HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Σχετικά έγγραφα
Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized hypergeometric function

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Zeta. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

On Generating Relations of Some Triple. Hypergeometric Functions

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

1. For each of the following power series, find the interval of convergence and the radius of convergence:

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B


Solve the difference equation

Presentation of complex number in Cartesian and polar coordinate system

The Heisenberg Uncertainty Principle

IIT JEE (2013) (Trigonomtery 1) Solutions

Example Sheet 3 Solutions

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Homework for 1/27 Due 2/5

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Bessel function for complex variable

α β

B.A. (PROGRAMME) 1 YEAR

Homework 3 Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Inverse trigonometric functions & General Solution of Trigonometric Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Gauss Radau formulae for Jacobi and Laguerre weight functions

B.A. (PROGRAMME) 1 YEAR

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Distances in Sierpiński Triangle Graphs

Uniform Convergence of Fourier Series Michael Taylor

p n r

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Approximation of distance between locations on earth given by latitude and longitude

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Ψηφιακή Επεξεργασία Εικόνας

SPECIAL FUNCTIONS and POLYNOMIALS

4.6 Autoregressive Moving Average Model ARMA(1,1)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Fractional Colorings and Zykov Products of graphs

2 Composition. Invertible Mappings

Degenerate Perturbation Theory

Areas and Lengths in Polar Coordinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

The Simply Typed Lambda Calculus

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Trigonometric Formula Sheet

CRASH COURSE IN PRECALCULUS

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

EN40: Dynamics and Vibrations

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Areas and Lengths in Polar Coordinates

Section 9.2 Polar Equations and Graphs

ST5224: Advanced Statistical Theory II

EE512: Error Control Coding

1. Matrix Algebra and Linear Economic Models

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Homework 4.1 Solutions Math 5110/6830

The Equivalence Theorem in Optimal Design

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Congruence Classes of Invertible Matrices of Order 3 over F 2

Reminders: linear functions

LAD Estimation for Time Series Models With Finite and Infinite Variance

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Instruction Execution Times

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Solutions: Homework 3

Commutative Monoids in Intuitionistic Fuzzy Sets

Tridiagonal matrices. Gérard MEURANT. October, 2008

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Outline. Detection Theory. Background. Background (Cont.)

C.S. 430 Assignment 6, Sample Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Συντακτικές λειτουργίες

F19MC2 Solutions 9 Complex Analysis

Second Order Partial Differential Equations

Every set of first-order formulas is equivalent to an independent set

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Transcript:

HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed H 0 For fixed 07.0.03.000.0 Explicit iteger 07.0.03.000.0 H 0 07.0.03.0003.0 H 07.0.03.0004.0 H 4

http://fuctios.wolfram.com 07.0.03.0005.0 H 3 8 3 07.0.03.0006.0 H 4 48 6 4 07.0.03.0007.0 H 5 0 60 3 3 5 07.0.03.0008.0 H 6 0 70 480 4 64 6 07.0.03.0009.0 H 7 680 3360 3 344 5 8 7 07.0.03.000.0 H 8 680 3 440 3 440 4 3584 6 56 8 07.0.03.00.0 H 9 30 40 80 640 3 48 384 5 96 7 5 9 07.0.03.00.0 H 0 30 40 30 400 403 00 4 6 80 6 3 040 8 04 0 Symbolic iteger 07.0.03.003.0 H k k k k ; 07.0.03.004.0 H H k k k L k k k j j erf k j 0 k 3 j L j j j 0 3 4 j 4 ; Geeral characteristics Domai ad aalyticity H is a aalytical fuctio of ad which is defied over. For fixed, it is a etire fuctio of. For fixed, it is a etire fuctio of. For iteger, H degeerates to a polyomial i. 07.0.04.000.0 H

http://fuctios.wolfram.com 3 Symmetries ad periodicities Parity 07.0.04.000.0 H H ; Mirror symmetry H H Periodicity No periodicity 07.0.04.0003.0 Poles ad essetial sigularities With respect to For fixed ;, the fuctio H has oly oe sigular poit at. It is a essetial sigular poit. 07.0.04.0004.0 ig H, ; For positive iteger, the fuctio H is polyomial ad has pole of order at. 07.0.04.0005.0 ig H, ; With respect to For fixed, the fuctio H has oly oe sigular poit at. It is a essetial sigular poit. 07.0.04.0006.0 ig H, Brach poits With respect to For fixed, the fuctio H does ot have brach poits. 07.0.04.0007.0 H With respect to For fixed, the fuctio H does ot have brach poits. 07.0.04.0008.0 H Brach cuts With respect to

