axiv:181.151v1 math.fa 3 Ja 218 Cotiuity of the factioal Hakel wavelet tasfom o the spaces of type S Kaailal Mahato Abstact. I this aticle we study the factioal Hakel tasfom ad its ivese o cetai Gel fad-shilov spaces of type S. The cotiuous factioal wavelet tasfom is defied ivolvig the factioal Hakel tasfom. The cotiuity of factioal Hakel wavelet tasfom is discussed o Gel fad- Shilov spaces of type S. This aticle goes futhe to discuss the cotiuity popety of factioal Hakel tasfom ad factioal Hakel wavelet tasfom o the ultadiffeetiable fuctio spaces. 1. Itoductio I the ecet yeas, the cotiuous wavelet tasfom has bee successfully applied i the field of sigal pocessig, image ecyptio. The cotiuous wavelet tasfom of a fuctio f associated with the wavelet ψ is defied by W ψ fb,a = ftψ b,a t dt a, t b whee ψ b,a t = ψ a, povided the itegal exists, whee a R + ad b R. If f,ψ L 2 R, the exploitig the Paseval elatio fo Fouie tasfom, the above expessio ca be viewed as see 1,2: W ψ fb,a = 1 2π e ibω ˆfωˆψaωdω, whee ˆf ad ˆψ deotesthe Fouietasfomoff adψ espectively. The Gel fad- Shilov spaces wee itoduced i 5 ad studied the chaacteizatio of Fouie tasfom o the afoesaid spaces. Pathak 18ad Holscheide 8 studied the wavelet tasfom ivolvig Fouie tasfom, o Schwatz space SR. Zemaia 25, Lee 11 ad Pathak 19 descibed the basic popeties of classical Hakel tasfom o the cetai Gel fad-shilov spaces of type S. I the theoy of patial diffeetial equatios, mathematical aalysis the spaces of type S play a impotat ole as a itemediate spaces betwee those of C ad of the aalytic fuctios. The mai pupose this aticle is to study the factioal Hakel tasfom 21 Mathematics Subject Classificatio. 46F5, 46F12, 42C4, 65T6. Key wods ad phases. Bessel Opeato, Factioal Hakel tasfom, Factioal Hakel taslatio, Wavelet tasfom, Gelfad-Shilov spaces, Ultadiffeetiable fuctio space. 1
2 KANAILAL MAHATO ad cotiuous wavelet tasfom associated with factioal Hakel tasfom o Gel fad-shilov spaces of type S. The factioal Hakel tasfom FHT, which is a geealizatio of the usual Hakel tasfom ad depeds o a paamete θ, has bee the focus of may eseache as it has a wide age of applicatios i the field of seismology, optics, sigal pocessig, solvig poblems ivolvig cylidical boudaies. The factioal Hakel tasfom Hν,µ θ of a fuctio f of ode ν 1 2 depeds o a abitay eal paamete µ ad θ < θ < π, is defied by see 9,16,17,23: 1.1 whee, 1.2 H θ ν,µ fω = f θ ω = K θ t,ωftdt, C ν,µ,θ e i 2 t2 +ω 2 cotθ tωcscθ µ J ν tωcscθt 1+2µ, θ π K θ t,ω = tω µ J ν tωt 1+2µ, θ = π 2 δt ω, θ = π, Z whee C ν,µ,θ = ei1+νθ π 2 siθ 1+µ. The ivese of 1.1 give as follows: 1.3 ft = H θ ν,µ f θ t = K θ ω,t f θ ωdω, whee K θ ω,t is same as K θ ω,t. Let the spacel p ν,µ I cotaisofallthose measuablefuctios f o I =, such that the itegal ft p t µ+ν+1 dt exist ad is fiite. Also let L I be the collectio of almost eveywhee bouded itegable fuctios. Hece edowed with the om 1 ft p t µ+ν+1 p dt,1 p <,µ,ν R 1.4 f L p ν,µ = ess sup ft, p =. t I Paseval s elatio: It is easy to see that fo the opeato Hν,µ θ, ude cetai coditios, ftgtt 1+2µ dt = f θ ω g θ ωω 1+2µ dω. To defie the factioal Hakel taslatio 6,12,16,17 τt θ of a fuctio ψ L 1 ν,µi, we eed to itoduce Dν,µ, θ which is defied by: 1.5 D θ ν,µ t,ω,z = C ν,µ, θ zscscθ µ J ν zscscθe i 2 z2 +t 2 +ω 2 cotθ tscscθ µ J ν tscscθωscscθ µ J ν ωscscθ s 1+3µ ν ds, povided the itegal exist.
