O 1 ; Χ 1 A B 1 1 c 1 1 4 3 A B 1 A B 1 3 16 A a k 1 s1 1 s1 B 1 b k a s a j b s b j j,k,j,k 1 j 1 k a j a k s s

htt://fuctios.wolfram.com 16 Exasios for 07.31.06.003.01 F a 1,, a ; b 1,, b ; b j ower a 1,, a ; F b 1,, b ;,, ex a 1,, a ; F b 1,, b ; j,k,j,k 1 j 1 k a j a k,, ; 07.31.06.0033.01 F a 1,, a ; b 1,, b ; 1Β Π Β a k b j Χ exβ 1Β 1 O 1 1Β b j a k a k a j a k b j a k a k 1 O 1 ; Β 1 Χ 1 Β Β 1 a k b k j,k,j,k 1 j 1 k a j a k Exasios for 0 F 07.31.06.0034.01 0F ; b 1, b ; b 1 b 3 3 Π 3 1 1b 3 1 b 1 3 b 1 3 b 1 b 1 3 b 3 b 1 9 b 3 9 16 3 1 4 6 3 b b 3 1 3 9 b 3 b 1 b 1 3 6 b 3 3 b 17 b 4 b 1 9 b 4 1 b 3 3 b 1 b 4 ; 07.31.06.0035.01 0F ; b 1, b ; b 1 b 3 3 Π 3 1 1b 3 1 b 1 O 1 3 ; Exasios for 0 F 3 07.31.06.0036.01 0F 3 ; b 1, b, b 3 ; b 1 b b 3 4 4 4 Π 3 1 4 3 b 1 b b 3 1 b 1 8 b b 3 1 b 1 1 b 1 b 3 8 b 3 8 b b 3 1 7 1 4 3 1 144 b 4 1 64 3 b 3 b 3 1 b 3 1 8 44 b 8 b 3 3 b 44 b 3 4 b 3 1 b 1 16 048 1 b 3 4 b 3 3 b 4 b 3 40 b 3 1 b 1 b 3 3 1 b 3 1 b 3 11 b 1 144 b 4 144 b 3 4 64 b 3 3 8 b 3 176 b 3 64 b 3 3 b 3 1 8 b 44 b 3 4 b 3 1 16 b 1 b 3 3 1 b 3 1 b 3 11 11 ; 07.31.06.0037.01 0F 3 ; b 1, b, b 3 ; b 1 b b 3 4 4 4 Π 3 1 3 b 4 1 b b 3 1 O 1 4 ;

htt://fuctios.wolfram.com 17 Geeral formulas of asymtotic series exasios 07.31.06.0038.01 F a 1,, a ; b 1,, b ; b j F a 1,, a ; b 1,, b ;,, ; 1 07.31.06.0039.01 F a 1,, a ; b 1,, b ; b j Θ,1 ex a 1,, a ; F b 1,, b ;,, ower a 1,, a ; F b 1,, b ;,,,1 trig a 1,, a ; F b 1,, b 1 ;,, ; 1 Mai terms of asymtotic exasios 07.31.06.0040.01 F a 1,, a ; b 1,, b ; b j res s a j s a j s b j s s a k 1 O 1,1 d 1 Χ cosπ Χ 1 O 1 Θ,1 d Χ Β 1Β 1 O 1 1Β ; Β 1 Χ 1 Β Β 1 a k b k d d 1 1Β Π Β 07.31.06.0041.01 F a 1,, a ; b 1,, b ; c k a k 1 O 1,1 e 1 Χ cosπ Χ 1 O Β 1 Χ 1 Β Β 1 a k e e 1 1Β Π 07.31.06.004.01 Β a k 1 Θ,1 e Χ Β 1Β 1 O 1 b k c k b k j,k,j,k 1 j 1 k a j a k 1F a 1,, a 1 ; b 1,, b ; c 1 O 1 d 1 Ψ 1 O 1 ; a k 1 Ψ b j a j c 1 F a 1,, a 1 ; b 1,, b ; 1 d 1 1Β ; b j a j a k a j b j a k Ψ b k 1 ak Ψ Residue reresetatios

