Lower Bounds for Laplacian and Fractional Laplacian Eigenvalues
|
|
- Ευφροσύνη Κουρμούλης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues arxiv:.457v [math.dg] 7 Fe Guoxi Wei He-Ju Su ad Ligzhog Zeg Astract: I this paper, we ivestigate eigevalues of Laplacia o a ouded domai i a -dimesioal Euclidea space ad otai a sharper lower oud for the sum of its eigevalues, which gives a improvemet of results due to A. D. Melas [5]. O the other had, for the case of fractioal Laplacia ) α/ D, where α,], we otai a sharper lower oud for the sum of its eigevalues, which gives a improvemet of results due to S.Y. Yolcu ad T. Yolcu [3]. Itroductio Let D R e a ouded domai with piecewise smooth oudary D i a - dimesioal Euclidea spacer. Letλ i ethei-theigevalue ofthefixedmemrae prolem: { u+λu =, i D,.) u =, o D, where isthe LaplaciaiR. It iswell ow that thespectrum ofthis eigevalue prolem is real ad discrete: < λ λ λ 3 +, where each λ i has fiite multiplicity which is repeated accordig to its multiplicity. If we use the otatios VolD) ad ω to deote the volume of D ad the volume of the uit all i R, respectively, the Weyl s asymptotic formula asserts that the eigevalues of the fixed memrae prolem.) satisfy the followig formula: λ 4π, +..) ω VolD)) From the aove asymptotic formula, it follows directly that λ i 4π +ω VolD)), +..3) i= Mathematics Suject Classificatio: 35P5. Key words ad phrases: eigevalues, lower oud, Laplacia, fractioal Laplacia. The first author ad the secod author were supported y the Natioal Natural Sciece Foudatio of Chia Grat Nos.87, 3).
2 G. Wei, H.-J. Su ad L. Zeg Pólya [7] proved that λ 4π, for =,,,.4) ω VolD)) if D is a tilig domai i R. Furthermore, he put forward the followig: Cojecture of Pólya. If D is a ouded domai i R, the the -th eigevalue λ of the fixed memrae prolem satisfies λ 4π, for =,,..5) ω VolD)) O the Cojecture of Pólya, Berezi [] ad Lie [3] gave a partial solutio. I particular, Li ad Yau [3] proved the Berezi-Li-Yau iequality as follows: λ i 4π +ω VolD)), for =,,..6) i= Theformula.3)showsthattheresultofLiadYauissharpithesese ofaverage. From this iequality.6), oe ca derive λ 4π +ω VolD)), for =,,,.7) which gives a partial solutio for the cojecture of Pólya with a factor +. We prefer to call this iequality.6) as Berezi-Li-Yau iequality istead of Li-Yau iequality ecause.6) ca e otaied y a Legedre trasform of a earlier result y Berezi [] as it is metioed [4]. Recetly, improvemets to the Berezi- Li-Yau iequality give y.6) for the fixed memrae prolem have appeared, for example see [, 5, ]. I particular, A.D.Melas [5] has improved the estimate.6) to the followig: where λ i 4π +ω VolD)) i= + 4+) VolD), for =,,,.8) IeD) IeD) =: mi x a a R D dx is called the momet of iertia ofd. After a traslatioof the origi, we ca assume that the ceter of mass is the origi ad IeD) = x dx. By taig a value eary the extreme poit of the fuctio fτ) give y??)), we add oe term of lower order of to its right had side, which meas that we otai a sharper result tha.8). I fact, we prove the followig: D
