HARDY AND RELLICH INEQUALITIES WITH REMAINDERS

Σχετικά έγγραφα
On Generating Relations of Some Triple. Hypergeometric Functions

1. For each of the following power series, find the interval of convergence and the radius of convergence:

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

A study on generalized absolute summability factors for a triangular matrix

Homework for 1/27 Due 2/5

On Inclusion Relation of Absolute Summability

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

C.S. 430 Assignment 6, Sample Solutions

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Uniform Convergence of Fourier Series Michael Taylor

Example Sheet 3 Solutions

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Solve the difference equation

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1


Solutions: Homework 3

Matrices and Determinants

The Heisenberg Uncertainty Principle

ST5224: Advanced Statistical Theory II

Math221: HW# 1 solutions

derivation of the Laplacian from rectangular to spherical coordinates

Homework 4.1 Solutions Math 5110/6830

Presentation of complex number in Cartesian and polar coordinate system

IIT JEE (2013) (Trigonomtery 1) Solutions

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Ψηφιακή Επεξεργασία Εικόνας

2 Composition. Invertible Mappings

Tridiagonal matrices. Gérard MEURANT. October, 2008

Degenerate Perturbation Theory

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Homework 3 Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Bessel function for complex variable

4.6 Autoregressive Moving Average Model ARMA(1,1)

A Note on Intuitionistic Fuzzy. Equivalence Relation

Section 8.3 Trigonometric Equations

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

CRASH COURSE IN PRECALCULUS

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Other Test Constructions: Likelihood Ratio & Bayes Tests

Congruence Classes of Invertible Matrices of Order 3 over F 2

Srednicki Chapter 55

The Neutrix Product of the Distributions r. x λ

Fractional Colorings and Zykov Products of graphs

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Areas and Lengths in Polar Coordinates

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Data Dependence of New Iterative Schemes

w o = R 1 p. (1) R = p =. = 1

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Lecture 13 - Root Space Decomposition II

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Statistical Inference I Locally most powerful tests

Areas and Lengths in Polar Coordinates

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Certain Sequences Involving Product of k-bessel Function

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

LAD Estimation for Time Series Models With Finite and Infinite Variance

1. Matrix Algebra and Linear Economic Models

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Problem Set 3: Solutions

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

Finite Field Problems: Solutions

Every set of first-order formulas is equivalent to an independent set

Solutions to Exercise Sheet 5

Concrete Mathematics Exercises from 30 September 2016

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

DERIVATION OF MILES EQUATION Revision D

Gauss Radau formulae for Jacobi and Laguerre weight functions

α β

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Lower Bounds for Laplacian and Fractional Laplacian Eigenvalues

Estimators when the Correlation Coefficient. is Negative

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Reminders: linear functions

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Section 7.6 Double and Half Angle Formulas

Lecture 2. Soundness and completeness of propositional logic

The Simply Typed Lambda Calculus

Transcript:

HARDY AND RELLICH INEQUALITIES WITH REMAINDERS W. D. EVANS AND ROGER T. LEWIS Astract. I this paper our primary cocer is with the estalishmet of weighted Hardy iequalities i L p () ad Rellich iequalities i L () depedig upo the distace to the oudary of domais R with a fiite diameter D(). Improved costats are preseted i most cases.. Itroductio Recetly, cosiderale attetio has ee give to extesios of the multi-dimesioal Hardy iequality of the form u(x) u(x) dx µ() dx + λ() u(x) dx, u H δ(x) (), (.) where is a ope coected suset of R ad δ(x) := dist(x, ). It is kow that for µ() = there are smooth domais for which 4 λ(), ad for λ() =, there are smooth domais for which µ() < - see M. Marcus, V.J. Mizel, ad Y. Pichover [8] ad 4 T. Matskewich ad P.E. Soolevskii [9]. I [], H. Brezis ad M. Marcus showed that for domais of class C iequality (.) holds for µ() = 4 ad some λ() (, ) ad whe is covex λ() 4D() (.) i which D() is the diameter of. M. Hoffma-Ostehof, T. Hoffma-Ostehof, ad A. Laptev [6] aswered a questio posed y H. Brezis ad M. Markus i [] y estalishig the improvemet to (.) that (.) holds for a covex domai Date: March 8, 7. 99 Mathematics Suject Classificatio. Primary 47A63; Secodary 46E35, 6D. Key words ad phrases. Rellich iequality, Hardy iequality, Remaider terms.