htt://fuctios.wolfram.com 18 07.31.06.0043.01 F a 1,, a ; b 1,, b ; b k a k res s j 0 s a k s b k s s j ; 1 1 1 07.31.06.0044.01 F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 res s j 0 1 s ak s b k s s a k j ; 1 Cotiued fractio reresetatios 07.31.10.0001.01 F a 1,, a ; b 1,, b ; b k 1 a k 1 1 a j 1 b j 1 1 a j 1 b j 1 a j 3 b j a j 3 b j 07.31.10.000.01 F a 1,, a ; b 1,, b ; 1 a k b k 1 k k a j k 1 k b j, k a j k 1 k b j 1 1 Differetial euatios Ordiary liear differetial euatios ad wroskias For the direct fuctio itself The differetial euatio for the fuctio F a 1,, a ; b 1,, b ; has the order max, 1. It has two ( 0, for ) or three ( 0, 1,, for 1) sigular oits. If, the the oit 0 is a regular sigular oit, while is a oregular (essetial) sigular oit; if 1, the all three sigular oits are regular. Reresetatio of fudametal system solutios ear oit 0 for 1 i the geeral case

htt://fuctios.wolfram.com 19 07.31.13.0004.01 1 1 w 1 1 b k w w 1 l 1 a l w 1 d d d d b k 1 w l 1 d d a 1 l w w 1 1 b k w w 1 1 a k w 1 w l 1 a l w a l 0 ; l 1 w c 1 F a 1,, a ; b 1,, b ; c, G,1 1 a 1,, 1 a 0, 1 b k, 1 b 1,, 1 b k1, 1 b k1,, 1 b c, G,1 1 1 a 1,, 1 a 0, 1 b 1,, 1 b k1, 1 b k1,, 1 b, 1 b k 1, c 1 G,1 1 1 1 a 1,, 1 a 0, 1 b 1,, 1 b 07.31.13.0005.01 1 1 w 1 1 b k w w 1 l 1 a l w 1 d d d d b k 1 w l 1 d d a 1 l w w 1 1 b k w w 1 1 a k w 1 w l 1 a l w a l 0 ; w c 1 F a 1,, a ; b 1,, b ; l 1 c k1 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1; ; j,k,j,k 1 j 1 k b j b k b k 07.31.13.0006.01 W F a 1,, a ; b 1,, b ;, 1b 1 F a 1 b 1 1,, a b 1 1; b 1, 1 b 1 b,, 1 b 1 b ;,, 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1;,, 1b F a 1 b 1,, a b 1; b, b 1 b 1,, b 1 b 1; 1 Π k1 siπ b k siπ b j b k 1 1 b k,1 1 l 1 1 al b k, Θ 1

htt://fuctios.wolfram.com 0 d d 07.31.13.0001.01 d d b d k 1 l 1 d a l w 0 ; w c 1 F a 1,, a ; b 1,, b ; c k1 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1; ; j,k,j,k 1 j 1 k b j b k b k 07.31.13.0007.01 W F a 1,, a ; b 1,, b ;, 1b 1 F a 1 b 1 1,, a b 1 1; b 1, b 1 b 1,, b 1 b 1;,, 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1;,, 1b F a 1 b 1,, a b 1; b, b 1 b 1,, b 1 b 1; cost 1 1 b k,1 1 l 1 1 al b k, Θ 1 ; t lim Ε0 Ε 1 b k W Ε F a 1,, a ; b 1,, b ; Ε, Ε 1b 1 F a 1 b 1 1,, a b 1 1; b 1, b 1 b 1,, b 1 b 1; Ε,, Ε 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1; Ε,, Ε 1b F a 1 b 1,, a b 1; b, b 1 b 1,, b 1 b 1; Ε 07.31.13.0008.01 W F a 1,, a ; b 1,, b ;, 1b 1 F a 1 b 1 1,, a b 1 1; b 1, 1 b 1 b,, 1 b 1 b ;,, 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1;,, 1b F a 1 b 1,, a b 1; b, b 1 b 1,, b 1 b 1; 1 k1 b k 1 b j b k 1 1 b k,1 1 l 1 1 al b k, Θ 1 Reresetatio of fudametal system solutios ear oit 1 for 1 i the geeral case 1,0 Below reresetatio icludes fuctios of two kids. The fuctio G 1,1 1 a 1,, 1 a 1 0, 1 b 1,, 1 b is the iecewise aalytical fuctio with a discotiuity o the uite circle 1. It has sigularity ear oit 1of the form cost 1 Ψ,3 1 O 1, whe 1. The fuctios G 3,3 aalytical fuctios ad are bouded ear oit 1. 1,0 The fuctio G 1,1 1 a 1,, 1 a 1 0, 1 b 1,, 1 b iside of 1ca be rereeted through hyergeometric fuctios defied for all comlex. 0, b k, 1 a 1,, 1 a 1 0, b k, 0, 1 b 1,, 1 b are the