3 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Theorem.. Let D e a ouded domai i a -dimesioal Euclidea space R. Assume that λ i,i =,,, is the i-th eigevalue of the eigevalue prolem.). The the sum of its eigevalues satisfies λ j + ω π) VolD) + 4+) + 34+) ω π) VolD) IeD) VolD) IeD) ) VolD)..9) Furthermore, we cosider the fractioal Laplacia operators restricted to D, ad deote them y ) α/ D, where α,]. This fractioal Laplacia ca e defied y ) α/ ux) uy) ux) =: P.V. dy, R x y +α where P.V. deotes the pricipal value ad u : R R. Defie the characteristic fuctio χ D : t χ D t) y χ D t) = {, x D,, x R \D, the the special pseudo-differetial operator ca e represeted as the Fourier trasform of the fuctio u [,9], amely ) α/ D u := F [ ξ α F[uχ D ]], where F[u] deotes the Fourier trasform of a fuctio u : R R: F[u]ξ) = ûξ) = e ix ξ ux)dx. π) R Itiswell owthatthefractioallaplaciaoperator ) α/ caecosidered as the ifiitesimal geerator of the symmetric α-stale process [3 6, 3]. Suppose thatastochasticprocessx t hasstatioaryidepedet icremets aditstrasitio desity i.e., covolutio erel) p α t,x,y) = p α t,x y), t >, x,y R is determied y the followig Fourier trasform Exp t ξ α ) = e iξ y p α t,y)dy, t >, ξ R, R the we ca say that the process X t is a -dimesioal symmetric α-stale process with order α,] i R also see [4,5,3]). Remar.. Give α =, X t is the Cauchy process i R whose trasitio desities are give y the Cauchy distriutio Poisso erel) p t,x,y) = c t t + x y ) +, t >, x,y R, 3
4 G. Wei, H.-J. Su ad L. Zeg where c = Γ + )/π + =, πω is the semiclassical costat that appears i the Weyl estimate for the eigevalues of the Laplacia. Remar.. Give α =, X t is just the usual -dimesioal Browia motio B t ut ruig at twice the speed, which is equivalet to say that, whe α =, we have X t = B t ad [ ] p x y t,x,y) = 4πt) /Exp, t >, x,y R. 4t Let Λ α j ad u α j deote the j-th eigevalue ad the correspodig ormalized eigevector of ) α/ Ω, respectively. Eigevalues Λ α j icludig multiplicities) satisfy < Λ α) Λ α) Λ α) 3 +. For the case of α =, E. Harrell ad S. Y. Yolcu gave a aalogue of the Berezi-Li-Yau type iequality for the eigevalues of the Klei-Gordo operators H,D := restricted to D i [9]: Λ α) j + π ω VolD)) )..) Very recetly, S.Y.Yolcu [] has improved the estimate.) to the followig: Λ α) j C + VolD) VolD) + + M /,.) IeD) where C = π ad the costat M ω ) depeds oly o the dimesio. Moreover, for ay α,], S.Y.Yolcu ad T.Yolcu [3] geeralized.) as follows: Λ α) j +α π ω VolD)) ) α α..) Furthermore, S.Y.Yolcu ad T.Yolcu [3] refied the Berezi-Li-Yau iequality i the case of fractioal Laplacia ) α D restricted to D: ) Λ α) j α π α +α j ω VolD)).3) l π) α VolD) + 4+α) ω VolD)) α IeD) α, where l is give y { } α l = mi, 4απ. + α)ω 4 4
5 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Remar.3. I fact, y a direct calculatio, oe ca chec the followig iequality: which implies l 4+α) π) α ω VolD)) α α 4απ + α)ω 4, VolD) IeD) α = α 48+α) π) α ω VolD)) α VolD) IeD) α. The aother mai purpose ofthis paper is to provide a refiemet of theberezi- Li-Yau type estimate. I other word, we have proved the followig: Theorem.. Let D e a ouded domai i a -dimesioal Euclidea space R. Assume that Λ α) i,i =,,, is the i-th eigevalue of the fractioal Laplacia ) α/ D. The, the sum of its eigevalues satisfies Λ α) j +α π) α ω VolD)) α α + 48+α) + α+α ) C)+α) α π) α ω VolD)) α π) α 4 ω VolD)) α 4 VolD) IeD) α VolD) IeD) ) α 4,.4) where C) = { 468, whe 4, 644, whe = or = 3. I particular, the sum of its eigevalues satisfies whe α =. j + ω π) VolD) VolD) + 4+) IeD) ).5) + 34+) ω π) VolD) VolD), IeD) Λ ) Remar.4. Oservig Theorem., it is ot difficult to see that the coefficiets with respect to α ) of the secod terms i.4) are equal to that of.3). I other word, we ca claim that the iequalities.4) are sharper tha.3) sice the coefficiets with respect to α 4 ) of the third terms i.4) are positive. By usig Theorem., we ca give a aalogue of the Berezi-Li-Yau type iequality for the eigevalues of the Klei-Gordo operators H,D restricted to the ouded domai D: 5
