Solutions - Chapter 4

Σχετικά έγγραφα
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Derivation of Optical-Bloch Equations

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Srednicki Chapter 55


P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

D Alembert s Solution to the Wave Equation


Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Lecture 21: Scattering and FGR

d 2 y dt 2 xdy dt + d2 x

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Note: Please use the actual date you accessed this material in your citation.

Κλασσική Θεωρία Ελέγχου

Homework 3 Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Basic Theory of Solid-State NMR

Approximation of distance between locations on earth given by latitude and longitude

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )

LTI Systems (1A) Young Won Lim 3/21/15

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

1 String with massive end-points

Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων


() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Κεφάλαιο 17: Θεωρία Χρονοεξαρτώμενων Διαταραχών

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων

Θεωρητική Επιστήμη Υλικών

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Solutions to Exercise Sheet 5

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

derivation of the Laplacian from rectangular to spherical coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Second Order RLC Filters

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

The Feynman-Vernon Influence Functional Approach in QED

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Déformation et quantification par groupoïde des variétés toriques

Spherical Coordinates

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Durbin-Levinson recursive method

Review of Single-Phase AC Circuits

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

The ε-pseudospectrum of a Matrix

Ó³ Ÿ , º 2(186).. 177Ä Œ. Š Ö,.. Ì Ö,.. ± Ö,, 1,.. ƒê, 2. μ ±μ- ³Ö ± ( ² Ö ± ) Ê É É, ± μ Ê É Ò Ê É É, Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

rs r r â t át r st tíst Ó P ã t r r r â

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

CRASH COURSE IN PRECALCULUS

Homework 8 Model Solution Section

ITU-R P (2009/10)

Spectrum Representation (5A) Young Won Lim 11/3/16

Κλασσική Θεωρία Ελέγχου

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

Lifting Entry (continued)

Variational Wavefunction for the Helium Atom

Example Sheet 3 Solutions

S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Consommation marchande et contraintes non monétaires au Canada ( )

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Handbook of Electrochemical Impedance Spectroscopy

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Hydraulic network simulator model

Geodesic paths for quantum many-body systems

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Uniform Convergence of Fourier Series Michael Taylor

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Κβαντομηχανική Ι Λύσεις προόδου. Άσκηση 1

If we restrict the domain of y = sin x to [ π 2, π 2

& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :

EE 570: Location and Navigation

Μάθημα: Θεωρία Δικτύων

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ

High order interpolation function for surface contact problem

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Matrices and Determinants

Tutorial Note - Week 09 - Solution

Η Κβαντική Μηχανική σε λειτουργία

Transcript:

Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ] hĥ1t 1 ī ] hĥt = 1 ī i h Ĥ1 + Ĥt + Ĥ1 tĥt] 1 ī ] hĥ1t 1 ī ] hĥt 1 ī ] hĥ3t = 1 ī h Ĥ1 + Ĥ + Ĥ3t + i Ĥ1 ĤtĤ3t] 3 i tĥ + Ĥ3t + Ĥ3 tĥtĥ1t] Ût = 1 + ī t Ĥt 1 t 1 + ī t t1 Ĥt 1 t 1 Ĥt t +... h 0 h 0 0 Û n = ī n t t1 tn 1 Ĥt 1 t 1 Ĥt t... Ĥt n t n h Ĥt 1, Ĥt ] = 0: 0 Û n = 1 n! 0 ī n t n Ĥt t h 0 1 0

Problem.3 Time-inepenent observable: Ût = exp ī h t 0 ] t Ĥt t A = ī ψt Ĥ, Â] ψt h Ĥ E = E E E Ĥ, Â] E = E Ĥ ÂĤ E = E Ĥ E E ÂĤ E A = E E E E ÂE E = E E  E E E  E = 0 t Problem. Ĥ = ˆµ B = ˆµ = gq mcŝ B = B 0 î ge mcŝxb 0 = ω 0 Ŝ x Ût = e iĥt/ = e iω 0 ˆ S xt/ = e i ˆ S xφ/ = ˆRφî z cos z ˆRφî + z = 1 φ +z i sin sin φ = 1 ] φ z = 1 φ = π 3 t = l 0 v 0 ω 0 l 0 v 0 = π 3 l 0 = πv 0 3ω 0