htt://fuctios.wolfram.com 1 d d 07.31.13.000.01 1 d d b d k 1 l 1 d a l w 0 ; 1,0 w c 1 G 1,1 1 a 1,, 1 a 1,3 c 0, 1 b 1,, 1 b k1 G 3,3 0, b k, 1 a 1,, 1 a 1 0, b k, 0, 1 b 1,, 1 b ; 1 1 Ψ b j a j Ψ j,k,j,k 1 j 1 k b j b k b k Reresetatio of fudametal system solutios ear oit for 1 i the geeral case d d 07.31.13.0009.01 d d b d k 1 l 1 d a l w 0 ; w c k a k 1 F 1 a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a a k ; 11 j,k,j,k 1 j 1 k a j a k d d 07.31.13.0003.01 d d b d k 1 l 1 d a l w 0 ; w c k a k 1 F 1 a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a a k ; 11 ; j,k,j,k 1 j 1 k a j a k Trasformatios Products, sums, ad owers of the direct fuctio Products of the direct fuctio 07.31.16.0001.01 F a 1,, a ; b 1,, b ; c r F s Α 1,, Α r ; Β 1,, Β s ; d c k k ; c k d k r Α j k s1 F r k, 1 Β 1 k,, 1 Β s k, a 1,, a ; 1 Α 1 k,, 1 Α r k, b 1,, b ; 1rs1 c s k Β j d k c k c k a j k r1 F s k, 1 b 1 k,, 1 b k, Α 1,, Α r ; 1 a 1 k,, 1 a r k, Β 1,, Β s ; 11 d k b j c k

htt://fuctios.wolfram.com 07.31.16.000.01 F a 1,, a ; b 1,, b ; c r F s Α 1,, Α r ; Β 1,, Β s ; d k m 0 r a j m Α j km c m d km k s b j m Β j km mk m 07.31.16.0003.01 0:;r : a 1,, a ; Α 1,, Α r ; F a 1,, a ; b 1,, b ; c r F s Α 1,, Α r ; Β 1,, Β s ; d F 0:;s c, d : b 1,, b ; Β 1,, Β s ; Idetities Recurrece idetities Distat eighbors with resect to 07.31.17.0001.01 1F a 1,, a 1 ; b 1,, b ; b j k a1,, a 1, b 1,, b F 1 1a 1, a ; a 1 a Ψ k; ; Ψ b j 1 j 3 a j a j Fuctioal idetities Relatios betwee cotiguous fuctios 07.31.17.000.01 b F a, b 1, a 3,, a ; b 1,, b ; a F a 1, b, a 3,, a ; b 1,, b ; a b F a, b, a 3,, a ; b 1,, b ; 0 07.31.17.0003.01 c F a, a,, a ; c, b,, b ; a F a 1, a,, a ; c 1, b,, b ; a c F a, a,, a ; c 1, b,, b ; 0 07.31.17.0004.01 d F a 1,, a ; c 1, d, b 3,, b ; c F a 1,, a ; c, d 1, b 3,, b ; c d F a 1,, a ; c 1, d 1, b 3,, b ; 0 07.31.17.0005.01 ca b F a, b, a 3,, a ; c, b,, b ; ac b F a 1, b, a 3,, a ; c 1, b,, b ; bc a F a, b 1, a 3,, a ; c 1, b,, b ; 0 07.31.17.0006.01 cd a F a, a,, a ; c, d 1, b 3,, b ; dc a F a, a,, a ; c 1, d, b 3,, b ; ac d F a 1, a,, a ; c 1, d 1, b 3,, b ; 0 b k 07.31.17.0007.01 F a, a,, a ; b 1,, b ; F a 1, a,, a ; b 1,, b ; a j F a 1, a 1,, a 1; b 1 1,, b 1; 0 j