6 G. Wei, H.-J. Su ad L. Zeg Corollary.. Let D e a ouded domaii a -dimesioaleuclidea spacer. Assume that Λ i,i =,,, is the i-th eigevalue of the Klei-Gordo operators H,D. The, the sum of its eigevalues satisfies Λ j π +ω VolD)) π) VolD) + 48+) ω VolD)) IeD) ) π) 3 + C)+) ω VolD)) 3 VolD) IeD) ) 3,.6) where C) = { 468, whe 4, 644, whe = or = 3. A Key Lemma I order to prove the followig Lemma.3, we eed the followig lemmas give y S.Y.Yolcu ad T.Yolcu i [3]: Lemma.. Suppose that ς : [, ) [,] such that ςs) ad ςs)ds =. The, there exists ǫ such that Moreover, we have ǫ+ ǫ ǫ+ ǫ s d ds = s d+α ds s d ςs)ds. s d+α ςs)ds. Lemma.. For s >, τ >, N, < α, we have the followig iequality: s +α +α s τ α α τ+α + α τ+α s τ). I light of Lemma. ad Lemma., we otai the followig result which will play importat roles i the proof of Theorem. ad Theorem.. Lemma.3. Let ) e a positive real umer ad µ> ) e defied y.3). If ψ : [, + ) [, + ) is a decreasig fuctio such that µ ψ s) 6
7 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues ad the, we have A := s ψs)ds >, s +α ψs)ds +α A)+α ψ) α + α A)+α ψ) α+ +α)µ + α+α ) 4A)+α α) ψ) 4 α+4, µ.) whe 4; we have s +α ψs)ds +α A)+α ψ) α + α A)+α ) ψ) α+ +α)µ + α+α ) 4A)+α α) ψ) 4 α+4, µ.) whe < 4. I particular, the iequality.) holds whe α = ad. Proof. If we cosider the followig fuctio t) = ψ ψ) t) µ, ψ) the it is ot difficult to see that ) = ad t). Without loss of geerality, we ca assume ψ) = ad µ =. Defie E α := s +α ψs)ds. Oe ca assume that E α <, otherwise there is othig to prove. By the assumptio, we ca coclude that lim s s+α ψs) =. Puttig hs) = ψ s) for ay s, we get hs) ad hs)ds = ψ) =. By maig use of itegratio y parts, oe ca get s hs)ds = 7 s ψs)ds = A,
8 G. Wei, H.-J. Su ad L. Zeg ad s +α hs)ds +α)e α, sice ψs) >. By Lemma., oe ca ifer that there exists a ǫ such that ad ǫ+ s ds = ǫ s hs)ds = A,.3) Let ǫ+ ǫ s +α ds s +α hs)ds +α)e α..4) Θs) = s +α +α)τ α s +ατ +α ατ +α s τ), the, y Lemma., we have Θs). Itegratig the fuctio Θs) from ǫ to ǫ+, we deduce from.3) ad.4), for ay τ >, Defie +α)e α +α)τ α A+ατ +α α τ+α..5) fτ) := +α)τ α A ατ +α + α τ+α,.6) the we ca otai from.5) that, for ay τ >, Taig E α = τ = A) s +α ψs)ds fτ) +α). +α) A) + +α ), ad sustitutig it ito.6), we otai fτ) = A) +α ) α+α ) A) +α) + +α )+α + +α +α) A). + α A)+α +α) A) )α.7) By usig the Taylor formula, oe has for t > +t) α + α αα ) t+ t + αα )α ) t αα )α )α 3) 4 4 t 4, 8
9 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues ad +t) +α + +α t+ +α )α ) t + +α )α )α ) t α )α )α )α ) 4 4 t 4. Puttig t = +α +α) A) >, oe has αt >, τ = A) +t), ) α+α ) A) +α) +α) A) + +α )α = αt)+t) α [ αt) + α αα ) t+ t + αα )α ) t ] + αα )α )α 3) t = αα+) = αα+) t αα )α+) t 3 αα )α )α+) t α α )α )α 3) t α +α) A) αα )α+) 3 αα )α )α+) 8 3 ) +α +α) A) α α )α )α 3) 4 4 ) 3 +α +α) A) +α +α) A) ) 4 5 ),.8) 9