http://fuctios.wolfram.com 4 For fixed iteger, the fuctio H does ot have brach cuts. 07.0.04.0009.0 H With respect to For fixed, the fuctio H does ot have brach cuts. 07.0.04.000.0 H Series represetatios Geeralied power series Expasios at geeric poit 0 For the fuctio itself 07.0.06.000.0 H H 0 H 0 0 H 0 0 ; 0 07.0.06.00.0 H H 0 H 0 0 H 0 0 O 0 3 H k 07.0.06.00.0 k k 07.0.06.003.0 H k 0 0 k k k H k 0 F, ; k, k k k ; 0 0 F, ; k, 3 k ; 0 0 k 07.0.06.004.0 H H 0 O 0 Expasios at 0 For the fuctio itself Geeral case H 07.0.06.000.0 4 3 6 3 4 ; 0 30

http://fuctios.wolfram.com 5 H H 07.0.06.005.0 07.0.06.000.0 07.0.06.0003.0 4 O 6 3 6 3 4 O 6 30 k k k k k k 3 k k H F ; ; F ; 3 ; 07.0.06.0004.0 H O O 07.0.06.006.0 H F, ; F m, m k k k k m k k 3 k k m H m m m F, m ; m 3, m ; m 3 m F, m 3 ; m, m 5 ; m Summed form of the trucated series expasio. Special cases 07.0.06.0005.0 H k k k k ; 07.0.06.007.0 H O ; Expasios at For the fuctio itself Special cases

http://fuctios.wolfram.com 6 07.0.06.008.0 3 H ; 4 3 4 07.0.06.009.0 3 H O ; 4 3 4 6 07.0.06.000.0 H k k 07.0.06.00.0 k k k ; H k k k k ; 07.0.06.00.0 H F 0, 07.0.06.003.0 H O ; ; ; ; Asymptotic series expasios 07.0.06.004.0 si H 4 csc sec 3 4 3 4 3 4 ; 4 3 4 H 07.0.06.005.0 3 O arg 4 3 4 6 3 O 4 3 4 6 3 O 4 3 4 6 ; 3 4 O arg 4 3 4 6 3 4 O True 4 3 4 6

http://fuctios.wolfram.com 7 07.0.06.006.0 si H 4 csc sec k k k k k O k k k k O ; 07.0.06.007.0 k k k k k O arg H k k k k k O k k k k O arg ; k k k k k O k k k k O True 07.0.06.0006.0 si H F 0, ; ; csc sec 4 F 0, ; ; ; H 07.0.06.008.0 F 0, ; ; arg F 0, ; ; F 0, ; ; arg F 0, ; ; F 0, ; ; True ; 07.0.06.0007.0 H O 4 cos si O ; H 07.0.06.009.0 O arg O O arg O O True ; 07.0.06.0008.0 H F 0, ; ; ; arg

http://fuctios.wolfram.com 8 07.0.06.0009.0 H O ; arg Itegral represetatios O the real axis H 07.0.07.000.0 0 t t cos t 07.0.07.000.0 H 3 t t t ; t ; Re Itegral represetatios of egative iteger order Rodrigues-type formula. 07.0.07.0003.0 H ; Limit represetatios 07.0.09.000.0 H lim Λ L Λ Λ Λ Λ 07.0.09.000.0 H lim Λ Λ C Λ Λ ; 07.0.09.0003.0 H lim a a,a P a a Geeratig fuctios 07.0..000.0 H t tt ; Differetial equatios Ordiary liear differetial equatios ad wroskias 07.0.3.0005.0 w w w 0 ; w c H c H

http://fuctios.wolfram.com 9 07.0.3.0006.0 W H, H 07.0.3.0007.0 w w w 0 ; w c H c F ; 3 ; F ; ; 07.0.3.0008.0 W H, F ; 3 ; F ; ; 07.0.3.000.0 w w w 0 ; w c H c F ; ; 07.0.3.000.0 W H, F ; ; 07.0.3.0003.0 w w w 0 ; w c H c F ; 3 ; W H, F 07.0.3.0004.0 ; 3 ; 07.0.3.0009.0 w g g g g w g w 0 ; w c H g c g H g 07.0.3.000.0 W H g, g H g g g 07.0.3.00.0 w g g h h g g w w c h H g c h g H g 07.0.3.00.0 g g h g h W h H g, h g H g g h g h g h g h h h h w 0 ; 07.0.3.003.0 w a r r r s w a r s r r s r s w 0 ; w c s H a r c s a r H a r 07.0.3.004.0 W s H a r, s a r H a r a a r r s r