1.6 FRACTIONAL HANKEL WAVELET TRANSFORM 3 The factioal Hakel taslatio 7 τt θ of ψ is give by τt θ ψω = ψθ t,ω = C ν,µ,θ ψzdν,µt,ω,ze θ i 2 z2 cotθ z µ+ν+1 dz. Wavelets ae cosideed to be the set of elemets costucted fom taslatio ad dilatio of a sigle fuctio ψ L 2 R 1,2,18. I the simila way 2,24 itoduced the Bessel wavelet ad the factioal Bessel wavelet by 12, 15, 17, 2 as ψ b,a,θ, which is defied as below: 1.7 ψ b,a,θ t = D a τ θ bψt = D a ψ θ b,t = a 2µ 2 e i 2 1 a 2 1t2 cotθ e i 2 1 a 2+1b2 cotθ ψ θ b/a,t/a, b,a >, whee D a epesets the dilatio of a fuctio. As pe 1,2,8,12,17,2, the factioal wavelet tasfom Wψ θ of f L2 ν,µi associated with the wavelet ψ L 2 ν,µi defied by meas of the itegal tasfom 1.8 W θ ψfb,a = ftψ b,a,θ tt 1+2µ dt. Now exploitig Paseval s elatio ad followig 12, 17, 2, the above expessio ca be ewitte as 1.9 W θ ψ fb,a = 1 C ν,µ, θ = K θ ω,baω µ ν e i 2 a2 ω 2 cotθ fθ ω Hν,µz θ ν µ e i 2 z2 cotθ ψzaωdω 1 Hν,µ θ aω µ ν e i 2 a2 ω 2 cotθ C fθ ω ν,µ, θ Hν,µz θ ν µ e i 2 z2 cotθ ψzaω b. Accodig to 11, 19, we ow itoduce the cetai Gel fad-shilov spaces of type S o which the factioal Hakel tasfom 1.1 ad the factioal Hakel wavlet tasfom 1.9 ca be studied. Let us ecall the defiitios of these spaces. Defiitio 1.1. The space H 1,α,A I cosists of ifiitely diffeetiable fuctios f o I =, satisfyig the iequality x k x 1 D x q e ± i 2 x2 cotθ x µ ν 1.1 fx q ν,µ A+δ k k kα, k,q N, whee the costats A ad Cq ν,µ ad the oms ae give by 1.11 f ν,µ,θ q = sup <x< depeds o f ad α,δ ae abitay costats x k x 1 D x q e ± i 2 x2 cotθ x µ ν fx A+δ k k kα <. Defiitio 1.2. The fuctio f H 2,β,B I iff x k x 1 D x q e ± i 2 x2 cotθ x µ ν 1.12 fx ν,µ k B +σq q qβ, k,q N,
4 KANAILAL MAHATO whee the costats B,C ν,µ k deped o f ad σ,β is a abitay costat. I this space the oms ae give by x k x 1 D x q e ± i f ν,µ,θ 2 x2 cotθ x µ ν fx 1.13 k = sup <x< B +σ q <. q qβ Defiitio 1.3. The space H β,b α,a I is defied as follows: f Hβ,B α,a I if ad oly if x k x 1 Dx q e ± i 2 x2 cotθ x µ ν 1.14 fx ν,µ A+δ k k kα B +σ q q qβ, k,q N, whee the costats A,B,C ν,µ deped o f ad α,β,δ,σ ae abitay costats. We itoduce the oms i the space H β,b α,a I as follows: x k x 1 D x q e ± i 2 x2 cotθ x µ ν fx 1.15 f ν,µ,θ = sup <x< A+δ k k kα B +σ q <. q qβ Now we eed to itoduce the followig types of test fuctio spaces 18 Defiitio 1.4. The space H 1, α, à I I, α = α 1,α 2, α 1,α 2 ad à = A 1,A 2, is defied as the collectio of all smooth fuctios fb,a I I, such that fo all l,k,p,q N, sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b 1.16 p,q ν,µ A 1 +δ 1 l l lα1 A 2 +δ 2 k k kα2, whee the costats A 1,A 2 ad Cp,q ν,µ depedig o f ad δ 1,δ 2 be abitay costats. Defiitio 1.5. The space H 2, β, BI I, β = β 1,β 2, β 1,β 2 ad B = B 1,B 2, is defied as the space of all smooth fuctios fb,a I I, such that fo all l,k,p,q N, 1.17 sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b ν,µ l,k B 1 +σ 1 p p pβ1 B 2 +σ 2 q q qβ2, whee σ 1,σ 2 be abitay costats ad B 1,B 2,C ν,µ l,k o f. be the costats depeds Defiitio 1.6. ThespaceH β, B α,ãi I, α = α 1,α 2, β = β 1,β 2,α 1,α 2,β 1,β 2 ad à = A 1,A 2, B = B 1,B 2, is defied as the space of all ifiitely diffeetiable fuctios fb,a I I, such that fo all l,k,p,q N, 1.18 sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b ν,µ A 1 +δ 1 l A 2 +δ 2 k B 1 +σ 1 p B 2 +σ 2 q l lα1 k kα2 p pβ1 q qβ2, whee the costats A 1,A 2,B 1,B 2,C ν,µ depedig o f ad δ 1,δ 2,σ 1,σ 2 ae abitay costats. Fom 16,23 we have the diffeetial opeato M ν,µ,θ as: M ν,µ,θ = e i 2 x2 cotθ x ν µ D x e i 2 x2 cotθ x µ ν. We shall eed the followig Lemma i the poof of the Theoem 2.1.
