{ u (t)+a(t)f(u) =0, 0 <t<1; { u (t)+a(t)u (t)+b(t)u(t)+h(t)f(u) =0, 0 <t<1;

Σχετικά έγγραφα
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

Prey-Taxis Holling-Tanner

arxiv: v3 [math.ca] 4 Jul 2013

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

D Alembert s Solution to the Wave Equation

Example Sheet 3 Solutions

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

High order interpolation function for surface contact problem

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Matrices and Determinants

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

On the Galois Group of Linear Difference-Differential Equations

Positive solutions for three-point nonlinear fractional boundary value problems

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Envelope Periodic Solutions to Coupled Nonlinear Equations

Homework 3 Solutions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Α Ρ Ι Θ Μ Ο Σ : 6.913

Spherical Coordinates

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Second Order RLC Filters

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Second Order Partial Differential Equations

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Statistical Inference I Locally most powerful tests

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 8 Model Solution Section

Quick algorithm f or computing core attribute

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Single-value extension property for anti-diagonal operator matrices and their square

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

a~ 1.1 [4] x, y X. x + λy x, λ C, Ifi x 4 y Φ Birkhoff MIß, a~ 1.2 [8] ε [0, 1), x, y X. x + λy 2 x 2 2ε x λy, λ C, Ifi x 4

L p approach to free boundary problems of the Navier-Stokes equation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Congruence Classes of Invertible Matrices of Order 3 over F 2

Homomorphism in Intuitionistic Fuzzy Automata

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

EXISTENCE OF SOLUTIONS FOR RIEMANN-LIOUVILLLE TYPE COUPLED SYSTEMS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS

Solutions - Chapter 4

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

m i N 1 F i = j i F ij + F x

Inverse trigonometric functions & General Solution of Trigonometric Equations

Local Approximation with Kernels

Srednicki Chapter 55

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

The Pohozaev identity for the fractional Laplacian

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Section 8.3 Trigonometric Equations

Finite Field Problems: Solutions

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

On a free boundary problem of magnetohydrodynamics in multi-connected domains

Oscillatory integrals

ECE 468: Digital Image Processing. Lecture 8

Linearized Lifting Surface Theory Thin-Wing Theory

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

Su cient conditions for sound hashing using atruncatedpermutation

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

4.6 Autoregressive Moving Average Model ARMA(1,1)

2 Composition. Invertible Mappings

A research on the influence of dummy activity on float in an AOA network and its amendments

LAD Estimation for Time Series Models With Finite and Infinite Variance

Tridiagonal matrices. Gérard MEURANT. October, 2008

C.S. 430 Assignment 6, Sample Solutions

On nonlocal fractional sum-difference boundary value problems for Caputo fractional functional difference equations with delay

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

The Spiral of Theodorus, Numerical Analysis, and Special Functions

SPECIAL FUNCTIONS and POLYNOMIALS

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

Gradient Descent for Optimization Problems With Sparse Solutions

Transcript:

4~% K x z ff Vol.4, No. 2#2μ ADVANCES IN MATHEMATICS Feb., 2 TG p-laplaian AS<7n X @pji>=g_ fi%ν,, zφ 2, e` (. iψw Jwe ρ Zψ 423; 2. ψ 'wjww Tv 37 haπ tχ#$ffi, "±w ffi ρ "flψ p-laplaian ß-»ffΞ u ψffλ+(fi &! ~ 'fluψff*μ &»±(fi xπflω v y "±οfflλ CF;Π p-laplaian ß-±Ξ uψff±w ffi±(fi MR(2 qwbkπ 34B5 / oybkdπo75.8 Z]9UOΠ A Zi8DΠ -97(2-7-8 ` [] ΩΩ Shauder μ524φ =oa'"52!ar { u (t+a(tf(u =, <t<; u( =, u( u(η = flr-%νp &&, >,η (,,η <. 5 ` [2] ΩΩ.Π=.zOμ524Φ ffi=oa'"52!ar { u (t+a(tu (t+b(tu(t+h(tf(u =, <t<; u( =, u( u(η = flr-%νp && <η<, <η<, [,. fl`xrm Il-N]C@fl ΦΩY.7- Iμ524Φ [O 7qο Q ο f 5o p-laplaian A'"52!aR { (φp (u (t + a(tf(t, u(t,u (t =, <t<; u( =, u( u(η =, u (Q ( = :'flr-%νp && φ p (s D p-laplian N φ p (s = s p 2 s, p >,φ q =(φ p, p + q =, <η<, <η<, [,. S p-laplaian N]C@fl-!aR νa$9fiv *dφ ymarvpφο /+: 6fiO?-ΦΩ b"/ρ8!!arflr-%νpv:'p- @n_»8'"vψ'"!ar+,w:fiξπ-fiq [3 7]. (D 8S p-laplaian NA' "!ar- 8H9i fl`ff fi μ4 FG%Π 28-2-2. regf+%π 29-6-23. ujχπ Zψ?n W jχ (No. 8C826; Zψ?(3l<w jχ±zψ?f χmz7d[ /-Λ Pf2. w u(3jχ (No. 535; ο 973 jχ (No. 26CB8593; `Pf2. w uχmz7jχ/-λ E-mail: tys73@63.om; liug@nanai.edu.n

