Single Stage Amplifiers

Σχετικά έγγραφα
SYLLABUS. osmania university POWER SEMICONDUCTOR DIODES AND TRANSISTORS POWER TRANSISTOR AND RECTIFIERS CONTROLLED RECTIFIERS AND CONVERTERS

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET)

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 2 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

IXBH42N170 IXBT42N170

NPN Silicon RF Transistor BFQ 74

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 1 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

IXBK64N250 IXBX64N250

Multilayer Chip Capacitors C0G/NP0/CH

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

B37631 K K 0 60

Electronic Analysis of CMOS Logic Gates

Lecture Stage Frequency Response (1/10/02) Page 210-1

Overview: Relay Modules

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

PRELIMINARY DATA SHEET NPN EPITAXIAL SILICON TRANSISTOR FOR MICROWAVE HIGH-GAIN AMPLIFICATION

ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Series AM2DZ 2 Watt DC-DC Converter

SMD Power Inductor-VLH

«Αναθεώρηση των FET Transistor»

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

Impedance Matching. RF Electronics Spring, 2018 Robert R. Krchnavek Rowan University

Monolithic Crystal Filters (M.C.F.)

SURFACE MOUNT NPN SILICON HIGH FREQUENCY TRANSISTOR

SMD Power Inductor-VLH

NPN SILICON GENERAL PURPOSE TRANSISTOR

Contents 1. Introduction Theoretical Background Theoretical Analysis of Nonlinear Interactions... 35

Contents Introduction to Filter Concepts All-Pole Approximations

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam

FP series Anti-Bend (Soft termination) capacitor series

RF series Ultra High Q & Low ESR capacitor series

Thin Film Chip Inductor

ABSOLUTE MAXIMUM RATINGS (Case Temperature Tc=25 o C) Item Symbol Condition Rating Unit Operating-Voltage VDS 55 V. Item Symbol Condition Limit Unit

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

ABSOLUTE MAXIMUM RATINGS (Case Temperature Tc=25 o C) Item Symbol Condition Rating Unit Operating-Voltage VDS 55 V. Item Symbol Condition Limit Unit

Operational Amplifiers

Contents 1 Introduction to Radio Systems 2 Modulation and Detection

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Ανηικείμενα ποσ καλύπηονηαι

2.5 GHz SILICON MMIC WIDE-BAND AMPLIFIER

Table of Contents. Preface... xi

Quartz Crystal Test Report

Input Ranges : 9-75 VDC

Rating Symbol Value Unit Drain Gate Voltage VDSS 65 Vdc Drain Gate Voltage (RGS = 1.0 MΩ) VDGR 65 Vdc

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Summary of Specifications

+85 C General Purpose Radial Lead Aluminum Electrolytic Capacitors

PRELIMINARY DATA SHEET. C to Ku BAND SUPER LOW NOISE AMPLIFIER N-CHANNEL HJ-FET

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

RSDW08 & RDDW08 series

VGS=-8V. RG=15ohm. Item Symbol Condition Limit Unit. VDS=50V, IDS1=0.9mA VDS=50V, IDS2=7.2mA

MAX-QUALITY ELECTRIC CO; LTD Thin Film Precision Chip Resistors. Data Sheet

4.8 V NPN Common Emitter Medium Power Output Transistor. Technical Data AT-31625

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

Data sheet Thin Film Chip Inductor AL Series

Low Value Multilayer Inductors (LMCI Series)

Capacitors - Capacitance, Charge and Potential Difference

... amplifier it knownn as...

SPBW06 & DPBW06 series

3 V, 1500 MHz Si MMIC WIDEBAND AMPLIFIER

RJJ Miniature Aluminum Electrolytic Capacitors RJJ. Series RJJ High-Frequency, Low Impedance, Standard Type. Radial Type

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

General-Purpose Small-Signal Transistors

Μικροηλεκτρονική - VLSI

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

Thin Film Chip Inductor

YAGEO CORPORATION SMD INDUCTOR / BEADS. CLH Series. Lead-free / For High Frequency Applications. CLH1005-H series CLH1608-H series ~1.4 0.