10 G. Wei, H.-J. Su ad L. Zeg ad +α) A) + +α = +t) +α + +α + +α )α ) )+α +α +α) A) ) +α +α) A) + +α )α )α ) 6 3 ) +α +α) A) + +α )α )α )α ) 4 4 ) 3 +α +α) A) 4 )..9) Therefore, we otai from.8) ad.9) fτ) = +α)τ α A ατ +α + α τ+α [ A) +α αα+) +α +α) A) αα )α+) +α 3 +α) A) αα )α )α+) 8 3 α α )α )α 3) 4 4 [ + α A)+α + +α + +α )α ) +α ) 3 ) +α +α) A) +α +α) A) ) 4 +α +α) A) +α) A) + +α )α )α ) 6 3 ) ) 5 ] ) +α +α) A) + +α )α )α )α ) 4 4 ) 3 +α +α) A) ) 4 ].) = A) +α + α A)+α +I +I +I 3,
11 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues where I = α+α ) 88+α) A)+α 4,.) I = α+α )α+ 6) 7 +α +α) ) A) +α 6 + α+α )[α +5 6)α )] 88 ) 3 3 +α A) +α 8, +α).) I 3 = αγ 4 4 +α +α) ) 5 A) +α, ad γ = α )α )α )+α) αα )α )α 3). Noticig that αα )α )α 3), we have γ α )α )α )+α). Defie β := α )α )α )+α), the we have β ad γ β. Therefore, we have I 3 αβ 4 4 +α +α) ) 5 A) +α,.3) Next, we cosider two cases: Case : 4. Whe 4, for ay α,], we ca ifer α +5 6)α ) 5 6)α ) = α)+ 6α 4+8+)+..4)
12 G. Wei, H.-J. Su ad L. Zeg Sice A) +) 3 see [8]), oe ca deduce from.) ad.4) I α+α )α+ 6) 7 +α +α) ) A) +α 6 + α+α )[α +5 6)α )] 5 ) 3 +α A) +α 6 +α) = α+α )[ 6α+ 6)+α +5 6)α ) ] 5 ) 3 +α A) +α 6 +α) = α+α )[ α)+α 6α+6) ] 5 ) 3 +α A) +α 6. +α).5) O the other had, we have I 3 αβ α +α) ) A) +α 6, sice β ad A) I +I 3 ca e give y I +I 3 +). Therefore, the estimate of the lower oud of 3 { α+α ) [ α)+α 6α+6) ] 5 3 ) +α A) +α 6 +α) } + αβ = α{4+α )[ α)+α 6α+6)]+β} 468 ) 4 +α A) +α 6. +α) Next, we will verify the followig iequality 4+α )[ α)+α 6α+6)]+β..6)
13 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Ideed, sice < α ad 4, we have 4+α )[ α)+α 6α+6)]+β = 4+α )[ α)+α 6α+6)] +α )α )α )+α) 8[ α)+α 6α+6)] α )α )α )+α) 8[ α)+α 6α+6)] +)+)+) 8[6 88+α 8α)] +)+)+) 86 9) +)+)+) = ) Thus, it is ot difficult to see that the iequality.6) follows from.7), which implies Therefore, whe 4, we have I +I 3. fτ) A) +α + α A)+α + α+α ) 88+α) A)+α 4. Case : < 4. Uitig the equatios.),.) ad.3), we otai the followig equatio I +I +I 3 α+α ) A)+α 4 88+α) + α+α )α+ 6) 7 ) +α A) +α 6 +α) + α+α )[α +5 6)α )] 88 ) 3 3 +α A) +α 8 +α) ) + αβ 5 +α A) +α 4 4 +α) 3
14 G. Wei, H.-J. Su ad L. Zeg = α+α ) A)+α 4 + α+α ) A)+α α) 5+α) + α+α )ν +α 7 +α) + α+α )ν +α α) ) + αβ 5 +α A) +α 4 4, +α) ) A) +α 6 ) 3 A) +α 8 where ad ν := α+ 6), ν := α +5 6)α ). Suppose ν ad ν, the we have I +I +I 3 α+α ) A)+α 4 + α+α ) 384+α) 96 ) where + α+α )α+ 6) 88 = α+α ) A)+α α) +α +α) ) +α +α) A) +α 4 + α+α )[α +5 6)α )] ) α A) +α 4 +α) ) + αβ 5 +α A) +α 4 4 +α) ) + α+α ) +α I α) ) + αβ 5 +α A) +α 4 4, +α) I 4 = + α α +5 6)α ) A) +α 4 A) +α 4.8)
15 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Noticig that < α ad < 4, we have I 4 = 48 +6α+ 6)+α +5 6)α ) 48 = 74 +α 88)+α 6α+6) 48 6+α+α 8α) 48 = 6+ 8)α+α = 5 4. Therefore, we derive from.8) ad.9) I +I +I 3 α+α ) A)+α 4 + 5α+α ) 384+α) 384 ) + αβ 5 +α A) +α 4 4 +α) α+α ) A)+α 4 + 5α+α ) 384+α) 384 ) + α+α )β 843+α) 4 α+α ) A)+α α) +α +α) + α+α )[4 +α)+β] 843+α) 4 A) +α 4 +α +α) +α +α) +α +α) ) ) ) A) +α 4, A) +α 4 A) +α 4.9) sice A) +). We defie a fuctio K) y lettig 3 K) := 4 +α)+β = 4 +α)+α )α )α )+α), where [,4). After a direct calculatio, we have which implies K) 4 +α) α )α )α )+α) 4 +α) +)+)+) 4 +α) )3)) α >, I +I +I 3 α+α ) 384+α) A)+α 4. 5