FRACTIONAL HANKEL WAVELET TRANSFORM 5 Lemma 1.7. Suppose that ν 1 2,µ,θ as above ad q,k N. Fo ψ W θ ν,µ, the we obtai i M ν+k 1,µ,θ...M ν,µ,θ ψx = 1 k x ν µ+k e i 2 x2 cotθ x 1 D x k e i 2 x2 cotθ x µ ν ψx, ii M ν+q 1,µ,θ...M ν,µ,θ Hν,µ θψy = cscθeiθ π/2 q H θ iiih θ ν+q+k,µ xq M ν+k 1,µ, θ...m ν,µ, θ ψy = Poof. Sice, M ν,µ,θ ν+q,µ xq ψy, = e i 2 x2 cotθ x ν µ D x e i 2 x2 cotθ x µ ν ycscθe iθ π/2 kh θ ν+q,µ xq ψy. M ν+1,µ,θ M ν,µ,θ ψx = x ν µ+2 e i 2 x2 cotθ x 1 D x 2 x µ ν e i 2 x2 cotθ ψx. Poceedig i this way k th times, we get the equied esult i. Now to pove ii, we have M ν+q 1,µ,θ...M ν,µ,θ H θ ν,µ ψy = 1 q y ν µ+q e i 2 y2 cotθ y 1 D y q y µ ν e i 2 y2 cotθ C ν,µ, θ xycscθ µ J ν xycscθe i 2 x2 +y 2 cotθ x 1+2µ ψxdx. Now exploitig the fomula x 1 D x m x J x = 1 m x m J +m x, whee m, beig positive iteges, the above expessio becomes C ν,µ, θ xycscθ µ J ν xycscθe i 2 x2 +y 2 cotθ x 1+2µ xcscθ q ψxdx = cscθe iθ π/2 q H θ ν+q,µ xq ψy. This completes the poof of ii. Usig itegatio by pats we get Hν+q+1,µ θ xq M ν,µ, θ ψy = C ν+q+1,µ, θ e i 2 y2 cotθ ycscθ µ x ν+q+1 J ν+q+1 xycscθd x x µ ν e i 2 x2 cotθ ψxdx Usig the fomula D x x J x = x J 1 x, i the above equatio, the the above expessio ca be expessed as C ν+q+1,µ, θ e i 2 y2 cotθ ycscθ µ D x x ν+q+1 J ν+q+1 xycscθ x µ ν e i 2 x2 cotθ ψxdx = ycscθe iθ π/2 H θ ν+q,µx q ψy. Cotiuig k th times i the simila mae, we get the equied esult iii. We shall make use of the followig iequality i ou peset study see 4, pp. 265: 1.19 m+ qm+ m mq q e mq e q.
6 KANAILAL MAHATO We shall eed the followig Leibitz fomula fom 25, p.134, 1.2 = t 1 D t e i 2 t2 cotθ t µ ν ftgt t 1 D t e i 2 t2 cotθ t µ ν ftt 1 D t gt. = This aticle cosists of fou sectios. Sectio 1 is itoductoy pat, i which seveal popeties ad fudametal defiitios ae give. I sectio 2, cotiuous factioal Hakel tasfomhν,µ θ ad its ivese H θ ν,µ is studied o cetai Gel fad-shilov spaces of type S. Sectio 3 is devoted to the study of cotiuous factioal Hakel wavelet tasfom i the space of cetai Gel fad-shilov spaces of type S. I sectio 4, factioal Hakel tasfom ad wavelet tasfom associated with factioal Hakel tasfom is ivestigated o ultadiffeetiable fuctio spaces. 2. The factioal Hakel tasfom H θ ν,µ o the spaces of type S I this sectio we coside the mappig popeties of the factioal Hakel tasfom H θ ν,µ ad ivese factioal Hakel tasfom H θ ν,µ o the spaces H 1,α,A I,H 2,β,B I ad H β,b α,a I. Theoem 2.1. The ivese factioal Hakel tasfom Hν,µ θ is a cotiuous liea mappig fom H 1,α,A I ito H 2,2α,A2 2e 2α I, fo ν 1 2. Thus, Poof. Exploitig Lemma 1.7 ii ad iii we obtai M ν+q 1,µ,θ...M ν,µ,θ H θ ν,µ ψy = cscθe iθ π/2 q H θ ν+q,µx q ψy = cscθ q k y k e iθ π/2 q+k H θ ν+q+k,µ xq M ν+k 1,µ, θ...m ν,µ, θ y = cscθ q k y k e iθ π/2 q+k C ν+q+k,µ, θ xycscθ µ J ν+q+k xycscθ 1 k e i 2 y2 cotθ x 1+q+µ+ν+k x 1 D x k e i 2 x2 cotθ x µ ν ψxdx. 1 q y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µψy θ = 1 k cscθ ν+2q k µ C ν,µ, θ xycscθ ν q J ν+q+k xycscθx 1+k+2ν+2q 2.1 x 1 D x k e i 2 x2 cotθ x µ ν ψxdx. Now, we choose m be ay atual umbe i such a way that m 1 + 2ν; upo takig = m+2q+k ad use the fact that x ν q J ν+q+k x. The witig the itegal o the ight had side of 2.1 as a sum of two itegals fom to 1
