Large deviations of the density and of the current in non equilibrium steady states

Σχετικά έγγραφα
Markov chains model reduction

3 Frequency Domain Representation of Continuous Signals and Systems

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

ECE 468: Digital Image Processing. Lecture 8

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Probability and Random Processes (Part II)

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Χρονοσειρές Μάθημα 3

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Homework 8 Model Solution Section

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Non-Markovian dynamics of an open quantum system in fermionic environments

Free Energy and Phase equilibria

Statistical Inference I Locally most powerful tests

D-Wave D-Wave Systems Inc.

Lecture 21: Scattering and FGR

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

The Simply Typed Lambda Calculus

Lifting Entry (continued)

The canonical 2nd order transfer function is expressed as. (ω n

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

Lecture 12 Modulation and Sampling

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

The challenges of non-stable predicates

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Homework for 1/27 Due 2/5

Other Test Constructions: Likelihood Ratio & Bayes Tests

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

INTERACTING PARTICLE SYSTEMS OUT OF EQUILIBRIUM. Davide Gabrielli University of L Aquila. (EURANDOM 2011) joint with

Fourier transform of continuous-time signals

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Chapter 2. Stress, Principal Stresses, Strain Energy

Bayesian modeling of inseparable space-time variation in disease risk

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Parametrized Surfaces

Inverse trigonometric functions & General Solution of Trigonometric Equations

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Thermodynamics of the motility-induced phase separation

The circle theorem and related theorems for Gauss-type quadrature rules


SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Mellin transforms and asymptotics: Harmonic sums

Gaussian related distributions

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Ψηφιακή Επεξεργασία Φωνής

Metal Oxide Varistors (MOV) Data Sheet

Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry.

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics


Durbin-Levinson recursive method

The Student s t and F Distributions Page 1

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Asymptotic distribution of MLE

On the Galois Group of Linear Difference-Differential Equations

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Hartree-Fock Theory. Solving electronic structure problem on computers

Surface Mount Aluminum Electrolytic Capacitors

TMA4115 Matematikk 3

Biostatistics for Health Sciences Review Sheet

4.6 Autoregressive Moving Average Model ARMA(1,1)

6.3 Forecasting ARMA processes

1 String with massive end-points

5.4 The Poisson Distribution.


Higher Derivative Gravity Theories

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling

6.003: Signals and Systems. Modulation

2. Chemical Thermodynamics and Energetics - I

2.153 Adaptive Control Lecture 7 Adaptive PID Control

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Solution Series 9. i=1 x i and i=1 x i.

Comportement critique du modèle d accrochage de. Toulouse, 29 Mars 2016

Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Fractional Colorings and Zykov Products of graphs

Local Approximation with Kernels

ST5224: Advanced Statistical Theory II

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Transcript:

Large deviaions of he densiy and of he curren in non equilibrium seady saes Bernard DERRIDA Universié Pierre e Marie Curie and Ecole Normale Supérieure, Paris June 2012 Lyon

COLLABORATORS J.L. Lebowiz, E.R. Speer C. Enaud B. Douço, P.-E. Roche T. Bodineau C. Apper, V. Lecome, F. van Wijland A. Gerschenfeld, E. Brune

Ouline Densiy ucuaions in non-equilibrium sysems Curren ucuaions Open quesions Non seady sae siuaions Deerminisic dynamics

Non equilibrium seady saes: curren of paricles

Non equilibrium seady saes: curren of paricles ρ a Sysem ρ b

Non equilibrium seady saes: curren of hea T a Sysem T b

Q Ta T b Equilibrium (T a = T b ) Seady sae (T a T b ) L

Q Ta T b Equilibrium (T a = T b ) Seady sae (T a T b ) L P(Q) = P( Q)

Q Ta T b Equilibrium (T a = T b ) Seady sae (T a T b ) P(Q) = P( Q) L P(Q) P( Q) exp [ Q ( 1 1 )] kt b kt a Flucuaion Theorem

Q Ta T b Equilibrium (T a = T b ) Seady sae (T a T b ) P(Q) = P( Q) L P(Q) P( Q) exp [ Q ( 1 1 )] kt b kt a Flucuaion Theorem Q 2 1 L Q A(T a, T b ) L Fourier's law

