Symbolic Computation of Exact Solutions of Two Nonlinear Lattice Equations

Σχετικά έγγραφα
SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com

Homework for 1/27 Due 2/5

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

On Generating Relations of Some Triple. Hypergeometric Functions

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Solve the difference equation

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Ψηφιακή Επεξεργασία Εικόνας

On Inclusion Relation of Absolute Summability

Differential equations

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

Differentiation exercise show differential equation

Degenerate Solutions of the Nonlinear Self-Dual Network Equation

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials

ECON 381 SC ASSIGNMENT 2

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Second Order Partial Differential Equations

Oscillatory integrals

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

Envelope Periodic Solutions to Coupled Nonlinear Equations

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

The Simply Typed Lambda Calculus

Presentation of complex number in Cartesian and polar coordinate system

INTEGRAL INEQUALITY REGARDING r-convex AND

Bessel function for complex variable

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

( y) Partial Differential Equations

2.1

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΔΠΜΣ ΑΜΠΕΛΟΥΡΓΙΑ- ΟΙΝΟΛΟΓΙΑ

Congruence Classes of Invertible Matrices of Order 3 over F 2


New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Inverse trigonometric functions & General Solution of Trigonometric Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

2 Composition. Invertible Mappings

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

IIT JEE (2013) (Trigonomtery 1) Solutions

Diane Hu LDA for Audio Music April 12, 2010

p n r

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Degenerate Perturbation Theory

Other Test Constructions: Likelihood Ratio & Bayes Tests

Matrices and Determinants

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Homework 8 Model Solution Section

α β

Section 8.3 Trigonometric Equations

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1

Numerical Analysis FMN011

C.S. 430 Assignment 6, Sample Solutions

ST5224: Advanced Statistical Theory II

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

LAD Estimation for Time Series Models With Finite and Infinite Variance

SPECIAL FUNCTIONS and POLYNOMIALS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

CRASH COURSE IN PRECALCULUS

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

The Heisenberg Uncertainty Principle

A study on generalized absolute summability factors for a triangular matrix

Orthogonal polynomials

X g 1990 g PSRB

Analytical Expression for Hessian

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

EN40: Dynamics and Vibrations

CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT

PID.

On the Galois Group of Linear Difference-Differential Equations

Local Approximation with Kernels

On a four-dimensional hyperbolic manifold with finite volume

w o = R 1 p. (1) R = p =. = 1

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Transcript:

3rd Itertiol Coferece o Mchiery Mterils d Iformtio Techology Applictios (ICMMITA 5) Symbolic Compttio of Exct Soltios of Two Nolier Lttice Eqtios Sheg Zhg d Yigyig Zhob School of Mthemtics d Physics Bohi iversity Jizho 3 PR Chi szhgchi@6.com b37776@qq.com Keywords: Nolier lttice eqtio; Discrete G /G-expsio method; Exct soltio Abstrct. I this pper modified discrete G /G-expsio method is sed to costrct exct soltios of Tod lttice eqtio d Ablowitz-Ldik lttice eqtios. With the id of compter symbolic compttio we obtied i iform wy hyperbolic fctio soltios trigoometric fctio soltios d rtiol soltios of these two olier lttice eqtios. Whe the prmeters re tke s specil vles some kow soltios re recovered. It is show tht the modified method with symbolic compttio provides more effective mthemticl tool for solvig olier lttice eqtios i sciece d egierig. Itrodctio Solvig olier lttice eqtios plys importt role i my fields of sciece d egierig. I the pst severl decdes my effective methods for costrctig exct soltios of olier prtil differetil eqtios (PDEs) hve bee proposed sch s those i [-5]. slly it is hrd to geerlize oe method for olier PDEs to solve olier lttice eqtios. I 8 Wg Li d Zhg [6] proposed ew method clled the G /G-expsio method to fid trvellig wve soltios of olier PDEs. Some reserchers sch s Wg et l. [7] d Ebdi d Bisws [8-] hve doe sigifict work sig the method to costrct hyperbolic fctio soltios trigoometric fctio soltios d rtiol soltios of some importt eqtios. This method ws geerlized by Zhg Tog d Wg [] for olier PDEs with vrible coefficiets. More recetly Zhg et l. [] fod the itertive reltios betwee the lttice idices by crefl lysis d devised effective discrete lgorithm for sig the G /G-expsio method [6] to costrct hyperbolic fctio soltios d trigoometric fctio soltios of olier differetil- differece eqtios (DDEs). Lter Zhg et l. [3] employed embedded prmeter to modify the lgorithm i [] for ot oly hyperbolic fctio soltios trigoometric fctio bt lso rtiol soltios of olier DDEs. I order to show the vlidity d dvtges of the improved method we shll se the modified discrete method [3] to solve the Tod lttice eqtio d the Ablowitz-Ldik lttice eqtios i []. Exct soltios of Tod lttice eqtio Let s first cosider the fmos Tod lttice eqtio [36]: d (t ) d (t ) + [ + (t ) + (t ) (t )] =. dt dt We se the wve trsformtio (t ) = (ξ ) ξ = d + ct + ζ the Eq. () becomes c (c + )( + + ) =. () We sppose Eq. () hs the soltio i the form 5. The thors - Pblished by Atltis Press () 668

