Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II

Σχετικά έγγραφα
Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Example 1: THE ELECTRIC DIPOLE

Lecture 12 Modulation and Sampling

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Graded Refractive-Index

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

1 String with massive end-points

Laplace s Equation in Spherical Polar Coördinates

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Analytical Expression for Hessian

Curvilinear Systems of Coordinates

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

3 Frequency Domain Representation of Continuous Signals and Systems

Matrix Hartree-Fock Equations for a Closed Shell System

Reflection Models. Reflection Models

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Homework 8 Model Solution Section

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Example Sheet 3 Solutions

ANTENNAS and WAVE PROPAGATION. Solution Manual

1 3D Helmholtz Equation

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Κλασική Ηλεκτροδυναμική

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Accelerator Physics. G. A. Krafft, A. Bogacz, and H. Sayed Jefferson Lab Old Dominion University Lecture 9

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Spherical Coordinates

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Section 8.3 Trigonometric Equations

Fundamental Equations of Fluid Mechanics

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

6.003: Signals and Systems

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Note: Please use the actual date you accessed this material in your citation.

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

D Alembert s Solution to the Wave Equation

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Trigonometry 1.TRIGONOMETRIC RATIOS

ω = radians per sec, t = 3 sec

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Matrices and Determinants

6.4 Superposition of Linear Plane Progressive Waves

6.003: Signals and Systems. Modulation

Higher Derivative Gravity Theories

ECE 222b Applied Electromagnetics Notes Set 3a

Second Order Partial Differential Equations


Inflation and Reheating in Spontaneously Generated Gravity

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Derivation of Optical-Bloch Equations

Areas and Lengths in Polar Coordinates

Oscillatory Gap Damping

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 7.6 Double and Half Angle Formulas

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

326. Dynamic synchronization of the unbalanced rotors for the excitation of longitudinal traveling waves

Motion of an Incompressible Fluid. with Unit Viscosity

Variational Wavefunction for the Helium Atom

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

The Student s t and F Distributions Page 1

Χρονοσειρές Μάθημα 3

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Chapter 7a. Elements of Elasticity, Thermal Stresses

Tutorial Note - Week 09 - Solution

Approximate System Reliability Evaluation

Areas and Lengths in Polar Coordinates

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

4.2 Differential Equations in Polar Coordinates

Statistical Inference I Locally most powerful tests

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Math221: HW# 1 solutions

Problems in curvilinear coordinates

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

F19MC2 Solutions 9 Complex Analysis

C.S. 430 Assignment 6, Sample Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

CS348B Lecture 10 Pat Hanrahan, Spring 2002

Every set of first-order formulas is equivalent to an independent set

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

Solutions - Chapter 4

Α Ρ Ι Θ Μ Ο Σ : 6.913

Transcript:

Physics 74/84 Elecomagneic Theoy II G. A. Kaff Jeffeson Lab Jeffeson Lab Pofesso of Physics Old Dominion Univesiy Physics 84 Elecomagneic Theoy II -3-1

Pependicula Polaizaion = E + E E Tangenial E ( ) ε ( ) ε = E E cos i E cos Tangenial H µ µ E ncosi = E n cos i µ + n n sin µ i µ E ncosi n n sin i µ = E µ n cos i + n n sin i µ Physics 84 Elecomagneic Theoy II

Wave Guides: Suface Absobion Homogeneous Maxwell Equaions imply n B B c = n E E c = ( ) c ( ) Cul lhh Maxwell Equaion and lage bu finie i conduciviy i implies n H H c = ( ) 1 E = c H c σ i H c = E µω c c Physics 84 Elecomagneic Theoy II

ξ i ( + n H ) c = δ n H c = 1/ δ = µωσ c ξ / δ iξ / δ H = H e e H c pa pa ωµ E c i n H σ dp 1 Re * µωδ c = n E H = H da 4 c ( ξ = ) = ( 1 )( ) pa pa is he field a he suface Physics 84 Elecomagneic Theoy II

Alenaive Calculaion ˆ δ 1 * 1 powe/vol = J E = J σ K = Jd ξ = nˆ H 1 ( ) ( ) ( i) 1 / J = σ Ec = 1 i n H pa e ξ δ eff dp da pa 1 µωδ = Keff = σδ 4 c K eff suface cuen fo pefec conduco Physics 84 Elecomagneic Theoy II