Q Ta T b Equilibrium (T a = T b ) Seady sae (T a T b ) P(Q) = P( Q) L P(Q) P( Q) exp [ Q ( 1 1 )] kt b kt a Flucuaion Theorem Q 2 1 L P(Q)? Q A(T a, T b ) L Fourier's law

Q Ta T b L Equilibrium (T a = T b ) Non-equilibrium seady sae (T a T b )

Q Ta T b L Equilibrium (T a = T b ) P(C) exp [ E(C) ] kt Non-equilibrium seady sae (T a T b ) P(C) =? Densiy ucuaions

Q Ta T b L Equilibrium (T a = T b ) P(C) exp [ E(C) ] kt Non-equilibrium seady sae (T a T b ) P(C) =? Densiy ucuaions Shor range correlaions Long range correlaions

Q Ta T b L Equilibrium (T a = T b ) P(C) exp [ E(C) ] kt Non-equilibrium seady sae (T a T b ) P(C) =? Densiy ucuaions Shor range correlaions Time symmery of ucuaions Long range correlaions Time asymmery of ucuaions

Densiy ucuaions a equilibrium Saring from S = k log Ω Einsein n N paricles n paricles in volume v v N = Vρ N n paricles in v V

Densiy ucuaions a equilibrium Saring from S = k log Ω Einsein n N paricles n paricles in volume v v N = Vρ n 2 n 2 = kt vρ κ V N n paricles in v κ is he compressibiliy, ρ he densiy in he reservoir and T he emperaure.

Densiy ucuaions a equilibrium Saring from S = k log Ω Einsein n N paricles n paricles in volume v v N = Vρ n 2 n 2 = kt vρ κ V N n paricles in v κ is he compressibiliy, ρ he densiy in he reservoir and T he emperaure. Variance of he ucuaion = k Response coecien Bolzmann Consan k 10 23 J/K

Large deviaions of he densiy n v N paricles N = Vρ ( n ) Pro v = r exp[ v a(r)] N n paricles in v V a(r) a(r) is he large deviaion funcion ρ r A equilibrium a(r) is he free energy

Large deviaion funcional ρ 1 ρ 2 ρ k L Pro(ρ 1,...ρ k ) exp [ L d F(ρ 1,...ρ k ) ] Large number k of boxes r = L x Pro({ρ( x)}) exp [ L d F({ρ( x)}) ]

Exclusion processes SSEP (Symmeric simple exclusion process) α γ 1 1 1 1 1 L ρ a = α α + γ, ρ b = δ β + δ β δ

Large deviaion funcion for he SSEP Pro({ρ(x)}) exp[ LF({ρ(x)})] Equilibrium ρ a = ρ b = F F({ρ(x)}) = 1 0 dx [ (1 ρ(x)) log 1 ρ(x) 1 F + ρ(x) log ρ(x) F ]

Large deviaion funcion for he SSEP Pro({ρ(x)}) exp[ LF({ρ(x)})] Equilibrium ρ a = ρ b = F F({ρ(x)}) = 1 0 dx [ (1 ρ(x)) log 1 ρ(x) 1 F + ρ(x) log ρ(x) F ] Non-equilibrium (ρ a ρ b ) D Lebowiz Speer 2001-2002 Berini De Sole Gabrielli Jona-Lasinio Landim 2002 F = sup F (x) [ dx (1 ρ(x)) log 1 ρ(x) ρ(x) + ρ(x) log 1 F (x) F (x) + log F ] (x) ρ b ρ a wih F (x) monoone, F (0) = ρ a and F (1) = ρ b