G ( ξ ) = + G( ξ ) d+ ελ µ G ( ξ ( ) + + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ + + G ( ξ ) d ελ ( µ ) λ + + + ) G( ξ ) = d+ ελ ( µ ) d+ ελ µ G ( ξ ( ) + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ + G ( ξ ) d ελ ( µ ) λ + + ) G( ξ ) = where ( ) G ξ stisfies d+ ελ ( µ ) (3) () (5) G ξ G ξ + λ + µ G( ξ ) =. (6) d ( ) d ( ) dξ dξ Sbstittig Eqs. (3)-(5) log with Eq. (6) ito Eq. () d sig Mthemtic we obti set of lgebric eqtios for d d c. Solvig the set of lgebric eqtios we hve three cses λ µ λ µ sih( d) sih( d) = = c = d = d λ µ λ µ ε = d = µ λ µ λ si( d) si( d) = = c = d = d µ λ µ λ ε = d = (7) (8) λ = d = c = d d = d ε = d = µ =. (9) Whe λ µ > we obti hyperbolic fctio soltio of Eq. (): λ µ λ µ µ λ λ µ Csih( ξ) + Ccosh( ξ) λsih( d) = sih( d ) + () λ µ λ µ λ µ Ccosh( ξ) + Csih( ξ) λ µ sih( d) where ξ = d Settig λ µ ζ = c d C = from soltio () we obti λ µ = λ µ λ sih( d) λ µ d = k sih( k)th( k sih( k) t + c) () which is the kow kik-type solitry wve soltio i []. If set obti λ + µ = λ µ λsih( d) λ µ d = k ζ = c d C = from soltio () we 669

sih( k)coth( k sih( k) t + c) () which is the kow siglr trvellig wve soltio i []. Whe λ µ < we obti hyperbolic fctio soltio of Eq. (): µ λ µ λ µ λ µ λ Csi( ξ) + Ccos( ξ) λsi( d) = si( d ) + (3) µ λ µ λ µ λ Ccos( ξ) + Csi( ξ) µ λ si( d) where ξ = d Settig µ λ ζ = c d C = from soltio (3) we obti λ + µ = µ λ λsi( d) λ µ d = k si( k)t( k si( k) t + c) () which is the kow periodic wve soltio i []. If set obti λ + µ = µ λ λs i( d) µ λ d = k ζ = c d C = from soltio (3) we si( k)cot( k si( k) t + c) (5) which is the kow periodic wve soltio i []. Whe λ µ = we obti rtiol soltio of Eq. (): dc d λ (6) = C + Cξ where ξ = d dt + Settig dλ d = k ζ = c d C = from soltio (6) we obti k (7) k kt + c which is the kow rtiol soltio i []. Exct soltios of Ablowitz-Ldik lttice eqtios We ext cosider the Ablowitz-Ldik lttice eqtios []: d () t [ + () t v()][ t + () t + ()] t + ()= t (8) dt d v () t + [ + () t v()][ t v+ () t + v ()] t v()=. t (9) dt We se the wve trsformtio = ( ξ ) v = V( ξ ) ξ = d + ct + ζ the Eqs. (8) d (9) become c ( + V )( + ) + = () + cv + ( + V )( V + V ) V =. () + 67

Accordig to the homogeeos blce procedre we sppose tht Eqs. () d () hve the followig forml soltios: G ( ξ ) = + G( ξ ) + G ( ξ d ελ ( µ ) + + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ + + G ( ξ ) d ελ ( µ ) λ + + + ) G( ξ ) = d+ ελ ( µ ) () (3) V d+ ελ µ G ( ξ ( ) + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ + G ( ξ ) d ελ ( µ ) λ + + ) G( ξ ) = () d+ ελ ( µ ) G ( ξ ) = β + β β G( ξ ) (5) V d+ ελ µ G ( ξ ( ) + + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ + β + β G ( ξ ) d ελ ( µ ) λ + + + ) G( ξ ) = d+ ελ ( µ ) (6) V + G ( ξ d ελ ( µ ) + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ β + β G ( ξ ) d ελ ( µ ) λ + + ) G( ξ ) = (7) d+ ελ ( µ ) where G( ξ ) stisfies Eq. (6). Sbstittig Eqs. ()-(7) log with Eq. (6) ito Eqs. () d () d sig Mthemtic we obti set of lgebric eqtios for β β d d c. Solvig the set of lgebric eqtios we hve three cses λ µ ( λ λ µ )sih ( d) ( λ µ ) = = ( λ λ µ ) β = λ µ λ µ sih ( d) sih ( d) β = c = d = d ε = d = ( λ µ µ µ λ ( λ µ λ )si ( d) ( µ λ ) = = ( λ i µ λ ) β = (8) (9) (3) 67