FRACTIONAL HANKEL WAVELET TRANSFORM 7 ad 1 to ad usig 1.1, 1.19, we have y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µ θ ψy sup y 2q+k y 1 D y k e i 2 y2 cotθ y µ ν ψy +sup y +2 y 1 D y k e i 2 y2 cotθ y µ ν ψy C ka+δ 2q+k 2q +k α2q+k +C ka+δ m+2q+k+2 m+2q +k +2 αm+2q+k+2 1 1+A+δ m+2q+k+2 m+2q +k +2 αm+2q+k+2 1A 2 +δ q m+k +2 αm+k+2 e αm+k+2 2q α2q e α2q 2A 2 2e 2α +δ q q α2q. This completes the poof. Remak 2.2. Let ν 1/2, the the factioal Hakel tasfom H θ ν,µ is a cotiuous liea mappig fom H 1,α,A I ito H 2,2α,A2 2e 2α I. Defiitio 2.3. Let Ĥ2,β,B I be the space of all fuctios f H 2,β,B I satisfyig the coditio 2.2 whee C ν,µ k sup C ν,µ k+ = C ν,µ k, q ae costats estaiig the f s i H 2,β,B I. Theoem 2.4. The ivese factioal Hakel tasfom Hν,µ θ defied by 1.3 is a cotiuous liea mappig fom Ĥ2,β,B I ito H 1,β,B I, fo ν 1/2. Poof. Followig as i the poof of the theoem 2.1 ad usig 1.19 ad Defiitio 1.2, we have y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µ θ ψy 1 D x 1+k+2ν+2q xycscθ ν q J ν+q+k xycscθ x 1 D x k e i 2 x2 cotθ x µ ν ψx dx + x 1+k+2ν+2q+2 xycscθ ν q J ν+q+k xycscθ 1 x 1 D x k e i 2 x2 cotθ x µ ν ψxx 2 dx DC ν,µ 1+k+2ν+2q +Cν,µ 1+k+2ν+2q+2 B +σk k kβ ν,µ q B +σ k k kβ. Which completes the poof. Remak 2.5. The factioal Hakel tasfom Hν,µ θ is a cotiuous liea mappig fom Ĥ2,β,B I ito H 1,β,B I, fo ν 1/2. Theoem 2.6. Fo ν 1/2, the ivese factioal Hakel tasfom Hν,µ θ is a cotiuous liea mappig fom H β,b α,a I ito 2e 2α H2α,A2 α+β,abe I. α
8 KANAILAL MAHATO Poof. I this case we obtai fom 2.1 ad 1.14, y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µ θ ψy sup y 2q+k y 1 D y k e i 2 y2 cotθ y µ ν ψy +sup y +2 y 1 D y k e i 2 y2 cotθ y µ ν ψy C ν,µ 1 A+δ 2q+k 2q +k α2q+k B +σ k k kβ +C ν,µ 2 A+δ m+2q+k+2 m+2q +k +2 αm+2q+k+2 B +σ k k kβ A+δ m+2q+k+2 m+2q +k +2 αm+2q+k+2 B +σ k k kβ. Now usig 1.19 i the above equatio, the the above estimate ca be ewitte as y k y 1 D y q e i 2 y2 cotθ y µ ν H θ ν,µψy B +σ k A+δ k k kβ A+δ 2q+m+2 2q 2αq k +m+2 αk+m+2 e 2αq e αk+m+2 AB +δ 1 k k kα+β A 2 +δ 2 q 2 2αq q 2αq e 2αq e αk ABe α +δ 1 k k kα+β A 2 2e 2α +δ 2 qq 2αq. Hece the theoem poved. Remak 2.7. Fo ν 1/2, the factioal Hakel tasfom Hν,µ θ is a cotiuous liea mappig fom H β,b α,a I ito 2e 2α H2α,A2 α+β,abe I. α 3. The factioal wavelet tasfom o the spaces of type S I this sectio we study the wavelet tasfom o the spaces of type S. I ode to discuss the cotiuity of factioal wavelet tasfom Wψ θ o the afoesaid fuctio spaces, we eed to itoduce the followig fuctio space. Defiitio 3.1. The space W ν,µ,θ I, cosists of all those wavelets ψ, N ad ρ R which satisfy 3.1 t 1 D t t µ ν e i 2 t2 cotθ Hν,µz θ ν µ e i 2 z2 cotθ ψt < D,ρ 1+t ρ, whee D,ρ is costat. Theoem 3.2. Suppose ψ be the wavelet take fom W ν,µ,θ I. The cotiuous factioal wavelet tasfom Wψ θ is a cotiuous liea mappig fom H 1,α,AI ito H 1, α, à I I, whee α =,2α ad à = a,a 2 2e 2α +a 2. Poof. Fom the defiitio of W θ ψ fom 1.9 ad usig 2.1, we obtai = b k b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a cscθ 2q+ν µ k ω 1+2ν+2q+k bωcscθ ν q J ν+q+k bωcscθ ω 1 D ω k e i 2 ω2 cotθ aω µ ν e i 2 a2 ω 2 cotθ Hν,µ θ zν µ e i 2 z2 cotθ ψaω ω µ ν fθ ω dω.