Output Power: W. Exclusively distributed by Powerstax

C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS

«Ενισχυτές ενός τρανζίστορ και πολλών τρανζίστορ»

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

First Sensor Quad APD Data Sheet Part Description QA TO Order #

3 V, 900 MHz Si MMIC AMPLIFIER

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

SD57045 RF POWER TRANSISTORS The LdmoST FAMILY

HiPerFAST TM IGBT with Diode

DISCONTINUED NE680 SERIES NPN SILICON HIGH FREQUENCY TRANSISTOR SILICON TRANSISTOR FEATURES DESCRIPTION

5V/9V/12V Output QC2.0+USB Auto Detect+USB-PD Type-C Application Report ACT4529

AL Series - Thin Film Chip Inductor

Metal thin film chip resistor networks

Set GPIB Address...5 Reset to startup state...5 Reboot calibrator...5 Reset to starting state...5 Identification String...5

Current Sensing Thick Film Chip Resistor-SMDB Series Size: 0402/0603/0805/1206/1210/2010/2512. official distributor of

PPA Metallized polypropylene film capacitor MKP - Snubber/pulse - High current

65W PWM Output LED Driver. IDPV-65 series. File Name:IDPV-65-SPEC

Magnetically Coupled Circuits

3 V, 900 MHz LOW NOISE SI MMIC AMPLIFIER

Thermistor (NTC /PTC)

IDPV-45 series. 45W PWM Output LED Driver. File Name:IDPV-45-SPEC S&E

Aerovox Corp. Type H High Voltage AC & DC Capacitors. Film Capacitors for Power Electronics Applications. RoHS Compliant. Highlights.

Multilayer Chip Inductor

MZ0.5GF SERIES ZENER DIODE TECHHICAL SPECIFICATION FEATURES. ABSOLUTE MAXIMUM RATINGE: (Ta=25 ) Parameter Symbols Limits Unit

Prepolarized Microphones-Free Field

WIRE WOUND CHIP INDUCTORS

Review of Single-Phase AC Circuits

LR(-A) Series Metal Alloy Low-Resistance Resistor

TRC ELECTRONICS, INC LED Driver Constant Voltage 45W MEAN WELL IDLV-45 Series

C121. External Dimensions (L W) (mm) 0603 [0201] [0402] [0603] [0805]

Transcript:

CONTENTS Preface to Fourth Edition... (vii) Preface to Third Edition... (ix) Symbols...(xxiii) Brief History of Electronics...(xxvii) CHAPTER 1 Single Stage Amplifiers 1.1 Classification of Amplifiers... 2 1.2 Distortion in Amplifiers... 3 1.3 Analysis of CE, CC and CB Amplifiers... 6 1.3.1 Common Emitter Amplifier... 7 1.3.2 Input Resistance of the Amplifier Circuit (R i )... 8 1.3.3 Output Resistance of an Amplifier Circuit (R o )... 9 1.3.4 Current Gain (A i )... 10 1.3.5 Voltage Gain (A V )... 10 1.3.6 Power Gain (A P )...11 1.3.7 Common Base Amplifier... 12 1.3.8 Input Resistance (R i )... 12 1.3.9 Output Resistance (R o )... 13 1.3.10 Current Gain (A i )... 14 1.3.11 Voltage Gain (A V )... 14 1.3.12 Power Gain (A P )... 15 1.3.13 Common Collector Amplifier... 15 1.4 Miller s Theorem... 24 1.4.1 Mathematical Proof of Miller s Theorem... 24 (xi)

(xii) Contents 1.5 Design of Single Stage Ampllifiers... 34 1.5.1 Input Impedance (Z i )... 35 1.5.2 Voltage Gain (A v )... 35 1.5.3 Output Admittance (Y o )... 36 1.5.4 Voltage Gain (A vs ) considering Source Resistance (R s )... 37 1.5.5 Current Gain (A IS ) considering Source Resistance (R s )... 37 1.5.6 Power Gain (A P )... 38 1.6 High Input Resistance Transistor Circuits... 41 1.6.1 Current Amplification For Darlington Pair... 42 1.6.2 Input Resistance (R i )... 43 1.6.3 Voltage Gain (A v )... 44 1.6.4 Output Resistance (R o )... 44 1.6.5 R-C Coupled Amplifier Circuit (Single Stage)... 46 1.6.6 Effect of Coupling Capacitor on Low Frequency Response... 47 Summary... 51 Objective Type Questions... 52 Essay Type Questions... 53 Answers of Objective Type Questions... 54 CHAPTER 2 Multistage Amplifiers 2.1 Multistage Amplifiers Methods of Inter Stage Coupling... 56 2.1.1 Resistance and Capacitance Coupled Amplifiers (RC Coupled)... 56 2.1.2 Transformer Coupled Amplifiers... 56 2.1.3 Direct Coupled (DC) Amplifiers... 56 2.1.4 Tuned Circuit Amplifiers... 56 2.1.5 Bandwidth of Amplifiers... 57 2.1.6 R-C Coupled Amplifier Circuit (Single Stage)... 60 2.1.7 Effect of Coupling Capacitor on Low Frequency Response... 62 2.2 Analysis of Cascaded RC Coupled BJT Amplifier... 65 2.3 n-stage Cascaded Amplifier... 71 2.3.1 Overall Voltage Gain... 71 2.3.2 Current Gain... 72 2.3.3 Power Gain... 72