Cylindical Sysems z z-axis along he cylinde diecion E = i ω B B = B = iµε E E = ( E + µεω ) = B ω B = B x, y e E = E x, y e ( ) ( ) ± ikz ± ikz ω Physics 84 Elecomagneic Theoy II

Tansvese Sepaaion E = E ˆ ( ˆ) zz + E E = E E z zˆ B = B ˆ ( ˆ ) zz + B B = B B z zˆ E + ( µεω ) k = B E + i ω zˆ B = ˆ ( ) Ez z E = i ω Bz z B iµεω zˆ E = B zˆ ( B ) = i µεω E z E z Bz E = B = z z z z Physics 84 Elecomagneic Theoy II

TEM Modes Soluions wih ansvese field only Eem = E, em Bem = B, em E = E =, em, em E em mus solve -D elecosaic poblem k = k = µεω B =± µε zˆ E em em Can hee be a soluion inside a single closed waveguide? No, need a leas wo conducos. No cuoff fffequency Physics 84 Elecomagneic Theoy II

Moe Geneal Case Tansvese field expessible in ems of z-field only! i E ˆ = k Ez ω z B z µεω k i B = k B + µεω zˆ E µεω k z z Tansvese Magneic (TM) B z = ; Bounday Condiion E = z S Tansvese Elecic (TE) E z B = ; Bounday Condiion z = n S Physics 84 Elecomagneic Theoy II

Waveguides ± 1 H = z ˆ E Z Wave Impedance Z k k µ = (TM) εω k ε = µω k µ = (TE) k k ε Physics 84 Elecomagneic Theoy II

Eigenvalue Poblem TM Waves TE Waves E H ik = ± ψ γ ik = ± ψ γ Tansvese Helmholz Equaion + = + + = x y γ ψ γ ψ ( ) Physics 84 Elecomagneic Theoy II

Bounday Condiions ψ S ψ = (TM) = (TE) nn S Specum of eigenvalues and eigenfuncions γ λ ψ λ ( x, y ) Wavelengh in mode λ k λ = µεω γ λ Physics 84 Elecomagneic Theoy II

Cuoff Fequency ω λ ω = γ λ µε No popagaion a fequencies below cuoff ( ) k λ = µε ω ω λ Fo single-mode popagaion choose fequency o be above cuoff fo lowes mode and below cuoff fo all ohe modes. Phase velociy infinie a cuoff! Physics 84 Elecomagneic Theoy II

Recangula Waveguide x y + + γ ψ = ψ mπ x nπ x = (TE) ψ mn ( x, y ) = Acos cos n a a S ω γ mn mn m = π + a n b π m = + µε a n b 1/ Physics 84 Elecomagneic Theoy II

Lowes Mode ω 1 = π µε m a π x H z = Acos e a ika π x H z = Asin e π a ω aµ π x Ey = i Asin e π a ikz iω ikz iω ikz iω Lowes TM mode has m and n one wih a sin soluion. Why? Is cuoff fo he lowes mode is a a fequency highe by ( 1/ 1 + a /b b ) Physics 84 Elecomagneic Theoy II

Enegy Flow 1 * S = E H γ * ε zˆ ψ + i ψ ψ ω k k S = 4 γ γ * µ zˆ ψ i ψ ψ k ω k ε * P = S zda ˆ = 4 ψ ψ da γ µ A A ωk ε ψ P = ψ dl ψ ψ da 4 + γ µ * * n C A Physics 84 Elecomagneic Theoy II

Enegy and Goup Velociy P U P U v v 1/ λ 1 1 ω ω λ ε = µε ωλ ω µ 1 ω ε = ω λ µ * ψ ψ ω λ = k 1 1 1 v ω µε = µε ω = = 1 p g µε A da g A * ψψ da Physics 84 Elecomagneic Theoy II

Aenuaion Field aenuaion consan given by β λ ( ) = λ P z P e β λ β z 1 dp = P dz dp 1 = nˆ H dl dz σδ C 1 ψ 1 µ ω λ n = dl σδ C 1 ω λ ωλ 1 nˆ ψ ψ + µ ωλ ω ω Physics 84 Elecomagneic Theoy II