W. D. EVANS AND R. T. LEWIS, with µ() = 4, K() λ(), ad K() := 4 [ s ] / (.3) i which s := S ad is the volume of. For a covex domai ad µ() = /4, a lower oud for λ() i (.) i terms of was also otaied y S. Filippas, V. Maz ya, ad A. Tertikas i [5] as a special case of results o L p Hardy iequalities. They prove that λ() 3D it (), where D it () = sup x δ(x), the iteral diameter of. Sice 3D it () 3 4 K()/ /, their result is a improvemet of (.3) for =, 3, ut the estimates do t compare for > 3. I this paper we show that (.) holds for (.3) replaced y µ() = 4 ad λ() 3K() as well as provig weighted versios of the Hardy iequality i L p () for p >. I the case p =, the followig are special cases of our results. If is covex ad σ (, ], the u(x) σ ( σ) dx 4D() σ B(, σ) δ(x) σ +3 ( s ) σ u(x) dx (.4) for p+ Γ( B(, p) := ) Γ( ) π Γ( +p ). (.5) If σ [, ] ad is covex, the δ(x) σ u(x) ( σ) dx B(, σ) δ(x) σ u(x) dx 4 + C H(, σ) δ(x) σ u(x) dx. ( σ) for C H (, σ) give i (3.4). Similar results for weighted forms of the Hardy iequality i L p () are give i sectio 4. Fially, we show that our oe-dimesioal iequalities i lead to improved costats for the Rellich iequality otaied y G. Baratis i [] for 4.. Oe-dimesioal iequalities As is the case i [6], our proofs are ased o oe-dimesioal Hardytype iequalities coupled with the use of the mea-distace fuctio itroduced y Davies to exted to higher dimesios; see [4]. The asic oe-dimesioal iequality is as follows:

HARDY AND RELLICH INEQUALITIES 3 Lemma. Let u C (, ), (t) := mit, t ad let f C [, ] e mootoic o [, ]. The for p > f ((t)) u(t) p dt p p f((t)) f() p f ((t)) p u (t) p dt. (.) Proof. First let u := vχ (,], the restrictio to (, ] of some v C (, ). For ay costat c [f(t) c] u(t) p dt = [f(t) c] u(t) p By choosig c = f(), we have that + [f(t) c] p [ u(t) ] p [ u(t) ] dt. f (t) u(t) p dt = p [f(t) f()] u(t) p Re[u(t)u (t)]dt. (.) Similarly, for u = vχ [,), v C (, ), we have f ( s) u(s) p ds = p [f( s) f()] u(s) p Re[u(s)u (s)]ds. Therefore, sice f is mootoic, for ay u C(, ) f ((t)) u(t) p dt = p f((t)) f() u(t) p Re[u(t)u (t)]dt p f ((t)) p p u(t) p f((t)) f() u (t) dt [ p f ((t)) u(t) p dt ] p p f ((t)) p p [ f((t)) f() p f ((t)) p u (t) p dt o applyig Hölder s iequality. Iequality (.) ow follows. The ext lemma provides the oe-dimesioal result eeded to improve (.3), which was proved i [6]. Lemma. Let σ ad defie µ(t) := (t). For all u C(, ) ( σ ) ( (t) ) σ ] u(t) (t) σ u (t) dt (t) [+k(σ) σ dt, µ(t) (.3) for [ k(σ) := ] σ σ, σ <,, σ [, ]. Proof. O settig f(t) = t σ i (.) we get σ p (t) σ u(t) p dt p p ] p (t) p+σ [(t) ] σ p u (t) p dt. (.4)