72 J w y ρ 4~ νfl`& ρ3g4 fvjfiff (C f C([, ] [, + R, [, + ; (C 2 a L [, ] DAD- a(t ν [, ] -Ξ*h7μX^ f6mv ^ χflfl`-,~qq ρs~3f- ffψa?. ; E D I@ Banah Λh 3Q P D E &ffiaλyffl^»ß4ffiffl IVjΞ (a 4 x P, λ, ß λx P ; (b 4 x P, x P, ß x =. ßff P D E &- I.?.2 Ψ: ψ fiff^ P 7-ADfltΦ?T #~ ψ : P [, flt ψ(tx +( ty tψ(x+( tψ(y 8Pfi- x, y P _ t fiff M ffψ: ϕ D P 7-ADfltY?T #~ ϕ : P [, flt ϕ(tx +( ty tϕ(x+( tϕ(y 8Pfi- x, y P _ t fiff?.3 J4ßI r>a>,l>. ; ψ D P 7-ADfltΦ?T ϕ, ω D P 7-A DfltY?T 4ΠY^ P (ϕ, r; ω, L ={y P ϕ(y <r,ω(y <L, P (ϕ, r; ω, L ={y P ϕ(y r, ω(y L, P (ϕ, r; ω, L; ψ, a ={y P ϕ(y <r,ω(y <L,ψ(y >a, P (ϕ, r; ω, L; ψ, a ={y P ϕ(y r, ω(y L, ψ(y a. fg; P 7-ADfltY?T ϕ, ω ß4 (C 3 %ν M>, B,8Ξ x P fi x M {ϕ(x,ω(x; (C 4 P (ϕ, r; ω, L, 8Ξ- r>,l>. ffijffifl`,~qο-χflp~ω*-,~ Φ dl. [8] E D Banah Λh P E D I. ßI r 2 d>b>r >, L 2 L > J4 g4 ϕ, ω D P 7-ADfltY?Tß4 (C 3, (C 4, ψ D P 7-ADfltΦ?T ψ(y ϕ(y, 8Pfi y P (ϕ, r 2 ; ω, L 2 fiff T : P (ϕ, r 2 ; ω, L 2 P (ϕ, r 2 ; ω, L 2 D,fltN g; (A {y P (ϕ, d; ω, L 2 ; ψ, b ψ(y >b,ψ(ty >b, 8 y P (ϕ, d; ω, L 2 ; ψ, b; (A 2 ϕ(ty <r,ω(ty <L, 8 y P (ϕ, r ; ω, L ; (A 3 ψ(ty >b, 8 y P (ϕ, r 2 ; ω, L 2 ; ψ, b ϕ(ty >d. ß T ν P (ϕ, r 2 ; ω, L 2 &$9fi5Iμ52 y,y 2,y 3, fi y P (ϕ, r ; ω, L, y 2 {P (ϕ, r 2 ; ω, L 2 ; ψ, b ψ(y >b, y 3 P (ϕ, r 2 ; ω, L 2 \ (P (ϕ, r 2 ; ω, L 2 ; ψ, b P (ϕ, r ; ω, L.

