Διάλεξη 13: D Σχήμα 13.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 13.3: Σχηματική επεξήγηση περιπτώσεων πο

Σχετικά έγγραφα
Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

E(G) 2(k 1) = 2k 3.

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

m = 18 και m = G 2

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

d(v) = 3 S. q(g \ S) S

S A : N G (S) N G (S) + d S d + d = S

u v 4 w G 2 G 1 u v w x y z 4

Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ

q(g \ S ) = q(g \ S) S + d = S.

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Θεωρία Γραφημάτων 11η Διάλεξη

Θεωρία Γραφημάτων 4η Διάλεξη

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

P = (J, B) T = (I, A) P = (J, B) G = (V, E) i 1 i i + 1

( ) x 1 1. cone( (10.1) ( ) x ) := D (10.2) D Ax b 0 Ax 0 b. i λ i 1

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Θεωρία Γραφημάτων 5η Διάλεξη

X i, i I Y j, j J. X i. Z j P = (J, B) G T = (I, J) 1 2 i i + 1 n. 1 i V

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη

χ(k n ) = n χ(c 5 ) = 3

Επίπεδα Γραφήματα (planar graphs)

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Θεωρία Γραφημάτων 7η Διάλεξη

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Εισαγωγή στους Αλγορίθμους

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής

Θεωρία Γραφημάτων 10η Διάλεξη

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

x 3 = 0 x 6 = 0 x 4 = 0 x 5 = 0 x 2 = 0 x 1 = 0 aff(p )

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Βασικές Έννοιες Θεωρίας Γραφημάτων

Θεωρία Γραφημάτων 9η Διάλεξη

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

2. dim(p ) = n rank(a = )

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Θεωρία Γραφημάτων 1η Διάλεξη

Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Στοιχεία Θεωρίας Γραφηµάτων (2)

Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

Στοιχεία Θεωρίας Γραφηµάτων (1)

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 3

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Διμερή γραφήματα και ταιριάσματα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

Θεωρία Γραφημάτων 3η Διάλεξη

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

2 ) d i = 2e 28, i=1. a b c

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

x είναι f 1 f 0 f κ λ

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

6 Συνεκτικοί τοπολογικοί χώροι

Αναζήτηση Κατά Πλάτος

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

rec(p ) rec(p ) = {y Ay = 0}. lin(p ) := rec(p ) rec(p ) = {y Ay = 0}. Ax b = α T i x = b i. P = {x R n Ax b} { x R n α T i x = b i 11-1 α T i x b i

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

Συνεκτικότητα Γραφήματος

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

ΤΡΙΓΩΝΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 9

Θεωρία Γραφημάτων 2η Διάλεξη

Transcript:

Διάλεξη 13: 25.11.26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Καλλιόπη Πατερομιχελάκη & Σ. Κ. 13.1 Εναγόμενοι κύκλοι Ορισμός 13.1 Ενας κύκλος του γραφήματος G = (V, E), καλείται εναγόμενος αν = G[V ()]. Δηλαδή, εναγόμενος κύκλος είναι κύκλος ο οποίος δεν έχει χορδές. Βλ. Σχήμα 13.1 για ένα παράδειγμα εναγόμενου κύκλου. G 1 G 2 Σχήμα 13.1: Ο G 1 περιέχει εναγόμενο κύκλο 6, ο G 2 περιέχει ένα υπογράφημα ισόμορφο με το 6 που δεν είναι εναγόμενο υπογράφημα. Λήμμα 13.1 Εστω κύκλος σε επίπεδο γράφημα G = (V, E) τ.ώ. G και το γράφημα G δεν είναι ο κύκλος συν μια χορδή. Τότε ο ορίζει το σύνορο όψης σε κάθε εμβάπτιση του G στο επίπεδο, αν και μόνο αν ο είναι εναγόμενος κύκλος και δεν είναι διαχωριστής του G. Απόδειξη: : Εστω εμβάπτιση Γ του G στο επίπεδο. Αφού το G \ συνεκτικό, από το Θεώρημα του Jordn (Θεώρημα 10.1) θα περιέχεται εξολοκλήρου είτε στο εσωτερικό του δίσκου D που ορίζει ο στη Γ (βλ. Σχήμα 13.2) είτε στο R 2 \ D. Σε κάθε περίπτωση, η «άλλη» περιοχή του R 2 \, δηλαδή αυτή που δεν περιέχει το G \, είναι μία όψη που έχει ως σύνορο το, διότι δεν υπάρχουν χορδές (βλ. Σχήμα 13.3). : (χρησιμοποιώντας τη μέθοδο της αντιθετοαντιστροφής) Εστω ο κύκλος δεν είναι εναγόμενος ή το G \ δεν είναι συνεκτικό. Διακρίνουμε τις εξής περιπτώσεις: Περίπτωση 1: Ο δεν είναι εναγόμενος, δηλαδή υπάρχει χορδή c του στο G. Αφού G c, είτε ο G έχει κορυφή εκτός του ή το G περιέχει χορδή d του όπου d c. 13-1