4 W. D. EVANS AND R. T. LEWIS With u C(, ), let p = ad sustitute v(t) = [ ( (t) ) σ]u(t) i (.4). We claim that this gives ( σ ) ( (t) ) σ ] v(t) σ (t) v (t) dt (t) [ σ dt (.5) for ay real umer σ. The sustitutio gives (t) σ/ v (t) = ( σ) σ (t) σ/ (t)u(t)+(t) σ/[ ( (t) ) σ ] u (t). Cosequetly, (t) σ v (t) = ( σ) σ (t) σ u(t) + (t) σ[ ( ) (t) σ ] u (t) ( σ) σ (t) [ ( (t) ) σ ] [ u ] which implies that (t)σ v (t) dt = (t)σ[ ( ) (t) σ ] u (t) dt + ( σ) σ (t) σ u(t) dt +( σ) [ σ d (t) [ ( (t) ) σ ] ] u dt dt = (t)σ[ ( (t) ) σ ] u (t) dt (.6) sice (t) = i (, ) ad i (, ). Therefore, (.5) follows from (.4). Sice = µ(t) + (t) for [ ( (t) k σ (x) := ) σ ] = [ + (t) σ = σ (t) σ ] [ + σ( (t) ) ] σkσ (.7) ( (t) ) µ(t) µ(t), x [, ), σ. ( + x) σ (x) σ For σ <, k σ (x) > i (, ), k σ () = ad k σ (x) as x. By examiig the derivative of k σ (x) we see that k σ(x) = ( σ)(( + x) σ σ x σ ) [( + x) σ (x) σ ] lim k σ(x) = x + For σ <, k σ (x) is miimized at Calculatios show that ( σ), σ <,,, σ =, < σ <. x σ := /( σ ) <. k σ (x σ ) = [ σ ] σ =: k(σ).

HARDY AND RELLICH INEQUALITIES 5 For σ [, ), k σ(x) is ever zero i (, ) idicatig that k σ (x) is miimized at x = for σ [, ) ad x [, ). The iequality (.3) ow follows. I order to treat the case i which p, we make use of the methods of Tidlom [] ad prove a weighted versio of Theorem. i []. Lemma 3. Let u C (, ), p (, ), ad σ p. The [ ] p (t)σ u (t) p p σ dt p (t)σ p + (p ) σ p u(t) p dt. Proof. We may assume that σ p sice otherwise the coclusio is trivial. Accordig to (.) for a mootoic fuctio f ad a positive fuctio g, f (t) u(t) p dt p f(t) f() u(t) p u (t) dt [ ] [ /p ( ) ] p g(t) u (t) p dt f(t) f() p /(p ) /p g(t) u(t) p dt. Cosequetly, p p g(t) u (t) p dt ( ( ) p f (t) u(t) p dt ) /(p ) p. u(t) p dt) ( f(t) f() p g(t) Now, as i [], usig a corollary to Youg s iequality, amely A p /B p pa (p )B, ) /p u(t) p dt, it fol- with A = f (t) u(t) p dt, B = lows that p p g(t) u (t) p dt p f (t) (p ) ( f(t) f() p g(t) ( f(t) f() p g(t) ) /(p ) u(t) p dt. Choose f(t) = t σ p+ ad g(t) = (p σ ) (p ) t σ. The ( f(t) f() p g(t) ) /(p ) = (p σ ) [ t σ p+ σ p+ p t σ ] p = (p σ )t [( σ p ( ) ) t p σ p ] p.