htt://fuctios.wolfram.com 3 07.31.17.0008.01 cc 1 b k F a 1,, a ; c, b,, b ; F a 1,, a ; c 1, b,, b ; k a j F a 1 1,, a 1; c, b 1,, b 1; 0 07.31.17.0009.01 b k F a, b 1, a 3,, a ; b 1,, b ; F a 1, b, a 3,, a ; b 1,, b ; b a a j F a 1, b 1, a 3 1,, a 1; b 1 1,, b 1; 0 j 3 07.31.17.0010.01 cc 1 b k F a, a,, a ; c, b,, b ; F a 1, a,, a ; c 1, b,, b ; k c a a j F a 1, a 1,, a 1; c, b 1,, b 1; 0 j 07.31.17.0011.01 b k c F a, b, a 3,, a ; c, b,, b ; k a F a 1, b 1, a 3,, a ; c 1, b,, b ; c a F a, b 1, a 3,, a ; c 1, b,, b ; a a j F a 1, b 1, a 3 1,, a 1; c 1, b 1,, b 1; 0 j 3 07.31.17.001.01 F a 1, b 1, a 3,, a ; c 1, d 1, e 1, b 4,, b ; c da eb e a b c ed e F a, b, a 3,, a ; c, d, e 1, b 4,, b ; c ea db d a b c de d F a, b, a 3,, a ; c, d 1, e, b 4,, b ; d ea cb c a b d ce c F a, b, a 3,, a ; c 1, d, e, b 4,, b ; 0 07.31.17.0013.01 a bd ce c F a, b, c, a 4,, a ; d, e, b 3,, b ; d e a cb c F a 1, b 1, c, a 4,, a ; d 1, e 1, b 3,, b ; a cd be b d e a bc b F a 1, b, c 1, a 4,, a ; d 1, e 1, b 3,, b ; b cd ae a d e b ac a F a, b 1, c 1, a 4,, a ; d 1, e 1, b 3,, b ; 0

htt://fuctios.wolfram.com 4 07.31.17.0014.01 a a j1 b j 1 F a, a,, a 1 ; b 1,, b ; b j a b j b j b k k j b j a k1 1 F a, a,, a 1 ; b 1,, b j1, b j 1, b j1,, b ; a1 1 F a 1, a,, a 1 ; b 1,, b ; Relatios of secial kid 07.31.17.0015.01 F a 1,, a ; c, 1 c, b 3,, b ; F a 1,, a ; c, 1 c, b 3,, b ; F a 1,, a ; 1 c, 1 c, b 3,, b ; 07.31.17.0016.01 F a, a,, a ; a, 1 a, b 3,, b ; F a, a,, a ; 1 a, 1 a, b 3,, b ; 1 F 1 a,, a ; 1 a, b 3,, b ; 07.31.17.0017.01 F a, a,, a ; 1 a, b,, b ; F a, a,, a ; 1 a, b,, b ; 1 F 1 a, a, a,, a ; 1 a, 1 a, b,, b ; 07.31.17.0018.01 F a, 1 a, a 3,, a ; b 1,, b ; F a, 1 a, a 3,, a ; b 1,, b ; 1 F 1 a, a, a 3,, a ; b 1,, b ; Divisio o eve ad odd arts ad geeraliatio 07.31.17.0019.01 F a 1,, a ; b 1,, b ; A A ; A 1 F a 1,, a ; b 1,, b ; F a 1,, a ; b 1,, b ; A 1 F a 1,, a ; b 1,, b ; F a 1,, a ; b 1,, b ; 07.31.17.000.01 F a 1,, a ; b 1,, b ; A A ; a A 1 a F 1,,, a 1 1 a 1,, A a j a 1 1 F 1 b j a 1,, ; 1, b 1,, b, a 1,,, b 1 1 a b 1,, ; 4 1 ; 3, b 1 1,, b 1, b 1,, b ; 4 1 07.31.17.001.01 F a 1,, a ; b 1,, b ; 1 k k a j k 1 F 1, a 1 k b j k,, a 1 k 1,, a k,, a k 1 ; k 1,, k, b 1 k,, b 1 k 1,, b k,, b k 1 ; 1 Case 1 F