16 G. Wei, H.-J. Su ad L. Zeg Fortheother cases i.e., ν adν > ; ν > adν ; or ν > ad ν > ), we ca also derive y usig the same method that Therefore, whe 4, we have fτ) A) +α I +I +I 3 α+α ) 384+α) A)+α 4. + α A)+α + α+α ) 384+α) A)+α 4. I particular, we ca cosider the case that α =. Noticig that β = whe α = ad, we ca claim that I 3. Therefore, whe α = ad, oe ca deduce I +I 3 α+α )α+ 6) 7 +α +α) ) A) +α 6 + α+α )[α +5 6)α )] 88 ) 3 3 +α A) +α 8 +α) ) = ) A) ) 4 +) ) ) A) ) 96 +) ) = A) ) ) A) ), which implies ) 3 A) 6 ) A) 4 fτ) A) +α + α A)+α This completes the proof of the Lemma.3. + α+α ) 88+α) A)+α 4. 3 Proofs of Theorem. ad Theorem. I this sectio, we will prove the Theorem. ad Theorem. y usig the ey lemma give i sectio i.e., Lemma.3). 6
17 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues We suppose that D R is a ouded domai i R, ad the its symmetric rearragemet D is the ope all with the same volume as D, D = { x R x < ) } VolD). ω By usig a symmetric rearragemet of D, oe ca otai IeD) = D x dx x dx = D + VolD) ) VolD). 3.) ω For the case of fractioal Laplace operator, let u α) j e a orthoormal eigefuctio correspodig to the eigevalue Λ α) j. Namely, u α) j satisfies { ) α/ u α) j = Λ α) u α) j, i D, D uα) i x)u α) j x)dx = δ ij, for ay i,j, where < α. O the other had, for the case of Laplace operator, we let v j e a orthoormal eigefuctio correspodig to the eigevalue λ j. Namely, v j satisfies v j +λ j v j =, i D, v =, v D ix)v j x)dx = δ ij, o D, for ay i,j. Thus, oth {u α) j } ad {v j} form a orthoormal asis of L D). Defie the fuctios ϕ α) j ad η j y { ϕ α) u α) j x), x D, j x) =, x R \D, ad η j x) = { v j x), x D,, x R \D, respectively. Deotey η j ξ)ad the, for ay ξ R, we have ϕ α) j ξ)thefouriertrasformsofη j ξ)adϕ α) j ξ), ϕ α) j ξ) = π) / ϕ α) j x)e i x,ξ dx = π) / R D u α) j x)e i x,ξ dx, ad η j ξ) = π) / η j x)e i x,ξ dx = π) / R D v j x)e i x,ξ dx. 7
18 G. Wei, H.-J. Su ad L. Zeg From the Placherel formula, we have ϕα) i x) ϕ α) j x)dx = η i x) η j x)dx = δ ij, R R forayi,j. Sice{u α) j } ad{v j} areorthoormalasises il D), thebessel iequality implies that ϕ α) j ξ) π) / D e i x,ξ dx = π) / VolD), 3.) ad η j ξ) π) / e i x,ξ dx = π) / VolD). 3.3) D For fractioal Laplace operator, we oserve that Λ α) j = u α) j ξ) ) α/ Ω u α) j ξ)dξ R = = R u α) j ξ) F [ ξ α F[u α) ξ α ûα) j ξ) dξ, R j ξ)]]dξ 3.4) sice the support of u α) j is D see [3]). O the meawhile, for the case of Laplace operator, we have see [, 5]) λ j = ξ v j ξ) dξ. 3.5) R Sice ad we otai ϕ α) j ξ) = ϕ α) j ξ) = π) / η j ξ) = π) / Ω Ω η j ξ) = π) ixu α) j x)e i x,ξ dx, ixv j x)e i x,ξ dx, Ω ixe i x,ξ dx = π) IeD). 3.6) Puttig f α) ξ) := 8 ϕ α) j ξ),
19 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues ad fξ) := η j ξ), oe derives from 3.) ad 3.3) that f α) ξ) π) VolD) ad fξ) π) VolD), it follows from 3.6) ad the Cauchy-Schwarz iequality that ) / ) / f α) ξ) ϕ α) j ξ) ϕ α) j ξ) ad π) IeD)VolD), ) / ) / fξ) η j ξ) η j ξ) π) IeD)VolD), for every ξ R. Furthermore, y usig 3.4) ad 3.5), we have ad Λ α) j = ξ α ûα) j ξ) dξ = R = ξ α f α) ξ)dξ, R λ j = ξ v j ξ) dξ = R = ξ fξ)dξ. R From the Parseval s idetity, we derive f α) ξ)dξ = ϕ α) j x) dx = R R Similarly, we have [7, 5] = R fξ)dξ = = D u α) j x) dx =. R ξ α ϕ α) j ξ) dξ R ξ η j ξ) dξ η j x) dx = R v j x) dx =. D 9 D D ûα) j x) dx v j x) dx 3.7) 3.8) 3.9) 3.)