Non-equilibrium ρ a ρ b F = sup F (x) [ dx (1 ρ(x)) log 1 ρ(x) ρ(x) + ρ(x) log 1 F (x) F (x) + log F ] (x) ρ b ρ a F is non-local: for example for small ρ a ρ b F({ρ(x)}) = Z 1 + (ρ a ρ b ) 2 (ρ a ρ 2 a) 2 + O(ρ a ρ b ) 3 dx (1 ρ(x)) log 1 ρ(x) 1 ρ (x) 0 Z 1 Z 1 dx 0 x where ρ (x) = ρ(x) =(1 x)ρ a + xρ b Long-range correlaions Spohn 82 + ρ(x) log ρ(x) ρ (x) dy x(1 y)`ρ(x) ρ (x) `ρ(y) ρ (y) ρ(x)ρ(y) ρ(x) ρ(y) 1 G(x, y) = (ρ a ρ b ) 2 x(1 y) L L

Large deviaion funcional Pro({ρ(x)}) exp[ Acion] = exp [ LF({ρ(x)})] Equilibrium 1. F local 2. F = T 1 d x f (ρ( x)) f is he free energy per uni volume 3. Shor range correlaions

Large deviaion funcional Pro({ρ(x)}) exp[ Acion] = exp [ LF({ρ(x)})] Equilibrium 1. F local 2. F = T 1 d x f (ρ( x)) f is he free energy per uni volume 3. Shor range correlaions Non-equilibrium 1. F non local 2. Weak long range correlaions (SSEP for x < y) Spohn 1982 (ρ(x) ρ (x))(ρ(y) ρ (y)) 1 L G(x, y) = (ρ a ρ b ) 2 x(1 y) L 3. Higher correlaions ρ(x 1 )ρ(x 2 ))...ρ(x n ) c L 1 n

TWO APPROACHES SSEP (Symmeric simple exclusion process) 1 1 1 1 α β γ 1 L δ Microscopic Behe ansaz, Perurbaion heory, Compuer,... Macroscopic i = Lx, = L 2 τ Pro({ρ(x, τ), j(x, τ)}) exp [ L T /L 2 0 d 1 0 ] dx [j + ρ ] 2 4ρ(1 ρ)

Marix ansaz Seady sae of he SSEP α 1 1 1 1 Fadeev 1980,..., D Evans Hakim Pasquier 1993 β γ 1 L δ P(τ 1,..., τ L ) = W X 1... X L V W (D + E) L V where X i = { D E if sie i occupied if sie i empy

Marix ansaz Seady sae of he SSEP α 1 1 1 1 Fadeev 1980,..., D Evans Hakim Pasquier 1993 β γ 1 L δ P(τ 1,..., τ L ) = W X 1... X L V W (D + E) L V where X i = { D E if sie i occupied if sie i empy W (αe γd) = W DE ED = D + E (βd δe) V = V

Large diusive sysems ρ a ρ b A diusive sysem For ρ a ρ b small: Q = D(ρ) (ρ a ρ b ) L Fick's law ρ a = ρ b = ρ : Q 2 = σ(ρ) L

Large diusive sysems ρ a ρ b A diusive sysem For ρ a ρ b small: Q = D(ρ) (ρ a ρ b ) L Fick's law ρ a = ρ b = ρ : Q 2 = σ(ρ) L Noe ha σ(ρ) = 2kT ρ 2 κ(ρ)d(ρ) where κ is he compressibiliy

Macroscopic ucuaion heory Onsager Machlup heory for non equilibrium diusive sysems Kipnis Olla Varadhan 89 Spohn 91. Berini De Sole Gabrielli Jona-Lasinio Landim 2001 Evoluion of a prole ρ(x, ) for 0 T Pro({ρ(x, ), j(x, )}) [ exp L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) dρ d = dj dx (conservaion law) ρ(0, ) = ρ a ; ρ(1, ) = ρ b

Macroscopic ucuaion heory Pro({ρ(x, ), j(x, )}) [ exp L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) j(x, ) = ρ (x, )D(ρ(x, )) + 1 L η(x, )

Macroscopic ucuaion heory Pro({ρ(x, ), j(x, )}) [ exp L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) j(x, ) = ρ (x, )D(ρ(x, )) + 1 L η(x, ) wih he whie noise η(x, )η(x, ) = 2σ(ρ(x, ))δ(x x )δ( )

dρ d = dj dx ; ρ(0, ) = ρ a ; ρ(1, ) = ρ b Pro({ρ(x, ), j(x, )}) exp [ Acion] = exp [ L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) How does a ucuaion ρ(x, 0) relax?