6 W. D. EVANS AND R. T. LEWIS Cosequetly, for t (, ) ( ) f(t) f() p /(p ) p f (t) (p ) g(t) [( = (p σ ) pt σ p (p )t σ p ( [ = (p σ )t σ p + (p ) (p σ )t σ p + (p ) ( ) t p σ ( t ( t ) ) p σ p ] p ) ] p ) p σ p (p σ ) t σ p + (p ) ( ). p σ ad the iequality follows. I the iequality aove we have used the fact that [ ( t p σ ] p ( p t ) p σ. ) The proof is completed y followig the last part of the proof of Lemma. For a certai rage of values take y σ, σ [ c σ, ) with c σ >, the iequality i L () give y Lemma gives a etter oud tha Lemma 3 with p =. I fact for σ < ( (t) ) σ ] (t) [ σ + k(σ) = (t) σ + σ k(σ) µ(t) (t)µ(t) + σ k(σ) σ (t) σ µ(t) σ with σ k(σ) + σ k(σ) (.8) (t)µ(t) σ (t) σ µ(t) σ 5 [ σ, σ [, ), σ σ + σ k(σ)(t) σ ] k(σ) σ, σ <. Sice k(σ) decreases to for σ < as σ ad k( 3)., the the left-had side of (.8) is greater tha σ for σ [ 3, ). 3. A Hardy iequality i L () We eed the followig otatio (c.f.[6]). For each x ad ν S, τ ν (x) := mis > : x + sν ; D ν (x) := τ ν (x) + τ ν (x); ν (x) := miτ ν (x), τ ν (x); µ ν (x) := maxτ ν (x), τ ν (x) = D ν (x) ν (x); D() := sup D ν (x); x, ν S x := y : x + t(y x), t [, ]. Note that D() is the diameter of ad x is the part of which ca e see from the poit x. The volume of x is deoted y x.

HARDY AND RELLICH INEQUALITIES 7 Let dω(ν) deote the ormalized measure o S (so that = dω(ν)) ad defie S (x; s) := ν (x) s dω(ν). S (3.) Hece / (x; ) = (x) the mea-distace fuctio itroduced y Davies i [4]. For B(, p) := cos(e, ν) p dω(ν) = Γ( p+ ) Γ( ) S π Γ( +p ), e R, (3.) it is kow that B(, p) (x; p) := dω(ν) (3.3) S ν (x) p δ(x) p for covex domais see Exercise 5.7 i [4], [3], ad []. Note that B(, ) =. This fact ca e applied to most of the results elow whe is covex. For a Hardy iequality i L () with weights we will eed to defie ( s ) ( σ) C H (, σ) := k(σ)[ σ + σ k(σ)]( σ) (3.4) for σ [, ] ad where as give i Lemma [ k(σ) := ] σ σ, σ <,, σ [, ]. Note that C H (, ) = 3 K() for K() defied i (.3). Theorem. If σ, the for ay u C () δ(x) σ u(x) ( σ) dx (x; σ ) u(x) dx 4 δ(x) σ + C H (, σ) u(x) dx. (3.5) x ( σ) If < σ, the u(x) dx σ ( σ) 4D() σ (x; σ ) + 3 ( s x ) σ u(x) dx. (3.6) If is covex, the for ay u C() δ(x) σ u(x) ( σ) dx B(, σ) δ(x) σ u(x) dx 4 + C H(, σ) δ(x) σ u(x) dx. ( σ)

8 W. D. EVANS AND R. T. LEWIS whe σ [, ] ad u(x) dx σ ( σ) 4D() σ whe σ (, ]. B(, σ)δ(x) σ + 3 ( s ) σ u(x) dx. Proof. Let ν u, ν S, deote the derivative of u i the directio of ν, i.e., ν u = ν ( u). It follows from Lemma that for σ (, ] σ ν(x) ν u dx ( σ ) ν(x) σ ( + k(σ) [ ν(x) µ ν(x) ] ( σ) ) u(x) dx. Expadig the itegrad i (3.7), we have ν (x) σ ( + k(σ) [ ν(x) ] ( σ) ) µ ν(x) = ν (x) σ + σ k(σ) ν(x) σ (τ ν(x)τ ν + ( σ) k(σ) ν(x) σ (x)) σ µ ν(x). ( σ) If σ ν (x) σ [ + k(σ) ( ν (x)) ( σ) ] µ ν (x) k(σ)δ(x) σ ν (x) σ + σ (τ ν(x)τ ν + ( σ) k(σ) δ(x) σ (x)) σ (3.7) (3.8) τ ν(x) ( σ) +τ ν (x) ( σ) sice ν (x) σ δ(x) σ i this case. As i [6], we ote that sice (τ S ν (x)τ ν (x)) σ dω(ν) (τ S ν (x)) ( σ) dω(ν) [ (τ S ν (x)) dω(ν) ] ( σ) = [ s x ] ( σ) for σ, the S (τ ν (x)τ ν dω(ν) [ (τ (x)) σ S ν (x)τ ν (x)) σ dω(ν) ] [ s x ] ( σ). For the third term i iequality (3.9) S (τ ν (x) ( σ) + τ ν (x) ( σ) )dω(ν) = implyig that for σ S (τ ν (x) ( σ) + τ ν (x) ( σ) ) dω(ν) S τ ν (x) ( σ) dω(ν) [ s x ] ( σ). (3.9) Cosequetly, for σ we have that S ν (x) σ [ + k(σ) ( ν (x)) ( σ) ] dω(ν) µ ν(x) (x; σ ) + C H (, σ)δ(x) σ / [ ] (3.) x ( σ).