ψ n nˆ ψ µεω ψ λ C 1 ω λ ψ n C dl = ς λ µε A A ψ da ( / ) 1/ ε 1 C ω ω λ ω λ βλ = ς 1/ λ + ηλ µ σδ λ A 1 ω / ω ω λ ( 1 ω / ω ) λ Physics 84 Elecomagneic Theoy II

Resonan Caviies Pu end conducos on a cylindical waveguide. Example: Cylindical caviy of lengh d and adius R. In geneal, z dependence d is Asin kz + B cos kz ( ) ( ) π BCs k = p, p =,1,, K d TM pπ Ez = ψ ( x, y) cos, p =,1,, K d TE pπ H z = ψ ( x, y ) sin, p = 1,, K d Physics 84 Elecomagneic Theoy II

Field Paens TM sin p p E π π ψ = sin ˆ cos E d d i p H z ψ γ εω π ψ = TE d i ψ γ ˆ sin i p E z d ωµ π ψ γ = ( ) cos / p p H d d d π π ψ γ = Physics 84 Elecomagneic Theoy II ( ) / p d γ µεω π =

1 ω = λ p γ pπ d µε + TM Eigenvalue Equaion ( ( / ) ) λ (, ) = AJ ( ) ψ ρ φ γ ρ m mn e ± imφ xmn γ mn = J m ( xmn ) = R ω mnp 1 x p π.45 mn = + ω = µε µε 1 R d R.45ρ ε.45ρ E z = AJ e H = i AJ e R µ R iω iω φ 1 Physics 84 Elecomagneic Theoy II

TE (, ) = AJ ( ) ψ ρ φ γ ρ γ ω ω m mn mn mn m mn mnp e ± imφ x = J ( x ) = R 1 x mn = + µε R p π d 1.841 R = 1 +.91 µε R d 111 1.841ρ π z H z = AJ1 cosφ sin e R d iω Physics 84 Elecomagneic Theoy II

Caviy Losses Q = du d Soed enegy ω boh popoional o ψ Powe loss ω = U Q U () = U e ω () Q / ( ω ω) ω / Q i + E = Ee e Physics 84 Elecomagneic Theoy II

( ) Paallel Polaizaion = cos i E E cos E Tangenial E ε ( ) ε = E + E E Tangenial H µ µ E nn cosi = E µ n cos i + n n n sin µ i µ E n cos i n n n sin i µ = E µ n cos i + n n n sin i µ Physics 84 Elecomagneic Theoy II

Enegy Consevaion? Nomal Incidence E n = = E n n µε + + 1 µε µε 1 E µε n n = = E n n µε + 1 µε + ε E ε E ε E = + µ µ µ Physics 84 Elecomagneic Theoy II

Misakes fom Las Time Enegy Consevaion a Nomal Incidence ε E ε E ε E = + µ µ µ E n = = E n n µε + + 1 µε µε 1 E µε n n = = E n n µε + µ ε + 1 Physics 84 Elecomagneic Theoy II

Bewse s Angle Calculaion n cos i = n n n sin i B ( sin ) B n cos i = n n n i n 4 B B 4 4 + n ± n 4 n cos i sin i + n ± n ( 1 cos i ) B B B = = cos ib cos i B i Bewse = an 1 n n Zeo eflecion in pependicula polaizaion implies n' = n Physics 84 Elecomagneic Theoy II

µ = µ Bewse s Angle If efleced paallel polaizaion ampliude vanishes when inciden a he Bewse angle i Bewse = an 1 n n Refleced wave compleely plane-polaized (polaizaion pependicula o plane of incidence) if mixed-polaizaion beam inciden a Bewse angle. i Bewse o n = 56 fo = 1.5 n Physics 84 Elecomagneic Theoy II

Toal Inenal Reflecion Examine Snell s Law in case n > n' i = sin 1 n Fo angles of incidence geae, hee is no ansmied wave soluion o aach o, only an exponenially damped soluion. This implies oal eflecion, also called oal inenal eflecion. Opical communicaion sysems ae based on his phenomenon! n Physics 84 Elecomagneic Theoy II