dρ d = dj dx ; ρ(0, ) = ρ a ; ρ(1, ) = ρ b Pro({ρ(x, ), j(x, )}) exp [ Acion] = exp [ L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) How does a ucuaion ρ(x, 0) relax? Acion = 0 dρ d = (D(ρ(x, ))ρ(x, ) )

dρ d = dj dx ; ρ(0, ) = ρ a ; ρ(1, ) = ρ b Pro({ρ(x, ), j(x, )}) exp [ Acion] = exp [ L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) How does a ucuaion ρ(x, 0) relax? Acion = 0 dρ d = (D(ρ(x, ))ρ(x, ) ) How is a ucuaion ρ(x, 0) produced?

dρ d = dj dx ; ρ(0, ) = ρ a ; ρ(1, ) = ρ b Pro({ρ(x, ), j(x, )}) exp [ Acion] = exp [ L T /L 2 0 d 1 0 ] dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) How does a ucuaion ρ(x, 0) relax? Acion = 0 dρ d = (D(ρ(x, ))ρ(x, ) ) How is a ucuaion ρ(x, 0) produced? Minimize he Acion wih ρ(x, ) = ρ seady sae (x)

Macroscopic ucuaion heory Berini De Sole Gabrielli Jona-Lasinio Landim 2001-2002 ρ a ρ(x,) ρ(x) ρ*(x) ρ b 0 x 1 Z 0 F({ρ(x)}) = min d ρ(x,) Z 1 0 dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) wih ρ(x, 0) = ρ(x) ; ρ(x, ) = ρ (x)

SSEP How does a ucuaion ρ(x, 0) relax? dρ(x, ) d = d 2 ρ(x, ) dx 2 How is a ucuaion ρ(x, 0) produced? dρ(x, s) ds = d 2 ρ(x, s) 2 (ρ a ρ b ) dρ(x, s) (1 2ρ(x, s)) +O ( (ρ dx 2 a ρ b ) 2) ρ a (1 ρ a ) dx

Curren ucuaions in non-equilibrium seady saes T a T b

Curren ucuaions in non-equilibrium seady saes T a T b Curren ucuaions on a ring T

AVERAGE CURRENT OF HEAT Q Ta L T b Q = F (T a, T b, L, conacs)

AVERAGE CURRENT OF HEAT Q Ta L T b Q = F (T a, T b, L, conacs) FOURIER's law: large L Q G(T a, T b ) L large L and T a T b small Q D(T ) T a T b D(T ) T L

AVERAGE CURRENT OF PARTICLES Q ρa L ρ b Q = F (ρ a, ρ b, L, conacs)

AVERAGE CURRENT OF PARTICLES Q ρa L ρ b Q = F (ρ a, ρ b, L, conacs) FICK's law: large L Q G(ρ a, ρ b ) L large L and ρ a ρ b small Q D(ρ) ρ a ρ b D(ρ) ρ L

ONE DIMENSIONAL MECHANICAL SYSTEMS Ideal gas No Fourier's law Harmonic chain E = p 2 i 2m + i g(x i+1 x i ) 2 Q G(T a, T b )

ONE DIMENSIONAL MECHANICAL SYSTEMS Ideal gas No Fourier's law Harmonic chain E = p 2 i 2m + i g(x i+1 x i ) 2 Q G(T a, T b ) Hard paricle gas Anomalous Fourier's law T a Anharmonic chain T a Q G(T a, T b ) L 1 α.3 α.5 Delni Lepri Livi Polii Livi, Spohn, Grassberger,...