Contents (xiii) 2.3.4 Choice of Transistor in a Cascaded Amplifier Configuration... 73 2.3.5 Midband Frequency (F o )... 77 2.3.6 Cascading Transistor Amplifiers... 77 2.3.7 The Two Stage Cascaded Amplifier Circuit... 78 2.3.8 Phase Response... 79 2.3.9 Gain-Bandwidth Product... 79 2.3.10 Emitter Bypass Capacitor... 81 2.4 Equivalent Circuits... 82 2.4.1 Decibel... 82 2.5 Miller s Theorem... 83 2.5.1 Mathematical Proof of Miller s Theorem... 83 2.6 Frequency Effects... 85 2.6.1 Lead Network... 85 2.6.2 Cut-off Frequency... 85 2.6.3 Half Power Point... 86 2.6.4 Stiff Coupling... 86 2.7 Amplifier Analysis... 87 2.7.1 Lag Networks... 87 2.7.2 Decibel... 88 2.7.3 Negative Decibel... 88 2.7.4 Decibel Voltage Gain... 89 2.7.5 Cascaded Stages... 90 2.7.6 Stiff Coupling... 90 2.8 High Input Resistance Transistor Circuits... 93 2.8.1 Current Amplification for Darlington Pair... 94 2.8.2 Input Resistance (R i )... 95 2.8.3 Voltage Gain... 96 2.8.4 Output Resistance... 97 2.8.5 Disadvantages... 97 2.8.6 Boot Strapped Darlington Circuit... 98 2.8.7 AC Equivalent Circuit... 100 2.9 The Cascode Transistor Configuration... 100 2.9.1 Input Z (h 11 )... 101 2.9.2 Short Circuit Current Gain (h 21 )... 101 2.9.3 Output Conductance (h 22 )... 102 2.9.4 Reverse Voltage Gain (h 12 )... 102

(xiv) Contents 2.10 CE CC Amplifiers... 105 2.11 Two Stage RC Coupled JFET Amplifier (in Common Source CS Configuration)... 106 2.12 Difference Amplifier... 106 2.13 Circuit for Differential Amplifier... 108 Summary... 112 Objective Type Questions... 112 Essay Type Questions... 114 Answers of Objective Type Questions... 115 CHAPTER 3 BJT - Amplifiers, Frequency Response 3.1 Logarithmic Decibels... 118 3.2 Frequency Response... 118 3.3 Analysis at Low and High Frequencies...119 3.4 Effect of Coupling and Bypass Capacitor... 122 3.4.1 Effect of Coupling Capacitor on Differnet Frequency Ranges... 122 3.5 Hybrid - π Common Emitter Transconductance Model... 128 3.5.1 Circuit Components... 129 3.5.2 Hybrid - π Parameter Values... 129 3.5.3 Hybrid - π Capacitances... 134 3.5.4 The Diffusion Capacitance... 135 3.5.5 Base Emitter Resistance (r b e )... 137 3.5.6 Emitter Capacitance (C e )... 137 3.5.7 Base Spread Resistance (r bb )... 138 3.6 Current Gain with Resistance Load... 138 3.7 CE Short Circuit Current Gain... 139 3.8 Emitter Follower at High Frequencies... 142 Summary... 156 Objective Type Questions... 156 Essay Type Questions... 157 Answers to Objective Type Questions... 158

Contents (xv) CHAPTER 4 MOS Amplifiers 4.1 Field Effect Transistor (FET)... 162 4.1.1 JFET... 162 4.1.2 n-channel JFET... 163 4.1.3 p-channel JFET... 163 4.1.4 FET Structure... 164 4.1.5 The ON Resistance r DS (ON)... 164 4.1.6 Pinch off Region... 165 4.1.7 Expression for Pinch off Voltage (V p )... 166 4.1.8 FET Operation... 168 4.2 JFET Volt-Ampere Characteristics... 171 4.3 Transfer Characteristics of FET... 173 4.3.1 FET Biasing for Zero Drift Current... 174 4.4 FET Small Signal Model... 177 4.4.1 Drain Resistance or Output Resistance (r d )... 178 4.5 FET Tree... 182 4.5.1 Enhancement Type MOSFET... 183 4.5.2 MOSFET Operation... 185 4.5.3 MOSFET Characteristics... 186 4.5.4 Drain Characteristic : I D Vs. V DS... 187 4.5.5 MOSFET Gate Protection... 188 4.5.6 Comparison of p-channel and n-channel MOSFETs... 188 4.5.7 Advantages of NMOS over PMOS... 189 4.5.8 The Depletion MOSFET... 189 4.6 Common Source Amplifier (C.S)... 195 4.7 Common Drain Amplifiers (C.D)... 196 4.8 Common Gate FET Amplifier Circuit (C.G)... 198 4.9 Comparison of FET and BJT Characteristics... 199 Summary... 200 Objective Type Questions... 201 Essay Type Questions... 202 Answers to Objective Type Questions... 207