HARDY AND RELLICH INEQUALITIES 9 Upo comiig this fact with (3.7) we have ( ) σ (x; σ ) + C H (,σ)δ(x) σ x ( σ)/ u(x) dx S ν (x) σ ν u(x) dω(ν)dx = δ(x)σ cos(ν, u(x)) dω(ν) (3.) S u(x) dx for σ. Sice cos(ν, α) dω(ν) = (3.) S for ay fixed α S (see Tidlom [], p.7), iequality (3.5) follows. For < σ, we cosider first the third term o the right-had side of (3.8). We have S ν (x) σ µ ν (x) ( σ) dω(ν) σ (τ S ν (x) + τ ν (x)) σ (τ ν (x) + τ ν (x)) ( σ) dω(ν) = σ τ ν (x) + τ ν (x) σ L σ (S ) σ[ ] σ τ ν (x) L σ (S ) + τ ν (x) L σ (S ) = ( σ) τ S ν (x) σ dω(ν) ( σ)[ (τ S ν (x)) dω(ν) ] σ = ( σ)[ s x ] σ for y the Mikowski ad Hölder iequalities. Therefore, the term ν (x) S σ dω(ν) µ ν (σ )( s ) σ (x) ( σ) x. Similarly, i the secod term of (3.8) S ν (x)µ ν (x) σ dω(ν) (τ S ν (x) + τ ν (x))(τ ν (x) + τ ν (x)) σ dω(ν) σ[ s x ] σ as efore implyig that dω(ν) S ν (x)µ ν σ ( s ) σ (x) σ x. For < σ < we ow have that S ν (x) σ [ + k(σ) ( ν (x)) ( σ) ] dω(ν) (x; σ ) + 3 ( s x ) σ µ ν (x) sice k(σ) = i this case. Cosequetly, S ν (x) σ cos(ν, u(x)) dω(ν) u(x) dx ( ) [ ( σ (x; σ ) + 3 s ) σ ] x u(x) dx.

W. D. EVANS AND R. T. LEWIS Accordig to (3.) it follows that S ν (x) σ cos(ν, u(x)) dω(ν) D()σ σ. Therefore, (3.6) holds. The iequalities i the statemet of the theorem for the case of a covex domai follow from (3.3) ad the fact that x = for all x. 4. A L p () iequality With the guidace of Tidlom s aalysis for the Hardy iequality i [], L p versios of the weighted Hardy theorem i the last sectio ca e proved y similar techiques. Whe σ =, the ext theorem reduces to Theorem. of []. Theorem. Let u C() ad p (, ). If σ, the for B(, p) defied i (3.) δ(x)σ u(x) p dx [ p σ /p] p B(,p) ad if σ [, p ], the u(x) p dx σ [ p σ /p] p B(,p) D() σ (x; σ p) + (p )[ s x (x; σ p) + (p )[ s x ] p σ u(x) p dx ] p σ u(x) p dx. (4.) (4.) If is covex, (x, σ p) ca e replaced i (4.) ad (4.) y the term B(, p σ)/δ(x) p σ (i view of (3.3)) ad x y. Proof. From Lemma 3 we have that for σ p, ay ν S, ad u C() ν(x) σ ν u(x) p dx [ p σ p ] p ν (x) σ p + (p )p σ D ν (x) u(x) p dx. p σ (4.3) If σ we oud ν (x) σ for ay ν S y δ(x) σ i the first itegral aove. If σ >, we oud it y D() σ / σ. As i [] we may use the fact that ν u(x) p dω(ν) = B(, p) u(x) p. (4.4) S After oudig ν (x) σ as descried aove, itegrate i (4.3) over S with respect to dω(ν). I order to evaluate the itegral of (/D ν (x)) p σ, we proceed as i []. Sice σ p, the f(t) = t σ p is covex for t > ad we have that ( ) p σdω(ν) ( D ν (x) ) σ p ( x ) p σ dω(ν) S D ν (x) S s (4.5)