µ λ µ λ si ( d) isi ( d) β = c = d = d ε = d = ( µ λ ) µ λ (3) λd = = λ β = d λ β = = = ε = d = µ = (3) c d d Whe λ µ > we obti hyperbolic fctio soltios of Eqs. (8) d (9): λ µ λ µ Csih( ξ ) cosh( ) + C ξ = λ µ λ µ λ µ λ µ Ccosh( ξ) + Csih( ξ) (33) v λ µ λ µ λ µ λ µ sih ( d) Csih( ξ) + Ccosh( ξ) sih ( d) = λ µ λ µ λ µ λ µ Ccosh( ξ) + Csih( ξ) λ µ sih ( d) where = λ ξ d Settig µ = λ µ (3) we hve (3) d C = from soltios (33) d = + th( d sih ( d) t+ ζ) (35) sih ( d) sih ( d) v = th( d sih ( d) t ζ) + (36) which re eqivlet to the kik-type solitry wve soltios i []. λ If set µ = d C = the soltios (33) d (3) become = + coth( d sih ( d) t+ ζ) (37) sih ( d) sih ( d) v = coth( d sih ( d) t ζ) + (38) which re eqivlet to the siglr trvellig wve soltios i []. Whe λ µ < we obti hyperbolic fctio soltios of Eqs. (8) d (9): v µ λ µ λ Csi( ξ ) cos( ) + C ξ i = µ λ µ λ µ λ µ λ Ccos( ξ) + Csi( ξ) µ λ µ λ µ λ λ µ si ( d) Csi( ξ) + Ccos( ξ) isi ( d) = µ λ µ λ µ λ µ λ Ccos( ξ) + Csi( ξ) µ λ isi ( d) where ξ = d µ λ (39) () 67

Whe λ µ = we obti rtiol soltios of Eqs. (8) d (9): C = C + Cξ v where ξ = d + Cd = ( C + C ξ ) () Ackowledgemets This work ws spported by the PhD Strt-p Fds of Bohi iversity (bsqd35) d Lioig Provice of Chi (37) the Lioig BiQiW Tlets Progrm (3955). Refereces [] S.Y. Lo d X.Y. Tg: Method of Nolier Mthemticl Physics (Sciece Press Beijig 6) [] C.S. Grder J.M. Greee M.D. Krskl d R.M. Mir: Phys. Rev. Lett. Vol. 9 (965) p. 95 [3] M.J. Ablowitz d P.A. Clrkso: Solito Nolier Evoltio Eqtios d Iverse Sctterig (Cmbridge iversity Press Cmbridge 99) [] M.R. Mirs: Bäckld Trsformtio (Spriger-Verlg Berli 978) [5] R. Hirot: Phys. Rev. Lett. Vol. 7 (97) p. 9 [6] M.L. Wg: Phys. Lett. A Vol. 3 (996) p. 79 [7] E.G. F: Phys. Lett. A Vol. 3 () p. 3 [8] S. Zhg d T.C. Xi: Comm. Theor. Phys. Vol. 5 (6) p. 985 [9] S. Zhg Y.Y. Zho IAENG It. J. Appl. Mth. Vol. () p. 77 []S. Zhg B. X d H.Q. Zhg It. J. Compt. Mth. Vol. 9 () p. 6 []S. Zhg d D. Wg: Therm. Sci. Vol. 8 () p. 555 []S. Zhg J.L. Tog d W. Wg: Compt. Mth. Appl. Vol. 58 (9) p. 9 [3]S. Zhg d B. Ci: Nolier Dy. Vol. 78 () p. 593 []S. Zhg B. X d A.X. Peg: Appl. Mech. Mter. Vol. 39 (3) p. 57 [5]S. Zhg Y.Y. Zho d B. Ci: Adv. Mter. Res. Vol. 989-99 () p. 76 [6]M.L. Wg X.Z. Li d J.L. Zhg: Phys. Lett. A 37 (8) p. 7 [7]M.L. Wg J.L. Zhg d X.Z. Li: Appl. Mth. Compt. Vol. 6 (8) p. 3 [8]G. Ebdi d A. Bisws: J. Frkli Ist. Vol. 37 () p. 39 [9]G. Ebdi d A. Bisws: Comm. Nolier Sci. Nmer. Siml. Vol. 6 () p. 377 []G. Ebdi d A. Bisws: Mth. Compt. Model. Vol. 53 () p. 69 []S. Zhg J.L. Tog d W. Wg: Phys. Lett. A Vol. 37 (8) p. 5 []S. Zhg L. Dog J.M. B d Y.N. S Phys. Lett. A Vol. 373 (9) p. 95 [3]S. Zhg L. Dog J.M. B d Y.N. S: Prm-J. Phys. Vol. 7 () p. 7 []Z. Wg: Compt. Phys. Comm. Vol. 8 (9) p. 673