(xvi) Contents CHAPTER 5 Feedback Amplifiers 5.1 Feedback Amplifiers... 210 5.2 Classification of Amplifiers... 210 5.2.1 Voltage Amplifier...211 5.2.2 Current Amplifier...211 5.2.3 Transconductance Amplifier... 212 5.2.4 Transresistance Amplifier... 212 5.3 Feedback Concept... 213 5.4 Types of Feedback... 215 5.5 Effect of Negative Feedback on Transfer Gain... 215 5.5.1 Reduction in Gain... 216 5.5.2 Increase in Bandwidth... 216 5.5.3 Reduction in Distortion... 217 5.5.4 Feedback to Improve Sensitivity... 218 5.5.5 Frequency Distortion... 218 5.5.6 Band Width... 219 5.5.7 Sensitivity of Transistor Gain... 219 5.5.8 Reduction of Nonlinear Distortion... 220 5.5.9 Reduction of Noise... 220 5.6 Transfer Gain with Feedback... 220 5.6.1 Loop Gain... 222 5.7 Classifaction of Feedback Amplifiers... 224 5.8 Effect of Feedback on Input Resistance... 225 5.8.1 Input Resistance with Shunt Feedback... 225 5.8.2 Input Impedance with Series Feedback... 227 5.9 Effect of Negative Feedback on R o... 228 5.9.1 Voltage Series Feedback... 228 5.9.2 Current Shunt Feedback... 229 5.10 Analysis of Feedback Amplifiers... 234 5.10.1 Voltage Series Feedback... 234 5.10.2 Current Shunt Feedback... 239 5.10.3 Current Series Feedback... 245

Contents (xvii) 5.10.4 Current Series Feedback (Transconductance Amplifier)... 246 5.10.5 Voltage Shunt Feedback (Transresistance Amplifier)... 249 Summary... 252 Objective Type Questions... 253 Essay Type Questions... 254 Answers to Objective Type Questions... 256 CHAPTER 6 Oscillators 6.1 Oscillators... 258 6.1.1 Performance Measures of Oscillator Circuits... 258 6.2 Sinusoidal Oscillators... 261 6.3 Barkhausen Criterion... 261 6.4 R C Phase-Shift Oscillator (Using JFET)... 262 6.4.1 To Find the β of the RC Phase-Shift Network (JFET)... 263 6.5 Transistor RC Phase-Shift Oscillator... 265 6.6 A General Form of LC Oscillator Circuit... 268 6.7 Loop Gain... 268 6.7.1 For Hartley Oscillator... 270 6.7.2 For Colpitts Oscillator... 270 6.8 Wien Bridge Oscillator... 271 6.9 Expression for f of Wien Bridge Oscillator... 272 6.10 Thermistor... 273 6.11 Sensistor... 273 6.12 Amplitude Stabilization... 273 6.13 Applications... 274 6.14 Reasonant Circuit Oscillators... 274 6.15 Crystal Oscillators... 275 6.16 Frequency Stability... 276 6.17 Frequency of Oscillations for Parallel Resonance Circuit... 277

(xviii) Contents 6.18 1-MHz FET Crystal Oscillator Circuit... 277 Summary... 278 Objective Type Questions... 279 Essay Type Questions... 280 Answers to Objective Type Questions... 281 CHAPTER 7 Large Signal Amplifiers 7.1 Introduction... 284 7.1.1 Power Amplifier... 284 7.1.2 Class A Operation... 284 7.1.3 Class B Operation... 285 7.1.4 Class C Operation... 285 7.1.5 Signal Amplifiers... 285 7.1.6 Small Signal Amplifiers... 285 7.1.7 Large Signal Amplifiers... 286 7.2 Class A Power Amplifier... 286 7.2.1 Series FED... 286 7.2.2 Transformer Coupled... 287 7.2.3 Efficiency of Amplifier Circuits... 288 7.3 Maximum Value of Efficiency of Class A : Amplifier... 288 7.4 Transformer Coupled Amplifier... 291 7.4.1 Mid Frequency Range... 294 7.4.2 Voltage Gain... 294 7.5 Transformer Coupled Audio Amplifier... 295 7.5.1 Impedance Matching... 296 7.5.2 Maximum Power Output... 297 7.5.3 Efficiency... 298 7.5.4 Conversion Efficiency, η... 298 7.5.5 Maximum Value of η... 299