20 G. Wei, H.-J. Su ad L. Zeg Let h e a oegative ouded cotiuous fuctio o D ad h is its symmetric decreasig rearragemet, the we have see [, 7]) hx)dx = h x)dx = ω s gs)ds 3.) R R ad x α hx)dx x α h x)dx = ω R R s +α gs)ds, 3.) where α,] ad g x ) = h x). Puttig δ := sup h, the we ca otai δ g s) 3.3) for almost every s. More detail iformatio o symmetric decreasig rearragemets will e foud i [,7,8]. To e rief, we will drop the superscript α to deote f α) y f ad let f = f. Assume thatfi isthesymmetric decreasig rearragemet off i i =,), accordig to 3.9), 3.) ad 3.), we have = f i ξ)dξ = fi ξ)dξ = ω s φ i s)ds, 3.4) R R where φ i x) = f i x ) ad i =,. Applyig the symmetric decreasig rearragemet to f i, ad otig that where δ i = sup f i, we otai from 3.3) δ i π) IeΩ)VolΩ) := σ, 3.5) σ δ i φ is), where i =,. By3.), we have σ π) + ) ω VolD) + π) ω VolD) +, sice. Moreover, y usig 3.7), 3.8) ad 3.), we have ad Λ α) j = ξ α f α) ξ)dξ = ξ α f ξ)dξ R R ξ α f ξ)dξ = ω s +α φ ξ)dξ, R λ j = ξ fξ)dξ = ξ f ξ)dξ R R ξ f ξ)dξ = ω s + φ ξ)dξ. R 3.6) 3.7)
21 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Proof of Theorem.. I order to apply Lemma.3, from 3.4), 3.5) ad the defiitio of A, we tae =, ψs) = φ s), A = ω, ad µ = σ = π) VolD)IeD). Therefore, we ca otai from Lemma.3 ad 3.7) that λ j = ω E [ ω +) [ = ω + = + ω where t = φ ). Let the oe ca has A) + φ ) Aφ ) + 6σ ω + Ft) = + ω F t) = + ω )+ t + ω t 6σ + ω ) 4t4+ 44+)σ t t + 6+)σ + ω 4t4+ 44+) σ + + t + + ] + A) 44+)σ 4φ ) 4+ ], t t + 6+)σ + ω 4t4+ 44+) σ t 3+)σ ) σ 4ω, 3+ t. Sice F t) is icreasig o,π) VolD)], the it is easy to see that Ft) is decreasig o,π) VolD)] if F π) VolD)) <. Ideed, F π) VolD)) + ω + π) VolD)) + π) VolD)) + [ 3+) π) ω VolD) )ω π) VolD)) 3+ ] 44+) [π) ω 4 VolD) + = + π)+ ω + VolD) ) π) ω VolD) ω 6 44+) π) = π) + ω VolD) + J, ] VolD) +
22 G. Wei, H.-J. Su ad L. Zeg where J = ) π) ω 4 π) ω 4 < ) 44+) π) ω 4 π) ω 4 = π) ω 4 π) ω 4 < <, which implies that F π) VolD)) <. Here, we use the iequality ω 4 π) <. We ca replace φ ) y π) VolD) to otai λ j + ω π) VolD) + 4+) + 34+) ω π) VolD) IeD) sice σ = π) VolD)IeD). This completes the proof of Theorem.. Next, we will give the proof of Theorem.. VolD) IeD) ) VolD). Proof of Theorem..: Defie the fuctio φ x) y φ x ) := f x). The we ow that φ : [, + ) [, π) VΩ)] is a o-icreasig fuctio with respect to x. Taig =, ψs) = φ s), A = ω, ad µ = σ = π) VolD)IeD), we ca otai from Lemma.3 ad 3.6) that Λ α) j ω s +α φ s)ds )+α )+α ω ω αω φ ) α ω + +α +α)σ φ ) α+ )+α 4 α+α ) ω ω + φ C )+α) σ 4 ) 4 α+4, 3.8)
23 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues where C ) = { 88, whe 4, 384, whe = or = 3. Moreover, we defie a fuctio ξt) y lettig ξt) = ω +α ω + α+α ) ω C )+α) σ 4 )+α t α + αω +α)σ ω ω )+α 4 t 4 α+4. )+α t α+ 3.9) Differetiatig 3.9) with respect to the variale t, it is ot difficult to see that ξ t) = αω +α ω )+α [ t α + α+) σ ω ] + 4 α+4)+α ) C ) +α)σ 4 ω ) 4 t 4+4. ) t + 3.) Lettig ζt) = ξ t) +α ) ) +α α t +, 3.) αω ω ad otig that σ π) ω VolD) +, we ca otai from 3.) ad 3.) that ) ζt) = + α+) t + σ ω + 4 α+4)+α ) C ) +α)σ α+) ω π) ω VolD) +) 4 α+4)+α ) ) 4 t 4+4 ω C ) +α)π) 4 ω 4 VolD) 4+) ) t + ω ) 4 t ) It is easy to see that the right had side of 3.) is a icreasig fuctio of t. Therefore, if the right had side of 3.) is less tha whe we tae t = 3