% U»> μψlπ6p p-laplaian B(# "bs;(ffis.&οq 73 2 rbhnerlq E = C [, ] D Banah Λh &>I4Π^Ξ { u = u(t, t t u (t. P = {u E u(t,uν [,] 7Φ, ß P D E 7- I. ffvj (C 2 ψ %ν-i 3, B, < a(tdt < +. 8 u P, 4Π?T ϕ(u = u(t, ω(u = t t u (t, ψ(u = t u(t. ß ϕ, ω, ψ : P [, D5IADflt?T ß4 u ={ϕ(u,ω(u (C 3, (C 4 fi ff ϕ, ω DY?T ψ DΦ?T ψ(u ϕ(u, 8Pfi u P. dl 2. [5] ; u P, -I 3, ß t u(t t u(t. G(t, s = { t( s, t s, s( t, s t. Λψ G(t, s G(s, s, t, s. dl 2.2 ;Vj (C, (C 2 fiff u(t E D]C@fl u(t = G(t, sφ q + t { a(τf(τ,u(τ,u (τdτ ds G(η, sφ q a(τf(τ,u(τ,u (τdτ ds + (2. - Ir ß u(t 4D!aR (Q - Ir P 3Q u(t D]C@fl (2. - Ir ß8Ξ t [, ], ρfi u (t = G (t, sφ q a(τf(τ,u(τ,u (τdτ ds = + t + { G(η, sφ q ( sφ q t ( sφ q a(τf(τ,u(τ,u (τdτ ds + a(τf(τ,u(τ,u (τdτ ds a(τf(τ,u(τ,u (τdτ ds + { G(η, sφ q ( t u (t = φ q a(τf(τ,u(τ,u (τdτ a(τf(τ,u(τ,u (τdτ ds +,.

74 J w y ρ 4~, (φ p (u (t + a(tf(t, u(t,u (t =, < u ( =.» ff G(,s=G(,s=_ (2. C, u( =. u( = { G(η, sφ q a(τf(τ,u(τ,u (τdτ ds + = G(η, sφ q a(τf(τ,u(τ,u (τdτ u(η = G(η, sφ q a(τf(τ,u(τ,u (τdτ ds + η { G(η, sφ q = G(η, sφ q a(τf(τ,u(τ,u (τdτ ds +, a(τf(τ,u(τ,u (τdτ ds + ds + η. P u( u(η =. $< u(t D!aR (Q - Ir χffi 8Ξ u P, 4ΠN T : P E (Tu(t = G(t, sφ q + t { a(τf(τ,u(τ,u (τdτ ds G(η, sφ q a(τf(τ,u(τ,u (τdτ ds +. (2.2 dl 2.3 T : P P D,flt- P 8 u P, ff (2.2 C_Vj (C, (C 2, h- (Tu(t, t [, ],Tu E. (Tu (t = φ q ( t a(τf(τ,u(τ,u (τdτ. P Tuν*h [, ] 7DΦTI N T (P P.» @fi ; D D P - fit^ ß%ν M>, B, D {u P u M. N = (t,u,v [,] [,M] [ M,M] f(t, u, v. $< u D, ρfi (Tu(t = + t { G(t, sφ q a(τf(τ,u(τ,u (τdτ ds a(τf(τ,u(τ,u (τdτ ds + a(τdτ ds G(η, sφ q { N q G(s, sφ q + 6 N q ( + G(η, sφ q φ q ( a(τdτ ds + a(τdτ +,

% U»> μψlπ6p p-laplaian B(# "bs;(ffis.&οq 75 (Tu (t = G (t, sφ q a(τf(τ,u(τ,u (τdτ ds + { G(η, sφ q a(τf(τ,u(τ,u (τdτ ds + t = ( sφ q a(τf(τ,u(τ,u (τdτ ds + ( sφ q a(τf(τ,u(τ,u (τdτ ds t + { G(η, sφ q a(τf(τ,u(τ,u (τdτ ds + ( { t N q φ q a(τdτ sds + ( sds + G(s, sds + t ( N (+ q φ q a(τdτ + 6(, ( t ( (Tu (t = φ q a(τf(τ,u(τ,u (τdτ N q φ q a(τdτ. ffid K Arzela-Asoli 4Φψ T (D ^ w^ &"ff±ωhξ%effi4φμ!χfl T ν P 7Dflt- ±! T : P P D,flt- χffi ^ @ ρ ΩffieU N = ( ( s G 2,s φ q ( φ q M = ( + 3 ( ( H = + φ q 3( = a(τdτ ds, a(τdτ, a(τdτ { 2 (r, 2 (L ρ-,~qο3fξ {?L 2. g;%νßi r 2 b>b>r >,L 2 L >, B, b N r2 M, L2 H, [,, 3fg;fiff { (B f(t, u, v < φ p ( r M,φ p ( L H, 8 (t, u, v [.] [,r ] [ L,L ]; (B 2 f(t, u, v >φ p ( b N, 8 (t, u, v [, ] [b, b] [ L 2,L 2 ]; { (B 3 f(t, u, v φ p ( r2 M,φ p ( L2 H, 8 (t, u, v [, ] [,r 2 ] [ L 2,L 2 ]. ß!aR (Q $9fi5Iflr u,u 2,u 3 B, b< t t u (t <r, t t u (t <L, u 2 (t t u 2(t r 2, u 3 (t <b, u 3(t <b, t. t u 2 (t L 2, t u 3 (t L 2.,