http://fuctios.wolfram.com 0 07.0.3.005.0 w a r logr logs w a logr logr logs r logs logr logs w 0 ; w c s H a r c s a r H a r 07.0.3.006.0 W s H a r, s a r H a r a a r r s logr Trasformatios Trasformatios ad argumet simplificatios Argumet ivolvig basic arithmetic operatios 07.0.6.0007.0 H H ; arg 07.0.6.0008.0 H H si L 07.0.6.0009.0 H H F ; 3 ; 07.0.6.000.0 H H ; 07.0.6.00.0 H H si L 07.0.6.00.0 H H F 07.0.6.000.0 H H ; ; 3 ; Additio formulas 07.0.6.003.0 k H k H k 07.0.6.004.0 k k k H H k k

http://fuctios.wolfram.com 07.0.6.000.0 H k H k H k ; 07.0.6.005.0 H cosα siα cos k taα k Α H k H k k 07.0.6.0003.0 cos k Α si k Α H k H k H cosα siα ; k k Multiple argumets 07.0.6.0004.0 H k k k H k ; Products, sums, ad powers of the direct fuctio Products of the direct fuctio 07.0.6.0005.0 mi,m k H km H H m m ; m k k m k 07.0.6.0006.0 mi,m H H m m k k H km k k ; m Idetities Recurrece idetities Cosecutive eighbors 07.0.7.000.0 H H H 07.0.7.000.0 H H H Distat eighbors 07.0.7.0006.0 H, H, H ; 0,,,,,

http://fuctios.wolfram.com 07.0.7.0007.0 H, H, H ; 0,,,,, Fuctioal idetities Relatios betwee cotiguous fuctios Recurrece relatios 07.0.7.0003.0 H H H 07.0.7.0004.0 H H H Normalied recurrece relatio 07.0.7.0005.0 p, p, p, ; p, H Complex characteristics Real part 07.0.9.000.0 j j j y j ReH x y j 0 H j x ; x y j Imagiary part 07.0.9.000.0 j j j y j ImH x y H j x ; x y j j 0 Differetiatio Low-order differetiatio With respect to

http://fuctios.wolfram.com 3 07.0.0.000.0 H log H 4 Ψ 6 3 F 0 F ; ; ; ;, ;, 3 ;; ;, F 0 Ψ F 3 ; ;, ;,, 5 3 ;; ; ; 3 ; 07.0.0.000.0 H log H 4 Ψ F ; ; Ψ F ; 3 ; Ψ F ; Ψk ; k k k k Ψ F ; 3 ; Ψk k k k 3 k 07.0.0.0003.0 H log H Ψ log6 Ψ Ψ F ; ; Ψ log6 Ψ Ψ F ; 3 ; log4 Ψ Ψ F ; ; k Ψk k k k Ψ Ψ F ; ; k k k k Ψ k Ψ Ψ k Ψ k 4 log4 Ψ Ψ F ; 3 ; Ψk k k k 3 k Ψ Ψ F ; 3 ; k k k 3 k Ψ k Ψ Ψ k Ψ k

http://fuctios.wolfram.com 4 07.0.0.00.0 H,0 F, ; 3, ; erfi Ψ H Ψ k 4k k k k k L k k k k k L k L k ; Brychkov Yu.A. (006) 07.0.0.00.0 H,0 0 F, ; 3, ; erfi Brychkov Yu.A. (006) 07.0.0.003.0 H,0 F, ; 3, ; erfc erfi Brychkov Yu.A. (006) H 0 07.0.0.004.0 With respect to log4ψ 07.0.0.0004.0 H H 07.0.0.0005.0 H 4 H Backward shift operator: 07.0.0.0006.0 H H H 07.0.0.0007.0 0 True H H Symbolic differetiatio With respect to