DIFFUSIVE SYSTEMS: average curren Symmeric exclusion α 1 1 1 1 γ 1 L β δ Fourier's law General laice gas Random walkers KMP model Kipnis Marchioro Presui Q G(T a, T b ) L

SSEP (Symmeric simple exclusion process) D. Douço Roche 2004 α γ 1 1 1 1 1 L ρ a = α α + γ, ρ b = δ β + δ β δ Q() lim 1 L [ρ a ρ b ] Fick s law Q 2 () c lim 1 L Q 3 () c lim 1 L (ρ a ρ b ) [ ρ a + ρ b 2(ρ2 a + ρ a ρ b + ρ 2) b 3 [ ] 1 2(ρ a + ρ b ) + 16ρ2 a + 28ρ a ρ b + 16ρ 2 b 15 ]

CURRENT FLUCTUATIONS AND LARGE DEVIATIONS Q T a T b Q Energy ransferred during ime F(j) Pro ( Q ) = j exp[ F (j)] j * j Expansion of F (j) near j gives all cumulans of Q

DIFFUSIVE SYSTEMS: higher cumulans Q ρa ρ b Bodineau D. 2004 L For ρ a ρ b small: Q = D(ρ)(ρ a ρ b ) L ρ a = ρ b = ρ : Then one can calculae Q 2 = σ(ρ) L All cumulans of Q for arbirary ρ a and ρ b

ADDITIVITY PRINCIPLE Pro ( Q = j, ρ a, ρ b ) exp[ F L+L (j, ρ a, ρ b )] Bodineau D. 2004 Q ρ a ρ b L L Addiiviy P L+L (Q, ρ a, ρ b ) max ρ [P L(Q, ρ a, ρ) P L (Q, ρ, ρ b )] F L+L (j, ρ a, ρ b ) = min ρ [F L (j, ρ a, ρ) + F L (j, ρ, ρ b )]

VARIATIONAL PRINCIPLE F L (j, ρ a, ρ b ) = 1 L min ρ(x) Z 1 0 dx [j L + ρ (x) D(ρ(x))] 2 2σ(ρ(x)) Bodineau D. 2004 ρ a ρ (x) ρ*(x) ρ b 0 x 1 Saises he ucuaion heorem F (j) F ( j) = j ρb ρ a D(ρ) σ(ρ) dρ Gallavoi Cohen 1995 Evans Searls 1994... Kurchan 1998 Lebowiz Spohn 1999

DIFFUSIVE SYSTEMS: all he cumulans Bodineau D. 2004 Q c Q 2 c Q 3 c Q 4 c = 1 L I 1 = 1 L = 1 L = 1 L I 2 I 1 3 ( I 3 I 1 I2 2 ) I1 3 3 ( 5 I 4 I1 2 14 I 1I 2 I 3 + 9 I2 3 ) I1 5 where I n = ρa ρ b D(ρ)σ(ρ) n 1 dρ For he SSEP D(ρ) = 1 and σ(ρ) = 2ρ(1 ρ) For he KMP D(ρ) = 1 and σ(ρ) = 4ρ 2 For he random walkers D(ρ) = 1 and σ(ρ) = 2ρ

TRUE VARIATIONAL PRINCIPLE Berini De Sole Gabrielli Jona-Lasinio Landim 2005 F (j) = 1 L lim min T ρ(x,),j(x,) 1 T d T 0 1 0 dx [j(x, ) + ρ (x, )D(ρ(x, ))] 2 2σ(ρ(x, )) wih dρ d = dj dx (conservaion), ρ (0) = ρ a, ρ (1) = ρ b and j T = T 0 j (x)d Sucien condiion for he opimal prole o be ime independen Dynamical phase ransiion Bodineau D. 2005-2007 he opimal ρ (x) sars o become ime dependen

SSEP ON A RING Apper D Lecome Van Wijland 2008 N paricles L sies ρ = N L 1 1 Q ux hrough a bond during ime

CUMULANTS OF THE CURRENT FOR THE SSEP ON A RING paricles and L sies σ(ρ) = 2ρ(1 ρ) = 2N(L N) L 2 N Q 2 c = σ L 1 Q 4 c = σ2 2(L 1) 2 Q 6 c = (L2 L+2)σ 3 2(L 1)σ 2 4(L 1) 3 (L 2) Q 8 c = (10L4 2L 3 +27L 2 15L+18)σ 4 4(L 1)(11L 2 L+12)σ 3 +48(L 1) 2 σ 2 24(L 1) 4 (L 2)(L 3) Q 2 c = σ L Gaussian + Fick's law Q 2n c σn L 2 for n 2