76 J w y ρ 4~ P ff Φ 2.2, Φ 2.3 ψ ρ#sχ Φ. -PfiVj6ß4 ffiρcl νxoχ ( Ggρχ T : P (ϕ, r 2 ; ω, L 2 P (ϕ, r 2 ; ω, L 2. 3Q u P (ϕ, r 2 ; ω, L 2, ß ϕ(u r 2,ω(u L 2. ffid ffg4 (B 3, fi ±! f(t, u(t,u (t ϕ(tu= (Tu(t = t t + t { G(η, sφ q { G(s, sφ q r 2 M + r 2 M 6 r 2 2 + r 2 2 = r 2. ( + { φ p ( r2 M,φ p ( L2 H. G(t, sφ q a(τdτ G(η, sφ q φ q ( a(τf(τ,u(τ,u (τdτ ds a(τdτ ds + a(τdτ + a(τf(τ,u(τ,u (τdτ ds ds + 8 u P, fi Tu P. ff Tuν [, ] 7Φ ψ t (Tu (t ={ (Tu (, (Tu (. ±! ω(tu= t (Tu (t ={ (Tu (, (Tu ( { ( sφ q a(τf(τ,u(τ,u (τdτ + ( G(η, sφ q sφ q a(τf(τ,u(τ,u (τdτ ds + ( G(η, sφ q L ( ( 2 H 2 + φ q a(τdτ + 6( L 2 2 + L 2 2 = L 2. ±! T : P (ϕ, r 2 ; ω, L 2 P (ϕ, r 2 ; ω, L 2. (2 ρχ Φ. -Vj (A fiff u+ u(t = b 2 ds a(τf(τ,u(τ,u (τdτ ds +, a(τf(τ,u(τ,u (τdτ ds +, <t<. 2Λχfl u(t = b 2 P (ϕ, b; ω, L 2; ψ, b ψ(u =ψ( b ±! {u P (ϕ, b; ω, L 2 ; ψ, b. 4 u P (ϕ, b; ω, L 2 ; ψ, b, ß8 t b, u (t L 2. ffvj (B 2, ρfi f(t, u(t,u (t >ϕ p ( b N, t. 2 >b,, b u(t