http://fuctios.wolfram.com 5 m H 07.0.0.005.0 m m m k log mk j 0 k j k j k j j 0 j k j j ; m With respect to 07.0.0.0008.0 m H m m m H m ; m 07.0.0.0009.0 m H m m m F, ; m, m ; m m F, ; m, 3 m ; ; m Fractioal itegro-differetiatio With respect to 07.0.0.000.0 Α H Α Α Α F, ; Α, Α ; Α Α F, ; Α, 3 Α ; Itegratio Idefiite itegratio Ivolvig oly oe direct fuctio 07.0..000.0 H H Ivolvig oe direct fuctio ad elemetary fuctios Ivolvig power fuctio 07.0..000.0 Α H Α Α F, Α ;, Α ; Α F, Α ; 3, Α 3 ; 07.0..0003.0 H 3 3 F ; ; 4 3 F ; 5 ;

http://fuctios.wolfram.com 6 07.0..0004.0 m H a m m F, m a a m F, m ; 3, m ; a 07.0..0005.0 3 H F ; ; F ; 3 ; Ivolvig expoetial fuctio 07.0..0006.0 H F ; 3 ; F ; ; Ivolvig expoetial fuctio ad a power fuctio 07.0..0007.0 Α p H 07.0..0008.0 Α p H 07.0..0009.0 Α a H a Α p Α Α Α p k Α, p k 3 k k p k Α k, p k 3 k pk k Α p Α Α p Α k Α, p k k k p k k Α k, p k pk k Α Α F 07.0..000.0, Α ;, Α a Α ; a F H si F Ivolvig fuctios of the direct fuctio ad elemetary fuctios, Α ; 3, Α 3 ; a ; 3 ; F ; ; Ivolvig elemetary fuctios of the direct fuctio ad elemetary fuctios Ivolvig powers of the direct fuctio ad a power fuctio 07.0..00.0 H 8 H H

http://fuctios.wolfram.com 7 Ivolvig powers of the direct fuctio, power ad expoetial fuctios 07.0..00.0 H 4 H H Ivolvig direct fuctio ad Gamma-, Beta-, Erf-type fuctios Ivolvig probability itegral-type fuctios Ivolvig erf 07.0..003.0 erfa H a a a H a erfa H a Ivolvig erfi 07.0..004.0 erfi H H erfi H Defiite itegratio Ivolvig the direct fuctio 07.0..005.0 t Α a t H tt a Α 0 Α F Α, ; ; a Α a Α a F Α, ; ; a a Α Α F, ; ; a ; Rea 0 ReΑ 0 07.0..006.0 t H tt ; Orthogoality: 07.0..007.0 t H m t H tt,m ; m 07.0..008.0 t H l t H m t H tt lm l m l m l m l m ; l m l m l m m l l m

http://fuctios.wolfram.com 8 07.0..009.0 t H l t H m t H tt 0 ; l m l m l m m l l m Summatio Fiite summatio 07.0.3.000.0 H k x H k y H x H y H x H y ; k k x y k k k 07.0.3.000.0 k H k x H k y x y ; 07.0.3.0003.0 cos k H k x H k y Rex y ; 07.0.3.0004.0 si k H k x H k y Imx y ; Ifiite summatio 07.0.3.0005.0 H w ww 0 07.0.3.0006.0 H w w cos 0 w 07.0.3.0007.0 H w w si 0 w w 07.0.3.0008.0 c H w w c F c; ; w w 0 07.0.3.0009.0 c H w 0 w c F c ; 3 ; w w H w 0 07.0.3.000.0 4 w w 4 w 3 exp 4 w 4 w

http://fuctios.wolfram.com 9 07.0.3.00.0 H x y t x ΑΑ W t y ; Α t y y Α y 0 07.0.3.00.0 H kj w kj j 0 k j j l l 4 l exp j w j w k l j ; k j 07.0.3.003.0 H H w 0 4 w exp w w 4 w ; w 07.0.3.004.0 H x H y 0 x y x y ; x y 0 07.0.3.005.0 m H H m m H m ; m Operatios Limit operatio 07.0.5.000.0 lim 4 H si ; lim 4 07.0.5.000.0 H cos ; Orthogoality, completeess, ad Fourier expasios The set of fuctios H x, 0,,, forms a complete, orthogoal (with weight iterval,. 07.0.5.0003.0 x ) system o the 0 x H x y H y x y 07.0.5.0004.0 m m t H m t t H t t,m

