HY118-Διακριτά Μαθηματικά

Σχετικά έγγραφα
HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι είδαμε την προηγούμενη φορά. Συνεκτικότητα. 25 -Γράφοι

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι έχουμε δει μέχρι τώρα. Ισομορφισμός γράφων: Μία σχέση ισοδυναμίας μεταξύ γράφων.

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων / γραφήματα. Τι έχουμε δει μέχρι τώρα. Υπογράφημα. 24 -Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

HY118-Διακριτά Μαθηματικά

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων / γραφήματα. Τι είναι οι γράφοι; Εφαρμογές των γράφων. 23-Γράφοι

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Βασικές Έννοιες Θεωρίας Γραφημάτων

Μαθηματικά Πληροφορικής

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

d(v) = 3 S. q(g \ S) S

βασικές έννοιες (τόμος Β)

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Μαθηματικά Πληροφορικής

2 ) d i = 2e 28, i=1. a b c

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

q(g \ S ) = q(g \ S) S + d = S.

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

HY118- ιακριτά Μαθηµατικά

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

Οι 7 Γέφυρες του Königsberg

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Αναζήτηση Κατά Πλάτος

u v 4 w G 2 G 1 u v w x y z 4

Chapter 7, 8 : Completeness

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Αναζήτηση Κατά Πλάτος

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Θεωρία Γραφημάτων 6η Διάλεξη

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Στοιχεία Θεωρίας Γραφηµάτων (2)

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα

f e Γράφημα (Graph) Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ

Εισαγωγή στη Θεωρία Γράφων

Γραφήματα. Θέματα Υπολογισμού στον Πολιτισμό Γραφήματα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Επίπεδα Γραφήματα (planar graphs)

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

Υπολογιστικό Πρόβληµα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Θεωρία γραφημάτων. Παλιό αντικείμενο 18 ος αιώνας Leonhard Euler (Ελβετός μαθηματικός): πρόβλημα γεφυρών της πόλης Königsberg

(elementary graph algorithms)

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Κλάσεις Πολυπλοκότητας

Συνεκτικότητα Γραφήματος

για NP-Δύσκολα Προβλήματα

Αναζήτηση Κατά Πλάτος

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Δομές Δεδομένων και Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι

Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης

Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017

Γράφοι: κατευθυνόμενοι και μη

Αναζήτηση Κατά Πλάτος

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη

Πρόλογος. Πρόλογος 13. Πώς χρησιμοποείται αυτό το βιβλίο 17

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Κατευθυνόμενα και μη κατευθυνόμενα γραφήματα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

Αλγόριθµοι και Πολυπλοκότητα

HY118-Διακριτά Μαθηματικά

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Κλάση NP, NP-Complete Προβλήματα

Transcript:

HY118-Διακριτά Μαθηματικά Πέμπτη, 17/05/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 17-May-18 1 1

Θεωρία γράφων/ γραφήματα 17-May-18 2 2

Τι είδαμε την προηγούμενη φορά Ισομορφισμός γράφων Υπολογιστική πολυπλοκότητα Πρακτικώς επιλύσιμα προβλήματα Δυσεπίλυτα προβλήματα Μονοπάτια (απλά στοιχειώδη) Κυκλώματα(απλά στοιχειώδη) 17-May-18 3 3

Συνεκτικότητα Ένας μη κατευθυνόμενος γράφοςείναι συνεκτικός αν και μόνο αν υπάρχει ένα μονοπάτι μεταξύ κάθε ζεύγους διαφορετικών κόμβων του. Θεώρημα:Υπάρχει ένα απλόμονοπάτιγια κάθε ζεύγος διαφορετικών κορυφών σε ένα συνεκτικό, μη κατευθυνόμενο γράφο. 17-May-18 4 4

Κατευθυνόμενησυνεκτικότητα Ένας κατευθυνόμενος γράφος είναι: ισχυρά συνεκτικός αν και μόνο ανυπάρχει ένα κατευθυνόμενο μονοπάτι από το aστο bγια κάθε δύο διαφορετικές κορυφές aκαι b. Ασθενώς συνεκτικός αν ο αντίστοιχος μη κατευθυνόμενος γράφος(δηλ., αυτός στον οποίο έχουμε βγάλει τον προσανατολισμό των ακμών) είναι συνεκτικός. 17-May-18 5 5

Συνεκτικότητα, παραδείγματα 17-May-18 6 6

Μονοπάτια Euler καιhamilton Θα μιλήσουμε για το πρόβλημα που παρακίνησε τον Euler να επινοήσει τη θεωρία των γράφων: οι γέφυρες του Koenigsberg(πόλη που σήμερα λέγεται Kaliningrad) 17-May-18 7 7

Το πρόβλημα των γεφυρών του Königsberg Μπορούμε να περιδιαβούμε την πόλη και, πρν επιστρέψουμε στην αρχική μας θέση, να έχουμε περάσει κάθε γέφυρα μία μόνο φορά; 17-May-18 8 8