FRACTIONAL HANKEL WAVELET TRANSFORM 9 Usig the fact that x ν q J ν+q+k x ad i viewig 1.2, the above elatio becomes b k b 1 D b q e i 2 b2 cotθ b µ ν Wψfb,a θ k cscθ 2q+ν µ k k ω 1+2ν+2q+k ω 1 D ω aω µ ν e i 2 a2 ω 2 cotθ = Hν,µ θ zν µ e i 2 z2 cotθ ψaω ω 1 D ω k 3.2 e i 2 ω2 cotθ ω µ ν fθ ω dω. Theefoe, b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k k ω 1+2ν+2q+k a 1 D a p ω 1 D ω aω µ ν e i 2 a2 ω 2 cotθ = Hν,µz θ ν µ e i 2 z2 cotθ ψaω ω 1 D ω k 3.3 e i 2 ω2 cotθ ω µ ν fθ ω dω. Exploitig the defiitio 3.1 fo t = aω we obtai = a 1 D a p ω 1 D ω aω µ ν e i 2 a2 ω 2 cotθ Hν,µ θ zν µ e i 2 ψaω z2 cotθ a 2 ω 2p t 1 D t p+ t µ ν e i 2 t2 cotθ Hν,µ θ zν µ e i 2 z2 cotθ ψ 1 t a 2 ω 2p D p+,ρ1 1+t ρ1 p a 2 ω 2p D p+,ρ1 1+aω ρ1 p 3.4 a 2 ω 2p D p+,ρ1 1+a ρ1 p 1+ω ρ1 p. Usig 3.4 i 3.3 ad assumig ν 1 be ay positive itege such that ν 1 1+2ν, we have a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k k a 2 ω ν1+2q+2p+k 1+a ρ1 p 1+ω ρ1 p+s = ω 1 D ω k e i 2 ω2 cotθ ω µ ν 1 fθ ω 1+ω s dω k ρ 1 p+s k ρ1 p+s a 2+l 1+a ρ1 p = = supω ν1+2q+2p+k+ ω 1 D ω k e i 2 ω2 cotθ ω µ ν 1 3.5 fθ ω 1+ω s dω. Exploitig the emak 2.2 ad 1.11, the ight had-side of the above estimate becomes
1 KANAILAL MAHATO k = ρ 1 p+s = k ρ1 p+s k 2αk max f θ ν,µ,θ k k = max f θ ν,µ,θ k k a l 1+a ρ1 p k a 2+l 1+a ρ1 p A 2 2e 2α +δ 2 k = k a 2 k k A 2 2e 2α k2α +δ 2 1+a ρ1 p a l kk A 2 2e 2α +a 2 +δ 2 k2α max f θ ν,µ,θ k k. This completes the poof. Theoem 3.3. Let ψ W ν,µ,θ I. The cotiuous factioal wavelet tasfom Wψ θ is a cotiuous liea mappig fom Ĥ2,β,B I ito Ĥ2, β, BI I, whee β = 2β,2β ad B B = 2 a 2e2β,B 2 e 2β. Poof. Fom the estimate 3.5 ad usig 1.19, we obtai a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψfb,a θ k ρ 1 p+s k ρ1 p+s a 2+l 1+a ρ1 p = = supω ν1+2q+2p+k+ ω 1 D ω k e i 2 ω2 cotθ ω µ ν fθ ω k = = k a 2+l 1+a ρ1 p B +σ ν1+2q+2p+k+ ν 1 +2q +2p+k + βν1+2q+2p+k+ max f θ ν,µ,θ ν 1+2q+2p+k+ k = = k 1 1+ω s dω a 2+l 1+a ρ1 p B +σ 2p B +σ 2q 2p β2p ν 1 +2q +k + βν1+2q+k+ e β2p e βν1+2q+k+ max f θ ν,µ,θ ν 1+2q+2p+k+ k = = = = k a 2+l B 2 /a+σ 1 p B +σ 2 2q p p2β q q2β 2 β2p e 2pβ e 2qβ max f θ ν,µ,θ ν 1+2q+2p+k+ k k B a 2+l 2 p a 2e2β +σ 1 B 2 e 2β +σ 2 q p p2β q q2β max f θ ν,µ,θ ν 1+2q+2p+k+. Hece the theoem poved. W θ ψ Theoem 3.4. Let ψ W ν,µ,θ I. The cotiuous factioal wavelet tasfom B is a cotiuous liea mappig fom Hβ,B α,a I ito H β, α,ãi I, whee α =
FRACTIONAL HANKEL WAVELET TRANSFORM 11,3α+β, β = 2α+β,2α+β ad à = a,a 2 2e 2α +a 2 ABe 3α+2β ad 1 B = a A2 B 2 2 2α+β e 4α+2β,A 2 B 2 e 6α+4β 2. 2α+β Poof. Poceedig as i the poof of above theoem ad i viewig the emak 2.7, we have a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k ρ 1 p+s k ρ1 p+s a 2+l 1+a ρ1 p = = supω ν1+2q+2p+k+ ω 1 D ω k e i 2 ω2 cotθ ω µ ν fθ ω k = = k 1 1+ω s dω a 2+l 1+a ρ1 p ABe α +δ ν1+2q+2p+k+ ν 1 +2q +2p+k + α+βν1+2q+2p+k+ A 2 2e 2α +δ 2 k k 2αk 3.6 max f ν,µ,θ. Exploitig the elatio 1.19, the above estimate ca be ewitte as k a l 1+a ρ1 p = = k a 2 A 2 2e 2α +δ 2 k ABe α +δ ν1+2q+2p+k+ 2p 2pα+β ν 1 +2q +k + α+βν1+2q+k+ e α+β2p e α+βν1+2q+k+ k 2kα max f ν,µ,θ = a l 1+a ρ1 p A 2 2e 2α +a 2 +δ 2 k2p 2pα+β e 2pα+β ABe α +δ ν1+2q+2p+k+ e α+βν1+2q+k+ e 2qα+β e α+βν1+k+ 2q 2qα+β ν 1 +k + α+βν1+k+ k 2kα max f ν,µ,θ 1 = a l 1+a ρ1 p A 2 2e 2α +a 2 +δ 2 k2p 2pα+β ABe α +δ ν1+2q+2p+k+ e 2α+βk k k3α+β e 2pα+β e 4qα+β 2q 2qα+β 2 a l A 2 2e 2α +a 2 kk ABe 3α+2β k3α+β +δ 3 = p 1 a A2 B 2 2 2α+β e 4α+2β +δ 4 p p2α+β qq A 2 B 2 e 6α+4β 2 2α+β +δ q2α+β 5. This completes the poof of the theoem. 4. Factioal Hakel tasfom o ultadiffeetiable fuctio spaces I this sectio we discuss the factioal Hakel tasfom o spaces moe geeal i pevious sectios 3,13,19,21. Assume that {ξ k } k= ad {η q} q= be two abitay sequeces of positive umbes possesses the followig popeties:
12 KANAILAL MAHATO ad 4.1 Popety 4.1. 1 ξk 2 ξ k 1ξ k+1, k N, 2 ξ k ξ l ξ ξ k+l, k,l N, 3 ξ k RH k mi ξ lξ k l, k,l N,R >,H >, l k 4 ξ k+1 RH k ξ k, k N,R >,H >, ξ j 5 <. ξ j+1 j= Fom the above popety 1, we have ξ k ξ k+1 ξ k 1 ξ k ξ k 2 ξ k 1... ξ ξ 1, ξ k = I the vey simila way we obtai 4.2 η q ξ k ξ k +1... ξ k 1 ξ k ξ k +1 ξ k +2 ξ k ξ ξ k. ξ 1 η η 1 η q. We ow itoduce the followig types of fuctio spaces 19. Defiitio 4.2. Let {ξ k } k= ad {η q} q= be two ay sequeces of positive umbes. A ifiitely diffeetiable complex valued fuctio f H 1,ξk,AI if ad oly if x k x 1 Dx q e ± i 2 x2 cotθ x µ ν 4.3 fx q ν,µ A+δ k ξ k, k,q N, fo some positive costats A,Cq ν,µ depedig o f; ad f belogs to the space H 2,ηq,B I if ad oly if x k x 1 D x q e ± i 2 x2 cotθ x µ ν 4.4 fx ν,µ k B +σq η q, k,q N, fo some positive costats B ad C ν,µ k depedig o f; ad the fuctio f is said to be i the space H ηq,b ξ k,ai if ad oly if x k x 1 D x q e ± i 2 x2 cotθ x µ ν 4.5 fx ν,µ A+δ k ξ k B +σ q η q, k,q N, whee A,B,C ν,µ ae cetai positive costats depedet o f. The elemets of the spaces H 1,ξk,AI,H 2,ηq,B I ad H ηq,b ξ k,ai ae kow as ultadiffeetiable fuctios 1, 14, 19, 22. We shall eed simila types of fuctio spaces of two vaiables. Defiitio 4.3. The space H 1,ξml+k,ÃI I,Ã = A 1,A 2 is defied to the collectioofallifiitelydiffeetiablefuctiosfb,asatisfyig,foalll,k,m,,p,q N, 4.6 sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b ν,µ p,qa 1 +δ 1 l A 2 +δ 2 k ξ ml+k,
FRACTIONAL HANKEL WAVELET TRANSFORM 13 whee the abitay costats A 1,A 2,C ν,µ p,q depeds o f. Defiitio 4.4. The space H 2,ηsp+tq, BI I, B = B 1,B 2 is defied to the collectio of all fuctios fb,a C I I satisfyig, fo all l,k,s,t,p,q N, 4.7 sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b ν,µ l,k B 1 +σ 1 p B 2 +σ 2 q η sp+tq, whee the abitay costats B 1,B 2,C ν,µ l,k depeds o f. Defiitio 4.5. The spaceh ξ cp+dq,η sp+tq, B ξ ml+k,η gl+hk,ãi I,Ã = A 1,A 2, B = B 1,B 2 is defied to the collectio of all ifiitely diffeetiable fuctios fb, a satisfyig, fo all l,k,g,h,s,t,p,q,c,d N, sup a l b k a 1 D a p b 1 D b q e ± i 2 b2 cotθ b µ ν fb,a a,b ν,µ A 1 +δ 1 l A 2 +δ 2 k B 1 +σ 1 p B 2 +σ 2 q ξ ml+k η gl+hk η sp+tq ξ cp+dq, whee the abitay costats A 1,A 2,B 1,B 2 ad C ν,µ depeds o f. Theoem 4.6. If {ξ k } ad {η q } be the sequeces satisfies the popety 4.1, the ivese factioal Hakel tasfom H θ ν,µ is a cotiuous liea mappig fom the space H ηq,b ξ k,a I ito Hξ2 q,b1 ξ k η k,a 1, whee A 1 = ABH 2,B 1 = A 2 H 6. Poof. Followig the pocedue of the poof of the Theoem 2.1 ad usig popety 4.1 3 ad i viewig 4.5, we have y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µψy θ sup y 2q+k y 1 D y k e i 2 y2 cotθ y µ ν ψy +sup y m+2q+k+2 y 1 D y k e i 2 y2 cotθ y µ ν ψy C ν,µ 1 A+δ 2q+k ξ 2q+k +C ν,µ 2 A+δ m+2q+k+2 ξ m+2q+k+2 B +σ k η k B +σ k η k HA+δ 2q+k ξ 2q+k 1+A+δ m+2 RH m+2 ξ m+2 ABH 2 +δ 2 k ξ k η k A 2 H 6 +δ 3 q η 2 q. This completes the poof. Remak 4.7. Let {ξ k } ad {η q } be the sequeces satisfies the popety 4.1, the factioal Hakel tasfom H θ ν,µ is a cotiuous liea mappig fom the space H ηq,b ξ k,a I ito Hξ2 q,b1 ξ k η k,a 1, whee A 1 = ABH 2,B 1 = A 2 H 6. Theoem 4.8. If {ξ k } be the sequece satisfies the popety 4.1 the fo ν 1/2, Hν,µ θ is a cotiuous liea mappig fom H 1,ξk,AI ito H 2,ξ2 q,a1 I, whee A 1 = A 2 H 6.