UNIVERSAL CUMULANTS OF THE CURRENT Q 2 c = σ L Gaussian Q 4 c σ2, Q 6 c 2L 2 σ3, Q 8 c 4L 2 5σ4 12L 2 Universal

UNIVERSAL CUMULANTS OF THE CURRENT Q 2 c = σ L Gaussian Q 4 c σ2, Q 6 c 2L 2 σ3, Q 8 c 4L 2 5σ4 12L 2 Universal Macroscopic ucuaion heory

UNIVERSAL CUMULANTS OF THE CURRENT Q 2 c = σ L Gaussian Q 4 c σ2, Q 6 c 2L 2 σ3, Q 8 c 4L 2 5σ4 12L 2 Universal Macroscopic ucuaion heory + ucuaions around a a prole

DIFFUSIVE SYSTEMS: summary Open sysem T a T b Q n c / L 1 Ring T Q 2 c / L 1 Q 2n c / L 2 for n 2

HARD PARTICLE GAS: he second cumulan T a T a

HARD PARTICLE GAS: he second cumulan T a T a 2000 Q 2 ring Q 2 ring 0.45 0.4 Q 2 ring / Q 2 ring / 1500 0.35 1000 0.3 500 0.25 0.2 a) 0 2000 4000 6000 Q 2 b) 0 2 10 4 4 10 4 1/ has a limi

HARD PARTICLE GAS: Size dependence of he cumulans OPEN SYSTEM lim Qn c/ 10 2 10 1 10 0 Q 4 open c Q 3 open c Q 2 open c Q open lim Qn c/ 10 2 10 1 10 0 Q 4 open c Q 2 open c 10 1 10 1 Ta >Tb Ta = Tb a) 10 2 10 3 N b) 10 2 10 3 N RING 10 2 Q 4 ring c Q 2 ring c lim Qn c/ 10 1 10 0 10 1 10 2 10 3 N

HARD PARTICLE GAS: Size dependence of he cumulans OPEN SYSTEM lim Qn c/ 10 2 10 1 10 0 Q 4 open c Q 3 open c Q 2 open c Q open lim Qn c/ 10 2 10 1 10 0 Q 4 open c Q 2 open c 10 1 10 1 Ta >Tb Ta = Tb a) 10 2 10 3 N b) 10 2 10 3 N RING 10 2 Q 4 ring c Q 2 ring c lim Qn c/ 10 1 10 0 ANOMALOUS FOURIER'S LAW 10 1 10 2 10 3 N

Correlaions on a mesoscopic scale T a T a L Cor(x,.25) 1 0 2 4 100 200 400 6 0 0.2 0.4 0.6 0.8 1 x Delni, Lepri, Livi, Mejia-Monaserio, Polii 2010 Gerschenfeld, D., Lebowiz 2010

Sep iniial condiion ρ a Q 1 0 1 2 Q ρ b ASEP SSEP G. Schüz 98. Prähofer Spohn 2000-2002. Tracy Widom 2008 D Gerschenfeld 2009 ρ a ρ b e λq =?

Sep iniial condiion on he innie line ρ a Q ρ b SSEP D Gerschenfeld 2009 e λq exp[ H(ω)] ] wih H(ω) = 1 [1 π dk log + ωe k2 and ω = 1 [1 (e λ 1)ρ a ][1 (1 e λ )ρ b ]

Sep iniial condiion on he innie line ρ a Q ρ b SSEP D Gerschenfeld 2009 e λq exp[ H(ω)] ] wih H(ω) = 1 [1 π dk log + ωe k2 and ω = 1 [1 (e λ 1)ρ a ][1 (1 e λ )ρ b ] For large Q : Pro(Q ) exp [ π2 12 Q3 / ]

Densiy proles condionned on he curren Densiy 0.8 0.6 0 /2 0.4 0.2 0 space

Densiy proles condionned on he curren Densiy 0.8 0.6 0 /2 0.4 0.2 0 space

OPEN QUESTIONS Large deviaion funcion of he densiy for a general diusive sysem Non seady sae siuaions Theory for mechanical sysems which conserved impulsion Mean eld heory for large deviaion funcions