Διάλεξη 13: 25.11.26 13-2 D Σχήμα 13.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 13.3: Σχηματική επεξήγηση περιπτώσεων που απορρέουν απο Θεώρημα του Jordn. Αριστερά: το G\ περιέχεται στο εσωτερικό του δίσκου D. Δεξιά: το G \ περιέχεται στο R 2 \ D. Η μη ύπαρξη χορδών και στις δύο περιπτώσεις περιγράφεται σχηματικά. Στην αριστερή εικόνα η απουσία χορδών είναι προφανής, ενώ στη δεξιά, επισημαίνεται με την ύπαρξη των δύο πράσινων κόμβων.

Διάλεξη 13: 25.11.26 13-3 Θεωρούμε εμβάπτιση Γ του γραφήματος G, στην οποία ο ορίζει όψη f (βλ. Σχήμα 13.4). (Αν δεν υπάρχει τέτοια εμβάπτιση τότε αποδείχθηκε.) d f c Σχήμα 13.4: Εμβάπτιση Γ στην οποία ο κύκλος ορίζει όψη f. Τροποποιούμε τη Γ σχεδιάζοντας τη c μέσα στην όψη f. Παίρνουμε εμβάπτιση Γ στην οποία ο δεν ορίζει όψη μιας και έξω από τον δίσκο που ορίζει ο θα βρίσκεται η κορυφή ή η χορδή d (βλ. Σχήμα 13.5). d c Σχήμα 13.5: Εμβάπτιση Γ στην οποία ο κύκλος δεν ορίζει όψη. Περίπτωση 2: Το G \ έχει τουλάχιστον δύο συνιστώσες. Υποθέτουμε χωρίς βλάβη της γενικότητας ότι έχει ακριβώς δύο συνιστώσες,. Εστω η εμβάπτιση Γ στην οποία ορίζει όψη ο. Από την Α παίρνουμε τις «εναγόμενες» εμβαπτίσεις Γ του G \ = και Γ του G \ = (βλ. Σχήμα 13.6). Σχήμα 13.6: Εμβάπτιση Γ στην οποία ορίζει όψη ο. Χ.β.τ.γ., υποθέτουμε επίσης ότι ο ορίζει την εξωτερική όψη στη Γ και μη εξωτερική όψη στη Γ (βλ. Σχήμα 13.7). Συνδυάζουμε τις Γ και Γ «συγκολλώντας» τες στον. Με άλλα λόγια