14 KANAILAL MAHATO Poof. Fom the above theoem, we have y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µ θ ψy sup y 2q+k y 1 D y k e i 2 y2 cotθ y µ ν ψy +sup y m+2q+k+2 y 1 D y k e i 2 y2 cotθ y µ ν ψy C ν,µ k A+δ2q+k ξ 2q+k +D ν,µ k A+δm+2q+k+2 ξ m+2q+k+2 A 2 H 6 +δ 2 q ξ 2 q. Hece the theoem poved. Remak 4.9. Let {ξ k } be the sequece satisfies the popety 4.1 the fo ν 1/2, H θ ν,µ is a cotiuous liea mappig fom H 1,ξ k,ai ito H 2,ξ2 q,a1 I, whee A 1 = A 2 H 6. Defiitio 4.1. The space Ĥ2,ηq,B I be the collectio of all fuctios f H 2,ηq,B I satisfyig the coditio 4.8 sup C ν,µ k+ = ν,µ C k, k whee C ν,µ k ae costats estaiig the f s i H 2,ηq,B I. Theoem 4.11. Fo ν 1/2 ad suppose {η q } be the sequece satisfies the popety 4.1 the ivese factioal Hakel Hν,µ θ is a cotiuous liea mappig fom Ĥ 2,ηq,B I ito H 1,ηk,BI. Poof. Exploitig 2.1 ad Theoem 2.4, we have y k y 1 D y q e i 2 y2 cotθ y µ ν Hν,µψy θ C ν,µ 1+2ν+2q+k +C 1+2ν+2q+k+2 B +σ k η k qb +σ k η k. This completes the poof. Remak 4.12. If {η q } be the sequece satisfies the popety 4.1 ad ν 1/2 thefactioalhakeltasfomh θ ν,µ isacotiuouslieamappigfomĥ2,ηq,b I ito H 1,ηk,BI. Theoem 4.13. Let ψ be the wavelet belogs to the space W ν,µ,θ I. If {ξ k } be the sequece satisfies the popety 4.1 the factioal Hakel wavelet tasfom is a cotiuous liea mappig fom H 1,ξk,AI ito H 1,ξ 2 k,ãi I, whee à = a,a 2 H 6 + a2 ξ 2 ξ 2 1, fo ν 1/2.
FRACTIONAL HANKEL WAVELET TRANSFORM 15 Poof. Fom 3.5 ad i viewig Theoem 4.8, we have a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k ρ 1 p+s k ρ1 p+s a 2+l 1+a ρ1 p = = supω ν1+2q+2p+k+ ω 1 D ω k e i 2 ω2 cotθ ω µ ν fθ ω k = = k ξk 2 max f θ ν,µ k k k k = ξ 2 k ξ ξ 1 = = 2 max f θ ν,µ k k a 2+l 1+a ρ1 p A 2 H 6 +δ 1 k a 2+l 1+a ρ1 p A 2 H 6 +δ 1 k a l 1+a ρ1 p k = ξk 2 max f θ ν,µ k k a l A 2 H 6 + a2 ξ 2 k ξ1 2 +δ 2 ξk 2 max f θ ν,µ k k. This completes the poof. 1 1+ω s dω k A 2 H 6 +δ 1 k a 2ξ2 ξ1 2 Theoem 4.14. Suppose ψ be the wavelet take fom W ν,µ,θ I. If {η q } be the sequece satisfies the popety 4.1 the factioal Hakel wavelet tasfom is a cotiuous liea mappig fom Ĥ2,ηq,B I ito Ĥ2,η2p+2q, BI I, whee B = B 2 /a,b 2, fo ν 1/2. Poof. Poceedig as i the poof of the ealie theoem ad exploitig Theoem 4.11, we obtai a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k ρ 1 p+s k ρ1 p+s a 2+l 1+a ρ1 p = = supω ν1+2q+2p+k+ ω 1 D ω k e i 2 ω2 cotθ ω µ ν fθ ω 1 k = = k a 2+l 1+a ρ1 p max f θ C ν,µ k 1 1+ω s dω B +σ ν1+2p+2q+k+ η ν1+2p+2q+k+ B 2 max f θ 2 p a +σ 1 B 2 +σ 2 q η ν1+2p+2q+k+. Hece the theoem poved.