htt://fuctios.wolfram.com 5 07.31.17.00.01 1F a 1,, a 1 ; b 1,, b ; b k 1 ak a 1 k 1 a j a k b j a k a k 1F a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; 1 ; m 0, 1 j,k,j,k 1 j 11 k 1 a j a k 07.31.17.003.01 m b j b k 1 a j b k 1 j 1 b k 1 a j b k j m1 1 b j b k 1F 1 a 1 b k,, 1 a 1 b k ; 1 b 1 b k,, 1 b k1 b k, 1 b k1 b k,, 1 b 1 b k ; 1 m1 ak a j m 1 a k b j 1 j m1 a k 1 1 a k b j j 1 a j a k 1 1F 1 a k b 1,, 1 a k b 1 ; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; 1m1 m m 1 1 m m 1, 0 ; 07.31.17.004.01 a 1 1F a 1,, a 1 ; b 1,, b ; w 1 a k 1 1 F k, a,, a 1 ; b 1,, b ; w k 1 k Differetiatio Low-order differetiatio With resect to a 1 07.31.0.0001.01 F 1,0,,0,0,,0,0 a 1,, a ; b 1,, b ; 1 1 07.31.0.000.01 F 1,0,,0,0,,0,0 a 1,, a ; b 1,, b ; Ψk a 1 a j k k j a j k b j k F 1 0 1 b j Ψa 1 F a 1,, a ; b 1,, b ; ; 1 a 1 1,, a 1; 1; 1, a 1 ;, b 1 1,, b 1;; a 1 1;, With resect to b 1

htt://fuctios.wolfram.com 6 07.31.0.0003.01 F 0,,0,1,0,,0,0 a 1,, a ; b 1,, b ; Ψb 1 F a 1,, a ; b 1,, b ; 1 1 07.31.0.0004.01 F 0,,0,1,0,,0,0 a 1,, a ; b 1,, b ; a j F 1 0 1 b 1 b j Ψk b 1 a j k k k b j k 1 a 1 1,, a 1; 1; 1, b 1 ;, b 1 1,, b 1;; b 1 1;, With resect to elemet of arameters With resect to elemet of arameters 07.31.0.0005.01 F a, a,, a ; a 1, b,, b ; a j a j a 1 1 F 1 a 1, a 1, a 1,, a 1; a, a, b 1,, b 1; j b j 07.31.0.0006.01 F a 1, a,, a ; a, b,, b ; a With resect to 07.31.0.0007.01 F a 1,, a ; b 1,, b ; 07.31.0.0008.01 F a 1,, a ; b 1,, b ; a j j a j a 1 F 1 a 1,, a 1; b 1,, b 1; j b j F a 1 1,, a 1; b 1 1,, b 1; b j a j a j 1 F a 1,, a ; b 1,, b ; b j b j 1 ; Symbolic differetiatio With resect to a 1 07.31.0.0009.01 F,0,,0,0,,0,0 a 1,, a ; b 1,, b ; j a j k a 1 k k b j a k 1 k ; 1 1 With resect to b 1 07.31.0.0010.01 F 0,,0,,0,,0,0 a 1,, a ; b 1,, b ; a j k k j b j k 1 b 1 k With resect to elemet of arameters With resect to elemet of arameters b 1 k ; 1 1 1