Goup Velociy Unil now, we have assumed ha he elaive pemiiviy and pemeabiliy ae independen of fequency. This may be fa fom he case. Relaxing he equiemen of consan phase velociy as a funcion of fequency leads o moe geneal wave phenomena. Allow he fequency o depend on wavelengh in 1 dimension: 1 ikx ω k (, ) ( ) ( ) u x = A k e dk π The funcion ω(k) is known as he dispesion funcion. A sicly linea dispesion funcion, as we ve had up o now, does no lead o pulse speading, o dispesion. Physics 84 Elecomagneic Theoy II

ikx A k u x e dx ( ) (,) = dω ω ω ω ω ( k) = + ( k k ) + L = ( k ) (, ) dk e ( ω/ ) i k d dk ω i x ( dω / dk) k u x A k e dk π ( ω/ ) i k d dk ω = ( ) ( ( ω / ), ) e u x d dk The pulse shape avels a he goup velociy v g = dω dk Physics 84 Elecomagneic Theoy II

Dispesion 1 ikx ω ( k ) u( x, ) = A( k) e dk π Have exac calculaion fo modulaed Gaussian funcion ( ) ( ), = exp / u x x L e ikx A( k) = u( x, ) e dx ik x ( )( ) = π L exp L / k k a k ω = ν + ( k ) ν 1 Physics 84 Elecomagneic Theoy II

Pulse Speading, o Dispesion v g dω = = ν dk a k L ( L /)( k k ) ikx iv 1 + ( a k /) u( x, ) = e e dk π ( x ν a k ) exp ia ν L 1+ L ( = exp ik ) 1/ x iν 1 a k / + ia ν 1 + L Physics 84 Elecomagneic Theoy II

dω L L a L dk () ( = = + ν / ) d ω ν a v g = k = dk L ( ) ( ) ( ) x = x + v g Physics 84 Elecomagneic Theoy II

Causaliy D x E x (, ω ) = ε ( ω) (, ω) Convoluion Theoem (Fahlung Theoem) implies non-localiy in ime. 1 iω iω D( x, ) = D( x, ) e d = ( ) E( x, ) e d π 1 π ω ω ε ω ω ω ε ω e d e E x dω = iω + iω ( ) (, ) = ε E( x, ) + G( τ ) E( x, τ ) dτ Physics 84 Elecomagneic Theoy II

Geen funcion fo connecion 1 ( ) ( ) iωτ G τ = ε ω / ε 1 e dω π Damped oscillao connecion ( ) ( / 1= i ) 1 ε ω ε ω ω ω γω p / sin ν τ G τ = ω pe γ Θ τ ν ( ) ( ) ν ω γ = /4 Vanishes fo negaive τ,, cause canno pecede effec. Causal Geen s funcions mus be analyic in uppe ½ of complex plane. Physics 84 Elecomagneic Theoy II

Kames-Konig Relaions iωτ ε ( ω) / ε 1= G( τ ) e dτ Is auomaically causal fo a wide vaiey of choices fo G. Analyiciy in UH-ωP implies a elaionship beween eal and imaginay pa of he pemiiviy. Cauchy s heoem fo z inside a closed cuve C 1 ε ( ω ) / ε 1 ε ( z ) / ε = 1+ dω π i ω z 1 = 1 + πi C ( ) ε ω / ε 1 d ω ω z whee he inegal is now along he eal axis Physics 84 Elecomagneic Theoy II

1 1 = P + πδ i ( ω ω) ω ω iδ ω ω 1 Im ε ( ω ) / ε Re ε ( ω) / ε = 1+ P dω π ω z ( ) ε 1 Re ε ω / 1 Im ε ( ω) / ε = P dω π ω z ( ) ω Im ε ω / ε Re ε ( ω) / ε = 1+ P dω π ω ω ( ) ε ω Re ε ω / 1 Im ε ( ω) / ε = P dω * ( ) ( * = ) ε ω ε ω π ω ω Physics 84 Elecomagneic Theoy II

Sum Rules Sum Rules fo oscillao senghs Second Sum Rule ω p = 1+ P ω Im ε ( ω) / ε dω π 1 N N ( ) p d Re ε ω / ε ω = 1+ ω N Physics 84 Elecomagneic Theoy II