Contents (xix) 7.6 Push Pull Amplifiers... 300 7.6.1 Class B Amplifiers... 302 7.6.2 Advantages of Class B Push Pull Circuit Amplifier... 302 7.6.3 Disadvantages of Class B Push Pull Circuit Amplifier... 302 7.6.4 Conversion... 302 7.6.5 Dissipation of Transistors in Class B Operation... 303 7.6.6 Graphical Construction for Class B Amplifier... 305 7.6.7 Distortion... 305 7.7 Complimentary Symmetry Circuits (Transformer Less Class B Power Amplifier)... 306 7.8 Phase Inverters... 308 7.9 Class D : Operation... 312 7.10 Class S : Operation... 313 7.10.1 Circuit... 313 7.11 Power Transistor... 318 7.11.1 Structure of Power Transistor... 318 7.11.2 Input Characteristics of Power Transistor... 319 7.11.3 Output Characteristics... 320 7.12 Heat Sinks... 321 Summary... 323 Objective Type Questions... 323 Essay Type Questions... 325 Answers to Objective Type Questions... 326 CHAPTER 8 Tuned Amplifiers 8.1 Introduction... 330 8.1.1 Applications... 330 8.1.2 Classification... 330 8.1.3 Single Tuned Amplifier... 331 8.1.4 Double Tuned Amplifier... 331 8.1.5 Stagger Tuned Amplifier... 331

(xx) Contents 8.2 Single Tuned Capacitive Coupled Amplifier... 331 8.3 Tapped Single Tuned Capacitance Coupled Amplifier... 336 8.3.1 Equivalent Circuit on the Output Side of the I Stage... 337 8.3.2 Expression for Inductance for Maximum Power Transfer... 337 8.4 Single Tuned Transformer Coupled or Inductively Coupled Amplifier... 340 8.4.1 Expression for L 2 for Maximum Power Transformer... 341 8.5 Effect of Cascaded Single Tuned Amplifiers on Bandwidth... 344 8.6 CE Double Tuned Amplifier... 347 8.6.1 Advantages... 347 8.6.2 Circuit... 347 8.6.3 Equivalent Circuit... 348 8.7 Effect of Cascading Double Tuned Amplifiers on Bandwidth... 351 8.8 Applications of Tuned Amplifiers... 351 8.9 Stagger Tuning... 352 8.10 Single Tuned Transistor Amplifier... 352 8.11 Stability Considerations... 352 8.12 Tuned Class B and Class C Amplifiers... 354 8.12.1 Bipolar Junction Transistor (BJT) Tuned Class B/C amplifier... 355 8.12.2 FET Tuned R.F Amplifier... 356 8.12.3 Waveforms... 356 8.12.4 Resonant Circuit... 356 8.12.5 Tank Circuits... 358 8.12.6 Mutual Inductance Coupled Output Resonant Circuit... 359 8.12.7 Equivalent Circuit... 359 8.13 Wideband Amplifiers... 359 8.13.1 Shunt Compensation... 360 8.13.2 Extension of Low Frequency Range... 361 8.13.3 Circuit for Extending Low Frequency Range... 362 8.13.4 Low Frequency Equivalent Circuit with Transistor Replaced by a Current Source... 362 8.13.5 Extension of High Frequency Range... 362 8.13.6 Series Peaked Circuit... 363

Contents (xxi) 8.14 Impedance Transformation... 363 8.14.1 Transformation of Impedances with Tapped Resonant Circuits... 364 8.14.2 Reactance L Section for Impedance Transformation... 366 8.14.3 Image Impedances : Reactance Matching... 368 8.14.4 Reactance T Networks for Impedance Transformation... 369 Summary... 371 Objective Type Questions... 372 Essay Type Questions... 373 Answers to Objective Type Questions... 374 Appendices... 377 Appendix-1 Colour Codes for Electronic Components... 378 Appendix-2 Resistor and Capacitor Values... 381 Appendix-3 Capacitors... 384 Appendix-4 Inductors... 390 Appendix-5 Miscellaneous... 394 Appendix-6 Circuit Symbols... 404 Appendix-7 Unit Conversion Factors... 406 Appendix-8 American Wire Gauge Sizes and Metric Equivalents... 409 MCQs from Gate Examination, Yearwise from 1993 to 2014... 411 Index... 419 Bibliography... 425