Problem.5 B = B 0 sin θî + B 0 cos θẑ Below we use φ as efine by ω 0 t: θ = 0: Ĥ = ω 0 B 0 Ŝ B = ω 0 Ŝx sin θ + Ŝz cos θ = ω 0 Ŝ n φ = 0 Ût = e iφ S ˆ n/ = 1 + iφ Ŝ n + 1 iφ Ŝn +...! = 1 1 φ φ +... + iσ n 1! 3! cos θ sin θ σ n Sz sin θ cos θ 3 φ +...] = cos φ iσ n sin cosφ/ i sinφ/ cos θ i sinφ/ sin θ Ût Sz i sinφ/ sin θ cosφ/ + i sinφ/ cos θ Ût +z = cos +y = 1 +z i z φ i sin 1 +y Ût + z = cos P φ φ i sin ] cos θ +z i sin ] φ cos θ 1 sin φ sin θ z S y = = +y ÛT + z = 1 sinω 0T sin θ P = 1 φ sin θ φ θ = π/: Problem.6 P = 1 sinω 0T = π = 0 ψt = e iω 0t/ +z + eiω 0t/ z S z = 0 t S z = ī h ψt Ĥ, Ŝz] ψt + ψt Ŝz t ψt 3

Ĥ = ω 0 Ŝ z : Ŝz t = 0 Ĥ, Ŝz] = 0 S x = cos ω 0t t S x = ī h ψt Ĥ, Ŝx] ψt + ψt Ŝx t ψt Ĥ = ω 0 Ŝ z : Ŝx t = 0 Ĥ, Ŝx] = ω 0 σ z, σ x ] = ω 0 iσ y = ω 0iŜy t S x = ω 0 ψt Ŝy ψt Ŝ y ψt = i e iω 0 t/ z eiω 0t/ +z ω 0 ψt Ŝy ψt = ω 0i = ω 0i e iω 0 t + e iω 0t e iω 0 t/ +z + e iω 0t/ z eiω 0t/ +z + e iω 0t/ z = ω 0i cos ω0 t i sin ω 0 t + cos ω 0 t i sin ω 0 t t Ŝx = t cos ω 0t = ω 0 sin ω 0t S y = sin ω 0t = ω 0 sin ω 0t t S y = ī h ψt Ĥ, Ŝy] ψt + ψt Ŝy t ψt Ĥ = ω 0 Ŝ z : Ŝy t = 0

Ĥ, Ŝx] = ω 0 σ z, σ y ] = ω 0 iσ x = ω 0iŜx t S y = ω 0 ψt Ŝx ψt Ŝ x ψt = e iω 0 t/ z + eiω 0t/ +z ω 0 ψt Ŝx ψt = ω 0 = ω 0 e iω 0 t + e iω 0t Problem.7 - Skippe Problem.8 e iω 0 t/ +z + e iω 0t/ e iω 0 t/ z +z + e iω 0t/ z = ω 0 cos ω0 t + i sin ω 0 t + cos ω 0 t i sin ω 0 t t Ŝy = t sin ω 0t = ω 0 cos ω 0t ψ0 = cos θ +z + sin θ z = ω 0 cos ω 0t ψt = e iω 0t/ cos θ +z + eiω 0t/ sin θ z S x = ψt Ŝx ψt = e iω0t/ cos θ +z + e iω 0t/ sin θ z Ŝ x e iω0t/ cos θ +z + eiω 0t/ sin θ z = e iω 0t/ cos θ +z + e iω 0t/ sin θ z e iω 0t/ cos θ z + eiω 0t/ sin θ +z = e iω0t sin θ cos θ + e iω 0t sin θ cos θ = sin θ cos θ cos ω 0t S x = sin θ cos ω 0t S y = ψt Ŝy ψt 5