http://fuctios.wolfram.com 0 Ay sufficietly smooth fuctio f x ca be expaded i the system H x 0,, as a geeralied Fourier series, with its sum covergig to f x almost everywhere. 07.0.5.0005.0 f x c Ψ x ; c Ψ t f tt Ψ x 0 x H x ; x Represetatios through more geeral fuctios Through hypergeometric fuctios Ivolvig F 07.0.6.000.0 H F ; ; F ; 3 ; Ivolvig F 07.0.6.000.0 H F ; ; F ; 3 ; Ivolvig p F q 07.0.6.0003.0 H F 0, Ivolvig hypergeometric U 07.0.6.0004.0 ; ; ; H U,, ; Re 0 07.0.6.0005.0 H U, 3, ; Re 0 07.0.6.0006.0 H F ; ; U,, 07.0.6.0007.0 H U, 3, F ; ; H 07.0.6.0008.0 F ; 3 ; U,,

http://fuctios.wolfram.com H 07.0.6.0009.0 F ; 3 ; U, 3, Through Meijer G Classical cases for the direct fuctio itself H 07.0.6.009.0 G,, 0, ; 07.0.6.00.0 H 3 G, 3,4, 8, 5 8 0,, 8, 5 8 07.0.6.00.0 H G,, 0, ; arg 07.0.6.003.0 H H 3 G,,3, 4 0,, 4 07.0.6.004.0 H H 3 G,,3, 4, 0, 4 Classical cases ivolvig exp 07.0.6.000.0 H G,0, 0, ; arg 07.0.6.00.0 H G,0, 0, 07.0.6.005.0 H G,,3, 0,, 07.0.6.006.0 H H cos G,, 0,

http://fuctios.wolfram.com 07.0.6.007.0 H H si G,,, 0 Classical cases ivolvig exp ad cosh 07.0.6.008.0 cosh H G,0, 0, G,, 4 0, ; arg 07.0.6.009.0 cosh, H G,,3 0,, 3,, 5 G, 3,4 8 8 0,,, 5 8 8 ; arg cosh 07.0.6.0030.0 H H cos G,, 0, 3, G,,3 4 0,, 4 ; arg 07.0.6.003.0 cosh H H 3, G,,3 4, 0, 4 G,, si, 0 ; arg 07.0.6.003.0 cosh H G,0, 0, G,, 4 0, 07.0.6.0033.0 cosh H G,,3, 0,, 3 G, 3,4, 8, 5 8 0,, 8, 5 8 07.0.6.0034.0 cosh H H cos G,, 0, 3 G,,3, 4 0,, 4 07.0.6.0035.0 cosh H H 3 G,,3, 4, 0, 4 G,, si, 0 Classical cases ivolvig exp ad sih 07.0.6.0036.0 sih H 4 G,, 0, G,0, 0, ; arg

http://fuctios.wolfram.com 3 07.0.6.0037.0 sih H 3,, 5 G, 3,4 8 8 0,,, 5 8 8, G,,3 0,, ; arg 07.0.6.0038.0 sih H H 3, G,,3 4 0,, 4 cos G,, 0, ; arg 07.0.6.0039.0 sih H H 3, G,,3 4, 0, 4 si G,, ;, 0 arg sih H 07.0.6.0040.0 G,, 4 0, G,0, 0, 07.0.6.004.0 sih H 3 G, 3,4, 8, 5 8 0,, 8, 5 8 G,,3, 0,, 07.0.6.004.0 sih H H 3 G,,3, 4 0,, 4 cos G,, 0, 07.0.6.0043.0 sih H H 3 G,,3, 4, 0, 4 si G,,, 0 Classical cases for products of H 07.0.6.0044.0 H 4 4 H 4 4 3 G 4,,4 4, 0, 4,, 3 4 Classical cases ivolvig Exp ad products of H 4 H 07.0.6.0045.0 H 4 3 4,0 G,4 4, 0, 4,, 3 4 Classical cases ivolvig Exp ad parabolic cylider D 07.0.6.0046.0 D H 3 G 4,,4 4 4, 0, 4,, 3 4 ; arg 0