HARDY AND RELLICH INEQUALITIES y Jese s iequality ad Lemma. of []. The coclusio follows. 5. Rellich s iequality The methods descried aove with Propositio elow ca e used to prove a weighted Rellich iequality which, for 4 ad without weights, improves the costat give i a Rellich iequality proved recetly y Baratis ([], Theorem.). A compariso is made elow. The methods used y Baratis depeds upo the idetity (5.) first proved y M.P. Owe ([], see the proof of Theorem.3). I order to icorporate weights, our proof requires the poit-wise idetity (5.) which does ot follow from the proof of Owe. Propositio. Let e a domai i R. The, for all u C (R ) νu(x) [ dω(ν) = u(x) + u(x) ], (5.) S ( + ) x i x j ad for all u C() S νu(x) dω(ν)dx = Proof. For ν = (ν,..., ν ) we have νu = (ν ) u = l,m= ν lν m u lm = l= ν l u ll + i,j= 3 u(x) dx. (5.) ( + ) l<m ν l ν m u lm i which u pq (x) := u(x) x p x q. Cosequetly, S νu dω(ν) = l,m= u llu mm (ν S l ) (ν m ) dω(ν) +4 m= Re(u mm u pq ) (ν S m ) ν p ν q dω(ν) p<q +4 Re(u pq u jk ) ν S p ν q ν j ν k dω(ν). j<k p<q (5.3) Let θ j [, π] for j =,...,, ad θ [, π]. Usig the covetio that Π p j=q = for p < q ad θ =, we have ν j = Π j k= si θ k cos θ j, j =,...,, ( )!! dω(ν) := Π k= (si θ k) k dθ k dθ, (5.4) γ for!! := ( ) ( 4) ad (π) ( )/ for odd, γ = (π) / for eve. Calculatios show that S (ν m ) ν p ν q dω(ν) =, m =,...,, p < q

W. D. EVANS AND R. T. LEWIS implyig that the secod term o the right-had side of (5.3) vaishes. A similar cosideratio for the third term o the right-had side of (5.3) shows that ν p ν q ν j ν k dω(ν), p < q, j < k, S oly if j = p ad k = q. Therefore, (5.3) reduces to S νu(x) dω(ν) = l,m= u llu mm (ν S l ) (ν m ) dω(ν) +4 u pq (ν S p ) (ν q ) dω(ν). (5.5) p<q However, further calculatios show that p < q, νpν q (+) dω(ν) = S p = q =,..., implyig that S νu dω(ν) = 3 (+) + (+) = (+) 3 (+) m= u mm [4 u pq + Re(u pp u qq )] p<q [ u(x) + i,j= u(x) ] x i x j which is (5.). Equality (5.) ow follows sice u(x) dx = u(x) dx. x i x j Defie ad i,j= δ(x) σ, σ <, d(x; σ) := ( D() ) σ, σ [, ]; β(, σ) := ( σ) (3 σ) ( + ) ; 6 C R (, σ) := 4 σ k(σ ) [ s for σ ad k(σ) defied i Lemma. Theorem 3. For σ ad u C (), d(x; σ) [ u(x) + holds whe 4 σ ad ] 4 σ ( ) + σ k(σ ) x i x j ]dx i,j= u(x) β(, σ) (x; σ 4) u(x) dx + 4 σ k(σ ) [ s ] 4 σ u(x) 4 σ x dx (5.6) (5.7) (5.8) (5.9)