= e iω0t/ cos θ +z + e iω 0t/ sin θ z Ŝ y e iω0t/ cos θ +z + e iω 0t/ sin θ z = i e iω 0t/ cos θ +z + e iω 0t/ sin θ z e iω 0t/ cos θ z eiω 0t/ sin θ +z = i e iω0t sin θ cos θ eiω 0t sin θ cos θ = i sin θ cos θ i sin ω 0t S y = sin θ sin ω 0t S z = ψt Ŝz ψt = e iω0t/ cos θ +z + e iω 0t/ sin θ z Ŝ z e iω0t/ cos θ +z + e iω 0t/ sin θ z = e iω 0t/ cos θ +z + e iω 0t/ sin θ z e iω 0t/ cos θ +z eiω 0t/ sin θ z = cos θ θ sin = cos θ Problem.9 S z = cos θ Ĥ = ω 0 Ŝ z + ω 1 cos ωtŝx ψ0 = +z Ĥ ψt = i ψt t ω 0 ω 1 cos ωt at ω 1 cos ωt ω 0 bt ȧt = i ḃt Approximation: B 1 B 0, ω 1 ω 0 at bt cte iω 0 t/ = te iω 0t/ 6

Approximation: ω ω 0 i ct = ω 1 iċt = ω 1 eiω 0 ωt t i t = ω 1 eiω ω 0t ct i ct = ω 1 iω 0 ωe iω 0 ωt t + e iω 0 ωt t] i t = ω 1 iω ω 0e iω ω0t ct + e iω ω 0tċt] iω 0 ωe iω 0 ωt i e iω ω 0tċt e iω 0 ωt iω ] 1 ω 1 eiω ω 0t ct ct = ω 1 ω 0 ω i ċt ω ] 1 ω 1 ct ct = iω 0 ωċt ω1 ct Characteristic equation: c iω 0 ωċ + ω1 c = 0 r + iω ω 0 ]r + ω1 = 0 r = iω 0 ω ± i ω 0 ω + ω 1 / ct = e iω ω0 ω 0 ωt/ A sin + ω 1 / ω0 ω t + B cos + ω 1 / t c0 = 1, 0 = 0: A = iω ω 0 ω0 ω + ω 1 / B = 1 ct = e iω iω ω 0 ωt/ 0 ω0 ω + ω 1 / sin ω0 ω + ω 1 / ω0 ω t + cos + ω 1 / t ċt = e iω ω 0 ωt/ 1 / ω 0 ω + ω 1 / sin ω0 ω + ω 1 / t 7

t = ie iω ω 0 ωt/ 1 / ω0 ω + ω 1 / sin ω0 ω + ω 1 / t z ψt = b tbt = tt = Problem.10 ω 1 / ω0 ω + ω 1 / ω 0 ω + ω 1 / sin t I = 1 1 + 1 II = 1 1 1 1 I = 1, I = 1 1 II = 1, II = 1 I Ĥ I = 1, I a a Ĥ a a I = 1 Ĥ 1 + 1 Ĥ + Ĥ 1 + Ĥ = E 0 A Compare with: Analogous Hamiltonian: 1 Ĥ 1 1 Ĥ + Ĥ 1 Ĥ I Ĥ II = 1 Ĥ 1 + 1 Ĥ Ĥ 1 Ĥ II Ĥ I = 1 Ĥ 1 1 Ĥ Ĥ 1 + Ĥ II Ĥ II = E Ĥ 0 A µ e E 0 cos ωt I,II µ e E 0 cos ωt E 0 + A Ĥ +z, z ω 0 ω 1 cos ωt ω 1 cos ωt ω 0 E + = E 0 + A E = E 0 A = µ e E = µ e E = E 0 + A 8

E Ĥ + µ e E 0 cos ωt II,I µ e E 0 cos ωt E ċt i t = µ e E 0 te ie + E t/ cos ωt cte ie + E t/ +z II, z I E + = ω 0 E 0 + A E = ω 0 E 0 A E + E = ω 0 A Analogue of Rabi s formula: ω 1 µ e E 0 I ψt = Problem.11 ψ0 = II µ e E 0 / A/ ω + µ e E 0 / sin µ = gq S mc B = B 0ˆk Ĥ = µ B = gq mc B 0Ŝz = ω 0 Ŝ z Ĥ 1, 1 = ω 0 Ŝ z 1, 1 = ω 0 1, 1 = E 1 1, 1 Ĥ 1, 0 = ω 0 Ŝ z 1, 0 = 0ω 0 1, 0 = E 0 1, 0 A/ ω + µ e E 0 / t Ĥ 1, 1 = ω 0 Ŝ z 1, 1 = ω 0 1, 1 = E 1 1, 1 ψ0 = 1, 1 y = 1 1, 1 + i 1, 0 1 1, 1 ψt = e iĥt/ 1 i 1, 1 + 1, 0 1 1, 1 9