% U»> μψlπ6p p-laplaian B(# "bs;(ffis.&οq 77 ff?t ψ -4Π_ Φ 2., fi ψ(tu= t t > b N = b. (Tu(t (Tu(t t G G(t, sφ q a(τf(τ,u(τ,u (τdτ ds ( s φ q a(τf(τ,u(τ,u (τdτ ds ( 2,s ( G 2,s ( s φ q a(τdτ ds ±! ψ(tu >b, 8Pfi- u P (ϕ, b; ω, L 2 ; ψ, b, fi fl Φ. -Vj (A fiß4 (3 ρχ Φ. -Vj (A 2 fiff 3Q u P (ϕ, r ; ω, L, ßVj (B fl { ( f(τ,u(τ,u r ( L (τ < φ p,φ p, τ. M H M ( χfl T : P (ϕ, r ; ω, L P (ϕ, r ; ω, L. ffid Φ. -Vj (A 2 fiß4 (4 5Yρχ Φ. -Vj (A 3 fiff g; u P (ϕ, r 2 ; ω, L 2 ; ψ, b ϕ(tu >b, ßff?T ψ -4Π_ Φ 2., fi ψ(tu= t (Tu(t (Tu(t = t ϕ(tu > b = b. ffid Φ. -Vj (A 3 fiß4 ±!ff Φ. ψ!ar (Q $9fi5Iflr ß4 u P (ϕ, r ; ω, L, u 2 {P (ϕ, r 2 ; ω, L 2 ; ψ, b ψ(u >b, u 3 P (ϕ, r 2 ; ω, L 2 \ (P (ϕ, r 2 ; ω, L 2 ; ψ, b P (ϕ, r ; ω, L. ffffi u 3 ß4 ϕ(u 3 ψ(u 3, P t u 3 (t <b.χffi 3 Ms p = 3 2,a(t,η = = 2 _ = 5. ρ νffi!arξ {( u (t 2 u (t + f(t, u(t,u (t =, <t<; u( =, u( 2 u( 2 = 5, u ( =, (R fiψ { f(t, u, v = 23 t +24u8 +( v 77 2, u, 23 t +24+( v 77 2, u >. u+ r = 2 3,b=,=4,L =2,r 2 = 35, L 2 = 77. fi N = 23 372.75, M = 5 9.556, H = 9.222.

78 J w y ρ 4~ fl b N 533.33 < { r2 M, L2 H 63.8, = 5 < ={ 2 (r, 2 (L = 4, < f(t, u, v ß4 f(t, u, v < < {φ 3 ( r,φ3 2 M ( L 2 H.95, 8 t, u 2 3, u 4, v 77; 2 f(t, u, v > 24 >φ3 2 ( b N 23.94, 8 4 t 3 4, v 2; 3 f(t, u, v < 25. < {φ 3 2 ( r2 M,φ3 2 ( L2 H 25.6, 8 t, u 35, v 77. a4φ 2. -PfiVj6ß4 ±!!ar (R $9fi5Iflr u,u 2 ffl u 3, ß4 :J[^ u (t < 2 t 3, < u 2 (t u 2(t 35, 4 t 3 t 4 u 3 (t <, 4 t 3 4 u 3(t < 4, t t u (t < 2; t u 2 (t 77; t u 3 (t 77. [] Ma R.Y., Positive solutions for seond-order three-point boundary value problem, Appl. Math. lett., 2, 4: -5. [2] Chen H.B., Positive solutions for the nonhomogeneous three-point boundary value problem of seond-order differential equations, Math. Comp. Mode, 27, 45: 844-852. [3] He X.M., Ge W.G., Twin positive solutions for the one-dimensional p-laplaian boundary value problems, Nonlinear Anal., 24, 56: 975-984. [4] Ma D.X., Han J.X., Chen X.G., Positive solution of boundary value problem for one-dimensional p-laplaian with singularities, J. Math. Anal. Appl., 26, 324: 8-33. [5] Su H., Wei Z.L., Wang B.H., The existene of positive solutions for a nonlinear four-point singular boundary value problem with a p-laplaian operator, Nonlinear Anal., 27, 66: 224-227. [6] Sun B., Ge W.G., Zhao D.X., Three positive solutions for multipoint one-dimensional p-laplaian boundary value problem with dependene on the first order derivative, Math. Comp. Mode, 27, 45: 7-78. [7] Pang H.H., Feng M.Q., Ge W.G., Existene and monotone iteration of positive solution for a three-point boundary value problem, Appl. Math. Lett., 28, 2: 656-66. [8] Bai Z.B., Ge W.G., Existene of three positive solutions for some seond-order boundary value problem, Comput. Math. Appl., 24, 48: 699-77. Multiple Positive Solutions of the Nonhomogeneous Boundary Value Problem for a Class of Third-order p-laplaian Equations TIAN Yuansheng, LIU Chungen (. Department of Mathematis, Xiangnan University, Chenzhou, Hunan, 432, P. R. China; 2. Shool of Mathematis, Nanai University, Tianjin, 37, P. R. China Abstrat: In this paper, by using a fixed point theorem on onvex one, we onsider the nonhomogeneous boundary value problem for a lass of third order p-laplae equations, the multipliity result of three positive solutions are obtained, an example is that inluded to illustrate the importane of results obtained. Key words: p-laplaian operator; nonhomogeneous boundary value problem; fixed point theorem; positive solution