HARDY AND RELLICH INEQUALITIES 3 d(x; σ) [ u(x) + x i x j ]dx i,j= u(x) β(, σ) (x; σ 4) u(x) dx + 4 σ k(σ ) [ s ] 4 σ + (3 σ) k(σ ) [ s ] 4+t σ u(x) 4 σ x dx δ(x) t u(x) 4+t σ x dx (5.) holds whe 4 + t σ ad t σ. Proof. For σ, it follows that (t) σ u (t) dt (t) σ[ ( (t) ) σ ] u (t) dt µ(t) ( σ ) (t) σ u (t) dt y (.4). Therefore, for σ ad u C (, ), (t)σ u (t) dt ( ( σ)(3 σ) 4 ) (t)σ 4[ + k(σ ) ( (t) µ(t) y (.3). From (5.) we have for u C () ν(x) σ νu(x) dx ( ) ( σ)(3 σ) ν(x) σ 4 + k(σ ) 4 for σ. As i (3.8) we write ( ν(x) ) 3 σ ] u(t) dt (5.) µ ν (x) ) 3 σ u(x) dx (5.) ( ) 3 σ ν (x) σ 4 + k(σ ) ν (x) µ ν(x) = ν (x) σ 4 + 4 σ k(σ ) ν (x) µ ν + (3 σ) k(σ ) σ+ ν (x) (x) 3 σ µ ν. (x) (3 σ) (5.3) Sice ν (x)µ ν (x) = τ ν (x)τ ν (x), i the secod term o the right-had side of (5.3) we may write ν (x) µ ν (x) = 3 σ =: I(ν; x). [τ ν (x)τ ν (x)]µ ν (x) σ

4 W. D. EVANS AND R. T. LEWIS Thus S I(ν; x)dω(ν) = τ ν(x) τ ν (x) τ ν(x) σ 3 (x)τ ν (x) dω(ν) + τ ν (x) τ ν (x) τ ν(x) σ 3 (x)τ ν (x) dω(ν) τ ν (x) τ ν (x) τ ν(x) σ 4 (x)dω(ν) ad τ ν (x) dω(ν) σ 4 τ ν (x) τ ν (x) + τ ν (x) τ ν (x) τ ν(x) σ 4 (x)dω(ν) = τ ν (x) τ ν (x) τν (x)dω(ν) S ( ) (4 σ)/ x s τ ν (x) σ+4 dω(ν) (4 σ)/ for 4 σ. Therefore for the secod term o the right-had side of (5.3), for σ ad 4 σ, it follows that S ν (x)dω(ν) ( u(x) s ) 4 σ u(x) dx dx. (5.4) µ ν (x) 3 σ x 4 σ For ay t (, ), we may write the third term i (5.3) as σ+ ν (x) µ ν (x) = ν(x) t (τ (3 σ) ν (x)τ ν (x)) σ t µ(x) 8+3σ+t =: ν (x) t J(ν, x). If t σ S J(ν; x)dω(ν) As efore τ ν (x) τ ν (x) τ ν (x) 4+σ t dω(ν) τ ν (x) τ ν (x) τ ν(x) 4+σ t dω(ν) + τ ν (x) τ ν (x) τ ν(x) 4+σ t dω(ν). = τ ν (x) τ ν (x) τν (x)dω(ν) S ( x s τ ν (x) 4 σ+t dω(ν) ) (4 σ+t)/ (4 σ+t)/ if 4 σ + t. Associated with the third term o the right-had side of (5.3), we have for σ, t σ >, ad 4 σ + t S σ+ ν (x)dω(ν) ( u(x) s ) 4+t σ δ(x) t u(x) dx dx. µ ν (x) (3 σ ) x 4+t σ (5.5)