Διάλεξη 13: 25.11.26 13-4 επεκτείνουμε την Γ σε εμβάπτιση όλου του G «προσθέτοντας» τη Γ στο εσωτερικό της όψης που ορίζει ο (βλ. Σχήμα 13.8). Σχήμα 13.7: Εμβαπτίσεις Γ (αριστερά στο σχήμα), Γ (δεξιά στο σχήμα). 0 1 Σχήμα 13.8: Συνδυασμός εμβαπτίσεων Γ και Γ σε μία εμβάπτιση. Στις περιπτώσεις όπου G = ή G = c, όπου c χορδή του, όλες οι εμβαπτίσεις περιέχουν όψη με σύνορο το. Στη δεύτερη περίπτωση όπου οι κύκλοι του γραφήματος είναι ακριβώς τρεις, κάθε ένας από αυτούς ορίζει όψη σε οποιαδήποτε εμβάπτιση του G. Επομένως σε συνδυασμό με το Λήμμα 13.1 έχουμε χαρακτηρίσει επακριβώς πότε ένας κύκλος ορίζει όψη σε κάθε εμβάπτιση του G. Παρατήρηση 13.1 Αν G = ή G = c, όπου c είναι χορδή του κύκλου, τότε το G δεν είναι 3-συνεκτικό. Πόρισμα 13.1 Ενας κύκλος ενός επίπεδου 3-συνεκτικού γραφήματος G ορίζει όψη σε κάθε εμβάπτιση του G αν και μόνο αν ο είναι εναγόμενος κύκλος και δεν είναι διαχωριστής. 13.2 Θεώρημα του Whitney Θεώρημα 13.1 (Whitney, 1932) Ολες οι εμβαπτίσεις ενός επίπεδου 3-συνεκτικού γραφήματος είναι ισοδύναμες. Απόδειξη: Εστω G ένα επίπεδο 3-συνεκτικό γράφημα. Υποθέτουμε ότι υπάρχουν δύο εμβαπτίσεις Γ 1 και Γ 2 του G, οι οποίες δεν είναι ισοδύναμες. Τότε υπάρχει, όπου κύκλος =(v 1,...,v k ), k 3, που ορίζει όψη στη Γ 1 αλλά όχι στη Γ 2. Από το Πόρισμα 13.1, ο ή έχει χορδή ή είναι διαχωριστής. Περίπτωση 1: Ο έχει χορδή {v i, v j } με j i + 2. Ορίζουμε επίσης: := {v x i < x < j} και := {v x x > i ή x > j}. Ισχύει ότι, δεδομένου ότι v i, v j δεν είναι γειτονικά στο.

Διάλεξη 13: 25.11.26 13-5 v i v j P Σχήμα 13.9: Μονοπάτι P στην Περίπτωσης 1 της απόδειξης του Θεωρήματος 13.1. Αφού G είναι 3-συνεκτικό, υπάρχει τουλάχιστον ένα - μονοπάτι P που δεν χρησιμοποιεί τα v i, v j (βλ. Σχήμα 13.9). Εστω η τελευταία κορυφή του P που ανήκει στο και η πρώτη κορυφή του μονοπατιού που ανήκει στο. Αφού το ορίζει όψη f στη Γ 1 μπορούμε να προσθέσουμε κορυφή μέσα στην όψη f και να την συνδέσουμε με τέσσερις διακεκριμένες (disjoint) καμπύλες με τις v i,v j,, (βλ. Σχήμα 13.10). Βρήκαμε λοιπόν, ενεπίπεδο γράφημα G G που περιέχει το K 5 ως έλασσον ή υποδιαίρεση (βλ. Σχήμα 13.11). Ομως το G είναι επίπεδο. Οδηγηθήκαμε λοιπόν σε άτοπο. v i v i v j v j P Σχήμα 13.10: Η πρόσθετη κορυφή μέσα στην όψη f και οι συνδέσεις της. Σχήμα 13.11: Το K 5 ως έλασσον του G. Περίπτωση 2: Ο είναι διαχωριστής, άρα το G \ περιέχει δύο συνιστώσες και. Θεωρούμε εμβάπτιση Γ 1 στην οποία ο ορίζει όψη f. Χ.β.τ.γ. η f δεν είναι εξωτερική άρα και το Α και το Β είναι εμβαπτισμένα εξωτερικά της f. Διαλέγουμε V () και V (). Από το Θεώρημα του Menger «εκδοχή με κορυφές» (Θεώρημα 6.1) υπάρχουν τουλάχιστον 3 εσωτερικά διακεκριμένα μονοπάτια P 1, P 2, P 3, απο το στο. Επίσης ορίζουμε τη c i ως την πρώτη κορυφή του P i στον κύκλο, όπου i =1,2,3. Βρήκαμε μια υποδιαίρεση του K 2,3 στο G. Επειτα προσθέτουμε τη στο εσωτερικό της όψης f και την ενώνουμε με τρείς διακεκριμένες καμπύλες με τα c 1, c 2, c 3. Παρατηρούμε ότι πήραμε ενεπίπεδο γράφημα G G που περιέχει υποδιαίρεση του K 3,3 (βλ. Σχήμα 13.12). Οδηγηθήκαμε σε άτοπο.

Διάλεξη 13: 25.11.26 13-6 c 1 P 1 c 2 P 2 c 3 P 3 Σχήμα 13.12: Η υποδιαίρεση του K 3,3 που περιέχεται στο G.