htt://fuctios.wolfram.com 7 07.31.0.001.01 F a, a,, a ; a 1, b,, b ; a 1 1 j a j a 1 1 j b j 07.31.0.00.01 F a 1, a,, a ; a, b,, b ; a F a 1,, a 1, a 1,, a 1; a,, a, b 1,, b 1; ; 1 a 1 F 1 a,, a ; b,, b ; a 1 j a j 1 1 1 F 1 a,, a ; b,, b ; ; a With resect to 07.31.0.0011.01 F a 1,, a ; b 1,, b ; a j 1F 1 a 1,, a 1; b 1,, b 1; j b j F a 1,, a ; b 1,, b ; ; b j 07.31.0.001.01 F a 1,, a ; b 1,, b ; b j 1 F 11, a 1,, a ; 1, b 1,, b ; ; 07.31.0.0013.01 Α F a 1,, a ; b 1,, b ; 1 Α Α 1F 1 Α 1, a 1,, a ; Α 1, b 1,, b ; ; 07.31.0.0014.01 a1 F a, a,, a ; b 1,, b ; a a1 F a, a,, a ; b 1,, b ; ; 07.31.0.0015.01 c1 F a 1,, a ; c, b,, b ; c c1 F a 1,, a ; c, b,, b ; ; 07.31.0.0016.01 F, a,, a ; 1, b,, b ; 1 F 1, 1, a,, a ; 1, 1, b,, b ; ; 07.31.0.0017.01 Α F, a,, a ; b 1,, b ; 1 Α Α 1 F 1, Α 1, a,, a ; Α 1, b 1,, b ; ;

htt://fuctios.wolfram.com 8 07.31.0.0018.01 Α F r, 1 r,, r1, a r r1,, a ; b 1,, b ; m 1 Α Α m F m 1 r 1,,,, Α 1 r r r m, Α Α m,, m m, a r1, Α 1 Α Α m, a ;,,,, b 1,, b ; m ; r m m m m 07.31.0.0019.01 F, a,, a ; b 1,, b ; 1 k k 1 F, k, a k,, a k; b 1 k,, b k; ; k b j k Fractioal itegro-differetiatio With resect to 07.31.0.000.01 Α F a 1,, a ; b 1,, b ; Α b Α j 1 F 11, a 1,, a ; 1 Α, b 1,, b ; Itegratio Idefiite itegratio Ivolvig oly oe direct fuctio 07.31.1.0001.01 F a 1,, a ; b 1,, b ; b j 1 F a 1 1,, a 1; b 1 1,, b 1; a j 1 Ivolvig oe direct fuctio ad elemetary fuctios Ivolvig ower fuctio 07.31.1.000.01 Α1 F a 1,, a ; b 1,, b ; Α Α 1F 1 Α, a 1,, a ; Α 1, b 1,, b ; Defiite itegratio For the direct fuctio itself

htt://fuctios.wolfram.com 9 07.31.1.0003.01 0 t Α1 F a 1,, a ; b 1,, b ; tt b k Α a k Α 0 ReΑ mirea 1,, Rea 1 0 ReΑ mi Rea 1,, Rea, 1 4 1 Re a k b k Α ; a j b k 1 Summatio Fiite summatio 1 07.31.3.0001.01 a j k 1 F 1, a 1 k b j k,, a 1 k 1,, a k,, a k 1 ; k 1 k,,, b 1 k,, b 1 k 1, b k,, b k 1 ; 1 k k F a 1,, a ; b 1,, b ; Ifiite summatio 07.31.3.000.01 a 1 k 1 k 1 F k, a,, a 1 ; b 1,, b ; w k 1 a 1 w 1F a 1,, a 1; b 1,, b ; 1 Oeratios Limit oeratio 07.31.5.0001.01 lim 1 Ψ 1 F a 1,, a 1 ; b 1,, b ; 1 lim 1 07.31.5.000.01 1 log1 1 F a 1,, a 1 ; b 1,, b ; 07.31.5.0003.01 F a 1,, a ; b 1,, b ; lim b 1 b 1 Ψ b j 1 a j b j 1 a j ; Ψ b j a j ReΨ 0 1 ; Ψ b j a j Ψ 0 1 a j 1 F a 1 1,, a 1;, b 1,, b 1; ; 07.31.5.0004.01 1 lim a F a, a,, a ; b 1,, b ; a 1F a,, a ; b 1,, b ;