HARDY AND RELLICH INEQUALITIES 5 From (5.) (5.5) we otai S ν (x) σ νu(x) dω(ν)dx ( σ) (3 σ) (x; σ 4) u(x) dx + 4 σ k(σ ) [ s ] 4 σ + (3 σ) k(σ ) [ s ] 4+t σ u(x) x 4 σ dx 6 δ(x) t u(x) x 4+t σ dx provided σ, t σ, ad 4 + t σ. Note, that we may simply choose zero as a lower oud for the third term o the right-had side of (5.3) ad coclude that S ν (x) σ νu(x) dω(ν)dx ( σ) (3 σ) + 4 σ k(σ ) [ s ] 4 σ 6 u(x) x 4 σ for σ ad 4 σ. Now, it follows from Propositio that S ν (x) σ νu(x) dω(ν)dx [ u(x) d(x; σ) + (+) Thus, (5.9) ad (5.) are proved. (x; σ 4) u(x) dx dx x i x j ]dx. i,j= u(x) It follows from Theorem. of Baratis [] that for a covex ouded domai ad all u C () u(x) dx 9 u(x) [ dx + 6 δ(x) 4 48 ( + ) s ] 4/ u(x) dx. (5.6) As i Theorem, for a covex domai R, we may replace (x, σ 4) i Theorem 3 y B(, 4 σ)/δ(x) 4 σ ad x y to coclude from (5.9) that for 4 [ s ] 4/ u(x) dx 9 u(x) 6 δ(x) dx + c 4( + ) u(x) dx 4 (5.7) for all u C () i which c 4 = 3k( ).5. Therefore (5.7) improves the oud give y (5.6) for all 4. Refereces [] G. Baratis, Improved Rellich iequalities for the polyharmoic operator, Idiaa Uiversity Mathematics Joural 55(4) (6), 4 4. [] H. Brezis ad M. Marcus, Hardy s iequalities revisited, Dedicated to Eio De Giorgi, A. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (997, 998), 7 37. [3] E.B. Davies, A Review of Hardy Iequalities. The Maz ya Aiversary Collectio, Vol., Oper. Theory Adv. Appl., Vol., pp. 55 67, Birkäuser, Basel, 999. [4] E.B. Davies, Spectral Theory ad Differetial Operators, Camridge Studies i Advaced Mathematics, Vol. 4, Camridge Uiv. Press, Camridge, 995.

6 W. D. EVANS AND R. T. LEWIS [5] S. Filippas, V. Maz ya, ad A. Tertikas, O a questio of Brezis ad Marcus, Calc. Var. Partial Differetial Equatios 5(4) (6), 49 5. [6] M. Hoffma-Ostehof, T. Hoffma-Ostehof, ad A. Laptev, A geometrical versio of Hardy s iequality, J. Fuct. Aal., 89 (), 539-548. [7] E.H. Lie ad M. Loss, Aalysis, Graduate Studies i Mathematics, vol. 4, d editio, America Mathematical Society, Providece, R.I.,. [8] M. Marcus, V.J. Mizel, ad Y. Pichover, O the est costat for Hardy s iequality i R, Tras. Amer. Math. Soc. 35 (998), 337 355. [9] T. Matskewich ad P.E. Soolevskii, The est possile costat i a geeralized Hardy s iequality for covex domais i R, Noliear Aalysis TMA, 8 (997), 6 6. [] M.P. Owe, The Hardy-Rellich iequality for polyharmoic operators, Proc. Royal Society of Ediurgh, A 9 (999), 85 839. [] J. Tidlom, A geometrical versio of Hardy s iequality for W,p (), Proc. A.M.S., 3(8) (4), 65 7. School of Mathematics, Cardiff Uiversity, 3 Segheydd Road, Cardiff CF4 4AG, UK E-mail address: EvasWD@cardiff.ac.uk Departmet of Mathematics, Uiversity of Alaama at Birmigham, Birmigham, AL 3594-7, USA E-mail address: lewis@math.ua.edu