16 KANAILAL MAHATO Theoem 4.15. Let ψ W ν,µ,θ I. If {ξ k } ad {η q } be the sequeces satisfies the popety 4.1 the factioal Hakel wavelet tasfom is a cotiuous liea mappig fom H ηq,b B ξ k,ai ito Hξ2p+2q,η2p+2q, I I, whee a,abh à = 2 A 2 H 6 + ξ 2k 2,η k,ã a 2 ξ 2/ξ2 1 ad B = 1 a A2 B 2 H 6,A 2 B 2 H 4, fo ν 1/2. Poof. Usig Theoem 4.6 ad i viewig 3.5, we see that a l b k a 1 D a p b 1 D b q e i 2 b2 cotθ b µ ν Wψ θ fb,a k k a 2+l 1+a ρ1 p f θ ν,µ A 2 H 6 +δ 2 k = = ξk ABH 2 2 +δ 1 ν1+2p+2q+k+ ξ ν1+2p+2q+k+η ν1+2p+2q+k+ k a a l 1+a ρ1 p 2 ξ 2 = = k ξ 2 1 A 2 H 6 +δ 2 k f θ ν,µ ξkabh 2 2 +δ 1 ν1+2p+2q+k+ ξ ν1+2p+2q+k+η ν1+2p+2q+k+ 1 a l k ABH 2 A 2 H 6 +a 2 ξ/ξ 2 1+δ 2 1 3 a A2 B 2 H 6 p +δ 4 A 2 B 2 H 4 +δ 5 q f θ ν,µ ξk 2 ξ ν 1+2p+2q+k+η ν1+2p+2q+k+. Now usig the iequalities 2 ad 3 fom the popety 4.1, the last expessio ca be ewitte as 1 a l k p 1 ABH 2 A 2 H 6 +a 2 ξ 2 /ξ2 1 +δ 3 a A2 B 2 H 6 +δ 4 A 2 B 2 H 4 +δ 5 q f θ ν,µ ξ 2 2k η kξ 2p+2q η 2p+2q. This completes the poof. Refeeces 1. Chui CK. A Itoductio to Wavelets. New Yok: Academic Pess; 1992. 2. Debath L. Wavelet Tasfom ad Thei Applicatios. Bosto MA: Bikhäuse; 22. 3. Dua AJ. Gelfad-Shilov spaces fo the Hakel tasfom. Idag. Math. 1992; 32: 137-151. 4. Fiedma A. Geealized fuctios ad patial diffeetial equatios. Eglewood Cliffs, NJ: Petice Hall, 1963. 5. Gel fad IM, Shilov GE. Geealized fuctios, Vol 2, Academic Pess, New Yok, 1968. 6. Hamio DT. Itegal equatios associated with Hakel covolutio. Tas Ame Math Soc. 1965; 116:33-375. 7. Hischma II. Vaiatio dimiishig Hakel tasfom. J Aal Math. 196-1961; 8: 37-361. 8. Holscheide M. Wavelets: a aalysis tool. Claedo, Oxfod, 1995. 9. Ke FH. Factioal powes of Hakel tasfoms i the Zemaia space. J Math Aal Appl. 1992; 166:65-83. 1. Komatsu H. Ultadistibutios, I, stuctue theoems ad a chaacteizatio. J. Fac. Sci. Uiv. Tokyo Sec. IA Math. 1973; 21: 25-15. 11. Lee WYK. O the spaces of type H µ ad thei Hakel tasfomatios. SIAM J. Math. Aal. 1974; 52:336-348. 12. Mahato, K., O the boudedess esult of wavelet tasfom associated with factioal Hakel tasfom, Itegal Tasfoms Spec. Fuct. 217; 2811: 789-8. 13. Maeo I. Spaces of Geealized type H µ, Spaces of type S ad the Hakel tasfomatio. Rocky Mt. J. Math. 25; 355: 177-1722. 14. Matsuzawa T. Hypoellipticity i ultadistibutio spaces. J. Fac. Sci. Uiv. Tokyo Sec. IA Math. 1987; 34: 779-79.
FRACTIONAL HANKEL WAVELET TRANSFORM 17 15. Pasad A, Mahato A, Sigh VK, Dixit MM. The cotiuous factioal Bessel wavelet tasfomatio. Boud Value Pobl. 213; 213:4. 16 pp.. 16. Pasad, A., Mahato, K., Two vesios of factioal powes of Hakel-type tasfomatios ad pseudo-diffeetial opeatos, Red. Cic. Mat. Palemo. 652, 29-241 216. 17. Pasad, A., Mahato, K., The factioal Hakel wavelet tasfomatio, Asia-Eu. J. Math. 82, 1553, 11 pages 215. 18. Pathak RS. The Wavelet Tasfom. Vol-6. Pais, Amstedam: Atlais Pess/Wold Scietific; 29. 19. Pathak RS. Itegal Tasfoms of Geealized Fuctio ad Thei Applicatios. Godo Beach Sciece Publishes, Amstedem; 1997. 2. Pathak RS, Dixit MM. Cotiuous ad discete Besse wavelet tasfoms. J Compt Appl Math. 23; 16:211-25. 21. Pathak RS, Padey AB. O Hakel tasfoms of ultadistibutios. Appl. Aal. 1985; 2: 245-268. 22. Rodio L. Liea Patial Diffeetial Opeatos i Gevey spaces. Wold Scietific, Sigapoe; 1993. 23. Toe A. Hakel-type itegal tasfoms ad thei factioalizatio: a ote. Itegal Tasfoms Spec Fuct. 28; 194: 277-292. 24. Upadhyay SK, Yadav RN, Debath L. O cotiuous Bessel wavelet tasfomatio associated with the Hakel-Hausdoff opeato. Itegal Tasfoms Spec Fuct. 212; 235:315-323. 25. Zemaia AH.Geealized Itegal Tasfomatios. New Yok: Itesciece Publishes; 1968. Depatmet of Mathematics, Istitute of Sciece, Baaas Hidu Uivesity, Vaaasi- 2215, Idia E-mail addess: kaailalmahato@gmail.com, kaailalmahato@bhu.ac.i