htt://fuctios.wolfram.com 30 07.31.5.0005.01 lim a F a 1,, a ; b, b,, b ; b F 1 a 1,, a ; b,, b ; lim a 07.31.5.0006.01 a 1 a 1 F a, a, a 3,, a 1 ; a 1, a 3 1,, a 1 1; 1 1 1 S a a 3 a 1 a 07.31.5.0007.01 lim 1 1 F 1 m, a 1, a 3 1,, a 1 1; a, a 3,, a 1 ; 1 m1 m m 1 ; a a 3 a 1 1 m ; Reresetatios through more geeral fuctios Through hyergeometric fuctios Ivolvig F 07.31.6.0001.01 F a 1,, a ; b 1,, b ; b k F a 1,, a ; b 1,, b ; Through hyergeometric fuctios of two variables 07.31.6.000.01 0 0 F a 1,, a ; b 1,, b ; F ; a 1,, a ;; 0 0 ; b 1,, b ;;, 0 07.31.6.0003.01 F a 1,, a ; b 1,, b ; b k F 0 0 ; a 1,, a ;; 0 0 ; b 1,, b ;;, 0 Through Meijer G Classical cases for the direct fuctio itself 07.31.6.0004.01 F a 1,, a ; b 1,, b ; b k a k 1, G,1 1 a 1,, 1 a 0, 1 b 1,, 1 b

htt://fuctios.wolfram.com 31 07.31.6.0005.01 1F a 1,, a 1 ; b 1,, b ; b k 1 Π siψ Π ak 1 siπ b j a k siπ b j b k k j,1 G 1,1 1 a 1,, 1 a 1 0, 1 b j, 1 b 1,, 1 b j1, 1 b j1,, 1 b Π b k 1 siψ Π ak 1 Ψ 1 Ψ 0,1 G 1,1 1 a 1,, 1 a 1 1,0 0, 1 b 1,, 1 b G 1,1 1 a 1,, 1 a 1 0, 1 b 1,, 1 b ; Ψ b j a j 1, 0 Ψ 1 07.31.6.0006.01 F a 1,, a ; b 1,, b ; b k a k G 3,1 4,3 1 1, b 1,, b a 1,, a ; 0, Theorems Coectios betwee series ad cotiued fractio reresetatios Euler established that the coverget series a k ca be exressed i a cotiued fractio form a k a 1 1 CotiueFractio a k1 a k, 1 a 1 k1, k, 1,. a k I articular the followig reresetatio takes lace: F a 1, a,, a ; b 1, b,, b ; 1 a k b k 1 CotiueFractio k a j k 1 k b j, 1 k a j k 1 k b j, k, 1, 1. History J. F. Pfaff (1797) T. Clause (188); J. Thomae (1870, 1879) studied differetial euatio S. Picherle (1886, 1888) L. Pochhammer (1888) E. W. Bares (1906 1908) T. W.Chaudy (1943) N. E. Nörlud (1955) A. P. Prudikov, Y.A. Brychkov ad O.I. Marichev (1986)

htt://fuctios.wolfram.com 3 Coyright This documet was dowloaded from fuctios.wolfram.com, a comrehesive olie comedium of formulas ivolvig the secial fuctios of mathematics. For a key to the otatios used here, see htt://fuctios.wolfram.com/notatios/. Please cite this documet by referrig to the fuctios.wolfram.com age from which it was dowloaded, for examle: htt://fuctios.wolfram.com/costats/e/ To refer to a articular formula, cite fuctios.wolfram.com followed by the citatio umber. e.g.: htt://fuctios.wolfram.com/01.03.03.0001.01 This documet is curretly i a relimiary form. If you have commets or suggestios, lease email commets@fuctios.wolfram.com. 001-008, Wolfram Research, Ic.