Το πρόβλημα των γεφυρών του Königsberg Μπορούμε να περιδιαβούμε την πόλη και, πριν επιστρέψουμε στην αρχική μας θέση, να έχουμε περάσει κάθε γέφυρα μία μόνο φορά; Το αρχικό πρόβλημα Μπορείτε να «μοντελοποιήσετε» το πρόβλημα χρησιμοποιώντας όσα ξέρουμε για τους γράφους; 17-May-18 9 9

Το πρόβλημα των γεφυρών του Königsberg Μπορούμε να περιδιαβούμε την πόλη και, πριν επιστρέψουμε στην αρχική μας θέση, να έχουμε περάσει κάθε γέφυρα μία μόνο φορά; A B D Το αρχικό πρόβλημα C Αντίστοιχος πολυγράφος 17-May-18 10 10

Μονοπάτια Euler & Hamilton Ορολογία: ΈναμονοπάτιEuler σε έναγράφο Gείναι ένα απλό μονοπάτι του G που περιλαμβάνει όλες τις ακμέςτου G. Ένακύκλωμα Eulerσε έναγράφο Gείναι ένα απλό κύκλωμα του G που περιλαμβάνει όλες τις ακμέςτου G. 17-May-18 11 11

Γέφυρες τουkoenigsberg Οι γέφυρες είναι ακμές. Επομένως, η απάντηση στο πρόβλημα είναι ΘΕΤΙΚΗαν και μόνο ανο γράφος του προβλήματος περιλαμβάνει ένα κύκλωμα Euler. Στην πραγματικότητα, δεν περιέχει 17-May-18 12 12

Θεωρήματα για την ύπαρξη μονοπατιών/κυκλωμάτων Euler Θεώρημα: Ένας συνεκτικός πολυγράφος περιλαμβάνει κύκλωμαeuler αν και μόνο αν κάθε κορυφή έχει άρτιο βαθμό. Θεώρημα:Ένας συνεκτικός πολυγράφοςέχει ένα μονοπάτιeuler αν και μόνο ανέχει ακριβώς 2 κορυφές περιττού βαθμού. 17-May-18 13 13

Γέφυρες τουkoenigsberg επομένως δεν υπάρχει κύκλωμα Euler. A B D C Το αρχικό πρόβλημα Αντίστοιχος πολυγράφος 17-May-18 14 14

Μονοπάτια/κυκλώματα Euler Τι λέτε για τον παρακάτω γράφο; 17-May-18 15 15

Θεώρημα για την ύπαρξη κυκλώματος Euler Σχέδιοαπόδειξης για το ότι ο άρτιος βαθμός των κορυφών συνεπάγεται την ύπαρξη κυκλώματος Euler: Ξεκινάμε από ένα τυχαίο κόμβο. Κατασκευάζουμε ένα απλό μονοπάτι προσπαθώντας να φτάσουμε εκεί απ όπου ξεκινήσαμε. Ο γράφος είναι συνεκτικός και κάθε κόμβος έχει άρτιο βαθμό, επομένως μπορούμε να επισκεφτούμε κάθε κόμβο και αν «πάμε» σε κάποιο κόμβο μπορούμε να φύγουμε από αυτόν Το ότι ο γράφος είναι πεπερασμένος συνεπάγεται ότι η διαδικασία τελικά θα τερματίσει. Σημειώστε ότι η πλήρης απόδειξη δίνει ένα αλγόριθμο: πρόκειται για μία κατασκευαστική απόδειξη μίας πρότασης. 17-May-18 16 16

Κυκλώματα Eulerγια κατευθυνόμενους γράφους Ένας συνεκτικός κατευθυνόμενος γράφος περιλαμβάνει κύκλωμαeuler αν και μόνο αν για κάθε κορυφή του vισχύει ότι deg + (v) = deg - (v) 17-May-18 17 17

Μονοπάτια/κυκλώματα Hamilton Ένα μονοπάτιeuler στο Gείναι ένα απλόμονοπάτιπου περιέχειόλες τις ακμέςτου G. ΈνακύκλωμαEuler στο Gείναι ένα απλό κύκλωμαπου περιέχειόλες τις ακμέςτου G. ΈναμονοπάτιHamilton του Gείναι ένα στοιχειώδες μονοπάτιπου περνά από όλες τις κορυφέςτου G. ΈνακύκλωμαHamilton του Gείναι ένα στοιχειώδες κύκλωμαπου περιέχει όλες τις κορυφέςτου G. 17-May-18 18 18

Θεωρήματα Θεώρημα του Dirac: Εάν(αλλάόχιμόνο αν) ένας γράφος Gείναι συνεκτικός, απλός, έχει n 3κορυφές, και vdeg(v) n/2, τότεο G περιλαμβάνει ένα κύκλωμα Hamilton. 17-May-18 19 19

Παραδείγματα 17-May-18 20 20

Πρόβλημα Έστω το εξής πρόβλημα: Δοσμένου ενός απλού γράφου G, περιέχει το Gένα κύκλωμα Hamilton; Αυτό το πρόβλημα έχει είναι NP-πλήρες (NPcomplete) Όπως είπαμε, αυτό σημαίνει πως, εάν βρεθεί ένας αλγόριθμος που να λύνει αυτό το πρόβλημα σε πολυωνυμικόχρόνο, θα μπορούσε να χρησιμοποιηθεί για να επιλύσει όλαταυπόλοιπα NPπροβλήματασε πολυωνυμικό χρόνο. 17-May-18 21 21