http://fuctios.wolfram.com 4 07.0.6.0047.0 D H 4,0 G 4,4 4, 0, 4,, 3 4 ; 4 arg 4 Geeralied cases for the direct fuctio itself 07.0.6.000.0 H G,,, 0, ; 07.0.6.00.0 H G,,, 3, ; H 07.0.6.0048.0 3 G, 3,4,, 8, 5 8 0,, 8, 5 8 07.0.6.003.0 H G,0,,, ; 07.0.6.004.0 H lim m m G,,, m3, ; 07.0.6.0049.0 H H 3 G,,3,, 4 0,, 4 07.0.6.0050.0 H H 3 G,,3,, 4, 0, 4 Geeralied cases ivolvig exp 07.0.6.005.0 H G,0,, 0, 07.0.6.005.0 H G,,3,, 0,, 07.0.6.005.0 H H cos G,,, 0,

http://fuctios.wolfram.com 5 07.0.6.0053.0 H H si G,,,, 0 Geeralied cases ivolvig exp ad cosh 07.0.6.0054.0 cosh H G,0,, 0, G,,, 4 0, 07.0.6.0055.0 cosh H G,,3,, 0,, 3 G, 3,4,, 8, 5 8 0,, 8, 5 8 07.0.6.0056.0 cosh H H cos G,,, 0, 3 G,,3,, 4 0,, 4 07.0.6.0057.0 cosh H H 3 G,,3,, 4, 0, 4 si G,,,, 0 Geeralied cases ivolvig exp ad sih 07.0.6.0058.0 sih H 4 G,,, 0, G,0,, 0, 07.0.6.0059.0 sih H 3 G, 3,4,, 8, 5 8 0,, 8, 5 8 G,,3,, 0,, 07.0.6.0060.0 sih H H 3 G,,3,, 4 0,, 4 cos G,,, 0, 07.0.6.006.0 sih H H 3 G,,3,, 4, 0, 4 si G,,,, 0 Geeralied cases for products of H 07.0.6.006.0 3 H 4 H 4 4, G,4, 4, 0, 4,, 3 4 Geeralied cases ivolvig Exp ad products of H

http://fuctios.wolfram.com 6 07.0.6.0063.0 H H 4,0 G,4,, 0, 4,, 3 4 07.0.6.0064.0 H H 4,0 G,4, 4, 0, 4,, 3 4 Geeralied cases ivolvig Exp ad parabolic cylider D 07.0.6.0065.0 D H 3 G 4,,4 4, 4, 0, 4,, 3 4 07.0.6.0066.0 D H 4,0 G,4, 4, 0, 4,, 3 4 Through other fuctios Ivolvig some hypergeometric-type fuctios 07.0.6.0067.0 H cos L si L 07.0.6.0068.0 H L ; 07.0.6.0069.0 H L ; 07.0.6.006.0 H lim Λ L Λ Λ Λ Λ 07.0.6.007.0 H lim Λ Λ C Λ Λ ; 07.0.6.008.0 H lim a a,a P a a Represetatios through equivalet fuctios With related fuctios

http://fuctios.wolfram.com 7 07.0.7.000.0 H cos L si 07.0.7.000.0 H L ; L 07.0.7.0003.0 H L ; 07.0.7.0004.0 H D Zeros 07.0.30.000.0 x j ; H x k 0 x k j x k k j Theorems Expasios i geeralied Fourier series f x c k Ψ k x ; c k f tψ k tt, Ψ k x k 4 k x H k x, k. Fourier trasform eigefuctios Hermite polyomials together with their weightig fuctio are eigefuctios of the Fourier ad iverse Fourier trasforms: t x x H x x t H t ; Zeros of Hermite polyomials For ay give iterval a, b, there exists some such that H x has a ero i this iterval. The umber of simple graphs The umber of simple graphs with o cycles ad vertices is H H. History

http://fuctios.wolfram.com 8 P. S. Laplace (80) Ch. Hermite (864) N. J. Soie (880)

http://fuctios.wolfram.com 9 Copyright This documet was dowloaded from fuctios.wolfram.com, a comprehesive olie compedium of formulas ivolvig the special fuctios of mathematics. For a key to the otatios used here, see http://fuctios.wolfram.com/notatios/. Please cite this documet by referrig to the fuctios.wolfram.com page from which it was dowloaded, for example: http://fuctios.wolfram.com/costats/e/ To refer to a particular formula, cite fuctios.wolfram.com followed by the citatio umber. e.g.: http://fuctios.wolfram.com/0.03.03.000.0 This documet is curretly i a prelimiary form. If you have commets or suggestios, please email commets@fuctios.wolfram.com. 00-008, Wolfram Research, Ic.