= e ie 1t/ 1, 1 + i e ie 0t/ 1, 0 e ie 1t/ 1, 1 ψt = e iω 0t 1, 1 + i 1, 0 eiω0t 1, 1 x = 1 1, 1 + 1, 0 + 1 1, 1 1, 0 x = 1, 1 1, 1 1, 1 1, 1 x = 1 1, 1 1, 0 + 1 1, 1 1, 1 y = 1 1, 1 + i 1, 0 1 1, 1 1, 0 y = 1, 1 + 1, 1 1, 1 y = 1 1, 1 i 1, 0 1 1, 1 1, 1 x ψt = e iω0t e iω 0t + i = 1 sin ω 0t 1, 0 x ψt e iω0t + e iω0t = = cos ω 0 t 1, 1 x ψt = e iω0t e iω 0t i = 1 + sin ω 0t S x = 1 sin ω 0t + 0 + 1 + sin ω 0t = sin ω 0 t 1, 1 y ψt = e iω0t + e iω 0t + 1 = 1 + cos ω 0t 1, 0 y ψt e iω0t e iω0t = = sin ω 0 t 1, 1 y ψt = e iω0t + e iω 0t 1 = 1 cos ω 0t S y = 1 + cos ω 0t + 0 + 1 cos ω 0t = cos ω 0 t 10

S z = 1 + 0 + 1 = 0 Problem.1 Ĥ = ω 0 Ŝ x Problem.13 ψ0 = 1, 1 = 1 1, 1 x + 1, 0 x + 1 1, 1 x ψt = e ie 1t/ e ie 0 t/ 1, 1 x + 1, 0 x + e ie 1t/ 1, 1 x = e iω 0t 1, 1 x + 1, 0 x + eiω0t 1, 1 x 1, 1 = 1 1, 1 x 1, 0 x + 1 1, 1 x 1, 1 ψt = e iω0t + e iω 0t 1 = 1 cos ω 0t Ĥ 1,,3 E 0 0 A 0 E 1 0 A 0 E 0 Fin eigenstates: E 0 λ 0 A 0 E 1 λ 0 A 0 E 0 λ = E 0 λe 1 λe 0 λ A E 1 λ = 0 λ E 0 A = 0 λ = E 1, E 0 ± A E 0 λ 0 A 0 E 1 λ 0 A 0 E 0 λ a b c = 0 λ = E 1 : E 0 E 1 a + Ac = 0 Aa + E 0 E 1 c = 0 a = c = 0, b = 1 E 1 = 11

λ = E 0 + A: Aa + Ac = 0 E 1 E 0 Ab = 0 Aa Ac = 0 a = c = 1, b = 0 E 0 + A = 1 1 + 1 3 λ = E 0 A: Aa + Ac = 0 E 1 E 0 + Ab = 0 Aa + Ac = 0 a = c = 1, b = 0 E 0 A = 1 1 1 3 a ψ0 = b ψt = e iĥt/ ψ0 = e ie 1t/ E 1 ψ0 = 3 = 1 E 0 + A 1 E 0 A ψt = e iĥt/ ψ0 = e ie 0+At/ E 0 + A e ie 0 At/ E 0 A Problem.1 0 ie0 Ĥ x,y ie 0 0 ω 0 0 i Ĥ x,y i 0 +ω 0 / = +y = 1 +z + i z ω 0 / = y = 1 +z i z a By analogy, the eigenstates an eigenvalues are: 1

+E 0 = 1 x + i y E 0 = 1 x i y b ψ0 = x = 1 +E 0 + 1 E 0 ψt = e iĥt/ ψ0 = e ie 0t/ x ψt = e ie0t/ + e ie 0t/ y = i +E 0 + i E 0 y ψt = ie ie0t/ + ie ie 0t/ +E 0 + eie 0t/ E 0 = cos E 0t = sin E 0t The photon polarization is oscillating between the x an y states. Problem.15 Â, ˆB] = iĉ A B C Â, ˆB] = i Ĉ Ĉ = Â, ˆB] A t = ī h ψt Ĥ, Â]ψt = ī Ĥ, Â] h Ĥ, Â] = A /t Ĥ, Â] E A A E A /t t is time neee for expecte value of observable to change significantly. Problem.16 - Skippe 13