24 G. Wei, H.-J. Su ad L. Zeg π) VolD), which is equivalet to say that ζt) + α+) ω 4 π) + 4 α+4)+α ) 4 ω 8 C ) +α) π) 4, 3.3) we ca claim from 3.3) that ξ t) o,π) VΩ)]. By a direct calculatio, we ca otai ζt) + α+) + +) = C ), + 4 α+4)+α ) C ) +α) + 4+)+) C ) 3 3.4) sice ω 4 π) <. Thus, it is easy to see from 3.) ad 3.4) that ξ t), which implies that ξt) is a decreasig fuctio o,π) VolD)]. O the other had, we otice that < φ ) π) VolD) ad right had side of the formula 3.8) is ξφ )), which is a decreasig fuctio of φ ) o,π) VolD)]. Therefore, φ ) caereplaced y π) VolD) i.) which gives the followig iequality: where Λ α) j +α C) = π) α ω VolD)) α α + 48+α) + α+α ) C)+α) α π) α ω VolD)) α π) α 4 ω VolD)) α 4 VolD) IeD) α VolD) IeD) { 468, whe 4, 644, whe = or = 3. ) α 4, I particular, whe α =, we ca get the iequality.5) y usig the same method as the proof of Theorem.. This completes the proof of Theorem.. Acowledgmet. The authors wish to express their gratitude to Prof. Q.-M. Cheg for cotiuous ecouragemet ad ethusiastic help. 4
25 Lower Bouds for Laplacia ad Fractioal Laplacia Eigevalues Refereces [] C. Badle, Isoperimetric iequalities ad applicatios, Pitma Moographs ad Studies i Mathematics, vol. 7, Pitma, Bosto, 98. [] F. A. Berezi, Covariat ad cotravariat symols of operators, Izv. Aad. Nau SSSR Ser. Mat ), [3] R. Blumethal ad R.Getoor, The asymptotic distriutio of the eigevalues for a class of Marov operators, Pacific J. Math, 9 959) [4] R. Ba uelos ad T. Kulczyci, The Cauchy process ad the Stelov prolem, J. Fuct. Aal., ) 4) [5] R. Ba uelos ad T. Kulczyci, Eigevalue gaps for the Cauchy process ad a Poicaré iequality, J. Fuct. Aal., 34 6) [6] R. Ba uelos, T. Kulczyci ad Bart lomiej Siudeja, O the trace of symmetric stale processes o Lipschitz domais, J. Fuct. Aal., 57) 9) [7] Q. -M. Cheg ad G. Wei, A lower oud for eigevalues of a clamped plate prolem, Calc. Var. Partial Differetial Equatios, 4 ), [8] Q. -M. Cheg ad G. Wei, Upper ad lower ouds of the clamped plate prolem, ) preprit. [9] E. M. Harrell II ad S. Yildirim Yolcu, Eigevalue iequalities for Klei-Gordo Operators, J. Fuct. Aal., 56) 9) [] H. Kovaří, S. Vugalter ad T. Weidl, Two dimesioal Berezi-Li-Yau iequalities with a correctio term, Comm. Math. Phys., 873) 9), 959C98. [] N. S. Ladof, Foudatios of moder potetial theory, New Yor: Spriger-Verlag 97). [] P. Li ad S. T. Yau, O the Schrödiger equatios ad the eigevalue prolem, Comm. Math. Phys., ), [3] E. Lie, The umer of oud states of oe-ody Schrödiger operators ad the Weyl prolem, Proc. Sym. Pure Math., 36 98), 4-5. [4] A. Laptev ad T. Weidl, Recet results o Lie-Thirrig iequalities, Jourées Équatios aux Dérivées Partielles La Chapelle sur Erdre, ), Exp. No. XX, 4 pp., Uiv. Nates, Nates,. [5] A. D. Melas, A lower oud for sums of eigevalues of the Laplacia, Proc. Amer. Math. Soc., 3 3), [6] A. Pleijel, O the eigevalues ad eigefuctios of elastic plates, Comm. Pure Appl. Math., 3 95), -. [7] G. Pólya, O the eigevalues of viratig memraes, Proc. Lodo Math. Soc., 96), [8] G. Pólya ad G. Szegö, Isoperimetric iequalities i mathematical physics, Aals of mathematics studies, umer 7, Priceto uiversity press, Priceto, New Jersey, 95). [9] E. Valdioci, From the log jump radom wal to the fractioal Laplacia, ArXiv:
26 G. Wei, H.-J. Su ad L. Zeg [] T. Weidl, Improved Berezi-Li-Yau iequalities with a remaider term, Spectral Theory of Differetial Operators, Amer. Math. Soc. Trasl., 5) 8), [] Q. L. Wag, C. Y. Xia, Uiversal ouds for eigevalues of the iharmoic operator o Riemaia maifolds, J. Fuct. Aal., 45 7), [] S. Yildirim Yolcu, A improvemet to a Brezi-Li-Yau type iequality, Proc. Amer. Math. Soc, 38) ) [3] S.Y.YolcuadT.Yolcu, Estimates for the sums of eigevalues of the fractioal Laplacia o a ouded domai, tyolcu/stimprovemet.pdf, ), preprit. Guoxi Wei, School of Mathematical Scieces, South Chia Normal Uiversity, 563, Guagzhou, Chia, weigx3@mails.tsighua.edu.c He-Ju Su, Departmet of Applied Mathematics, College of Sciece, Najig Uiversity of Sciece ad Techology, 94, Najig, Chia hejusu@63.com Ligzhog Zeg, Departmet of Mathematics, Graduate School of Sciece ad Egieerig, Saga Uiversity, Saga 84-85, Japa, ligzhogzeg@yeah.et 6
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Lecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
HARDY AND RELLICH INEQUALITIES WITH REMAINDERS
HARDY AND RELLICH INEQUALITIES WITH REMAINDERS W. D. EVANS AND ROGER T. LEWIS Astract. I this paper our primary cocer is with the estalishmet of weighted Hardy iequalities i L p () ad Rellich iequalities
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1
Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.
Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case
J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators
Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES
Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for
Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods
DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.
Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Data Dependence of New Iterative Schemes
Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent
Supplemetary Materials: Tradig Computatio for Commuicatio: istributed Stochastic ual Coordiate Ascet Tiabao Yag NEC Labs America, Cupertio, CA 954 tyag@ec-labs.com Proof of Theorem ad Theorem For the proof
Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities
Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for
A note on a conjecture of Calderón
A ote o a cojecture of Calderó Jiecheg CHEN & Xiagrog ZHU Dept of Math Xixi Campus), Zhejiag Uiversitry Abstract For f SR ) ad Ω L 1 S 1 ), S 1 Ωx )dx = 0, defie T Ω f)x) = lim ɛ 0+ x y ɛ Ωy/ y ) y fx
1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )
Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
DERIVATION OF MILES EQUATION Revision D
By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction
Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values
Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time
Moder Applied Sciece September 8 Steady-state Aalysis of the GI/M/ Queue with Multiple Vacatios ad Set-up Time Guohui Zhao College of Sciece Yasha Uiersity Qihuagdao 664 Chia E-mail: zhaoguohui8@6com Xixi
Diane Hu LDA for Audio Music April 12, 2010
Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
Lecture 3: Asymptotic Normality of M-estimators
Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,
Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction
Supplemet to A theoretical framework for Bayesia oparametric regressio: radom series ad rates of cotractio A Proof of Theorem 31 Proof of Theorem 31 First defie the followig quatity: ɛ = 3 t α, δ = α α
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Gauss Radau formulae for Jacobi and Laguerre weight functions
Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
An upper bound for error term of Mertens formula
An upper bound for error term of Mertens formula Choe Ryong Gil June 21, 2017 Abstract: In this paper, it is obtained a new estimate for the error term Et of Mertens formula p t p 1 = log log t + b + Et,
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS
ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2