Βεβαρυμένος γράφος Ένας γράφος G=(V, E, f, h) όπου: V, E όπως έχουμε ήδη δει f: V R (συνάρτηση βαρών κορυφών) h: E R (συνάρτηση βαρών ακμών) Μία από τις δύο συναρτήσεις μπορεί να λείπει. 17-May-18 22 22

Βεβαρυμένος γράφος, παράδειγμα 17-May-18 23 23

Βεβαρυμένος γράφος, προβλήματα Το πρόβλημα του συντομότερου μονοπατιού: Δοσμένου ενός συνεκτικού, βεβαρυμένουγράφου όπου τα βάρη των ακμών εκφράζουν απόσταση κόμβων, βρες το συντομότερο μονοπάτι από ένα συγεκριμένοκόμβο σε ένα άλλο (Αλγόριθμος του Dijkstra, πολυπλοκότητα n 2 ) Το πρόβλημα των συντομότερων μονοπατιών μεταξύ όλων των δυνατών ζευγών κόμβων: Αλγόριθμος Floyd-Warshal, πολυπλοκότητα n 3 17-May-18 24 24

Βεβαρυμένος γράφος, προβλήματα 17-May-18 25 25

Βεβαρυμένος γράφος, προβλήματα Το πρόβλημα του περιοδεύοντος πωλητή(traveling salesman):ένας πωλητής θέλει να ξεκινήσει από την πόλη του, να επισκεφτεί όλες τις άλλες πόλεις μία μόνο φορά και να επιστρέψει πίσω στην πόλη του έχοντας διανύσει την ελάχιστη δυνατή απόσταση. Η «μετάφραση» στη θεωρία γράφων:δοσμένου ενός συνεκτικού, βεβαρυμένουγράφου όπου τα βάρη των ακμών εκφράζουν απόσταση κόμβων, βρες το κύκλωμα Hamilton με το μικρότερο δυνατό άθροισμα βαρών των ακμών που συμμετέχουν. 17-May-18 26 26

Επίπεδοι γράφοι Ένας γράφος ονομάζεται επίπεδος (planar) αν μπορούμε να τον σχεδιάσουμε στο επίπεδο με τέτοιο τρόπο ώστε οι ακμές του να μην τέμνονται μεταξύ τους. 17-May-18 27 27

Επίπεδοι γράφοι Για ένα απλό, συνεκτικό, επίπεδογράφο με nκορυφές και e ακμές, τα ακόλουθα θεωρήματα ισχύουν: Θεώρημα1: Εάν n 3 τότε e 3n 6 Θεώρημα2. Εάν n> 3 και δεν υπάρχουν κύκλοι μήκους3, τότε e 2n 4. 17-May-18 28 28

Επίπεδοι γράφοι: ο τύπος του Euler Εάν ένας συνεκτικός, επίπεδος γράφος σχεδιαστεί στο επίπεδο χωρίς οι ακμές του να τέμνονται, και nτο πλήθος των κορυφών, eτο πλήθος των ακμών και f το πλήθος των περιοχών, τότε n e+ f= 2. 17-May-18 29 29

Επίπεδοι γράφοι Το πρόβλημα του να αποφασιστεί κατά πόσον δύο επίπεδοι γράφοι είναι ισομορφικοί μπορεί να λυθεί σε πολυωνυμικό χρόνο! 17-May-18 30 30

Δέντρα Δέντροονομάζεται οποιοσδήποτε συνεκτικός γράφος χωρίς κύκλωμα Δάσος:Μη συνεκτικός γράφοςτου οποίου οι συνεκτικές συνιστώσες είναι δέντρα Ένας κόμβος με βαθμό 1 ονομάζεται τερματικός ή φύλλο, και όλοι οι υπόλοιποι εσωτερικοί Κάθε δέντρο με n κόμβουςέχειn 1 ακμές Κάθε συνεκτικός γράφοςμε n 1 ακμές είναι ένα δέντρο Πολλές χρήσεις: Δέντρα απόφασης, συντακτικά δέντρα,

Δέντρα κάλυψης Ένα υπογράφημαt ενός γράφουg ονομάζεται δέντρο κάλυψης εάν τοt είναι δέντρο και περιλαμβάνει όλους τους κόμβους του G Κάθε συνεκτικός γράφοςέχει ένα δέντρο κάλυψης Ένα ελάχιστο δέντρο κάλυψης είναι ένα δέντρο κάλυψης με τον ελάχιστο συνολικό βάρος ακμών.

Ε Π Ι Λ Ο Γ Ο Σ Ολοκλήρωση της θεωρίας του ΗΥ118 Καλή επιτυχία στις εξετάσεις σας! Καλό καλοκαίρι!! Ραντεβού στα ΗΥ472, ΗΥ672 σε λίγα χρόνια!!! Καλή επιτυχία στις υπόλοιπες σπουδές σας!!!! 17-May-18 33 33