STAT 330(Winter ) Mathematical Statistics

Σχετικά έγγραφα
Homework for 1/27 Due 2/5

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Advanced Statistics. Chen, L.-A. Distribution of order statistics: Review : Let X 1,..., X k be random variables with joint p.d.f f(x 1,...

Solution Series 9. i=1 x i and i=1 x i.

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Other Test Constructions: Likelihood Ratio & Bayes Tests

LAD Estimation for Time Series Models With Finite and Infinite Variance

Solutions: Homework 3

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

2 Composition. Invertible Mappings

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

p n r


Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

4.6 Autoregressive Moving Average Model ARMA(1,1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Exam Statistics 6 th September 2017 Solution

6. MAXIMUM LIKELIHOOD ESTIMATION

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ST5224: Advanced Statistical Theory II

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Solve the difference equation

Problem Set 3: Solutions

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

The Heisenberg Uncertainty Principle

Solutions to Exercise Sheet 5

Statistical Inference I Locally most powerful tests

C.S. 430 Assignment 6, Sample Solutions

Lecture 3: Asymptotic Normality of M-estimators

On Generating Relations of Some Triple. Hypergeometric Functions

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

IIT JEE (2013) (Trigonomtery 1) Solutions

Homework 4.1 Solutions Math 5110/6830

Lecture 21: Properties and robustness of LSE

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Parameter Estimation Fitting Probability Distributions Bayesian Approach

The Simply Typed Lambda Calculus

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Matrices and Determinants

Section 8.3 Trigonometric Equations

Homework 8 Model Solution Section

Example of the Baum-Welch Algorithm

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order Partial Differential Equations

Homework 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Example Sheet 3 Solutions

EE512: Error Control Coding

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Theorem 8 Let φ be the most powerful size α test of H

Srednicki Chapter 55

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

α β

Lecture 2. Soundness and completeness of propositional logic

A Note on Intuitionistic Fuzzy. Equivalence Relation

Diane Hu LDA for Audio Music April 12, 2010

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Reminders: linear functions

Bessel function for complex variable

Inverse trigonometric functions & General Solution of Trigonometric Equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Presentation of complex number in Cartesian and polar coordinate system

5.4 The Poisson Distribution.

Degenerate Perturbation Theory

FORMULAS FOR STATISTICS 1

Ψηφιακή Επεξεργασία Εικόνας

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Outline. Detection Theory. Background. Background (Cont.)

Finite Field Problems: Solutions

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Uniform Convergence of Fourier Series Michael Taylor

SOLVING CUBICS AND QUARTICS BY RADICALS

Μηχανική Μάθηση Hypothesis Testing

6.3 Forecasting ARMA processes

EN40: Dynamics and Vibrations

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes

Durbin-Levinson recursive method

Fractional Colorings and Zykov Products of graphs

Tridiagonal matrices. Gérard MEURANT. October, 2008

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Probability and Random Processes (Part II)

Every set of first-order formulas is equivalent to an independent set

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

CRASH COURSE IN PRECALCULUS

Transcript:

Sprig 3 TABLE OF CONTENTS STAT 33Witer 3-35 Mathematical Statistics Prof. M. Molkaraie Uiversity of Waterloo L A TEXer: W. KONG http://wwkog.github.io Last Revisio: April 3, 4 Table of Cotets Review. Probability Spaces.................................................... Raom Variables....................................................3 The Gamma Fuctio................................................. 3 Expectatio a Variace 4. Expectatio....................................................... 4. Variace......................................................... 5 3 Momet Geeratig Fuctios MGFs 6 3. Liear Combiatios.................................................. 7 3. Characteristic Fuctio................................................. 8 4 Joit Distributios 8 4. Joit Expectatio a Variace............................................ 4. Correlatio Coefficiet................................................. 5 Coitioal Distributios 5. Coitioal Expectatio................................................ 6 Multivariable Distributios 3 6. Multiomial Distributio................................................ 3 6. Bivariate Normal Distributio............................................. 4 7 Fuctios of Raom Variables 5 7. -to- Bivariate Trasformatios........................................... 6 7. Momet-Geeratig Fuctio Metho........................................ 7 8 Covergece of Raom Variables 8 8. Useful Limit Theorems................................................. 8. Delta Metho...................................................... 9 Poit Estimatio 9. Metho of Momets.................................................. 9. Maximum Likelihoo Estimatio........................................... 3 9.3 Notable Fuctios a Matrices............................................ 4 9.4 Covex Fuctios.................................................... 6 These otes are curretly a work i progress, a as such may be icomplete or cotai errors. i

Sprig 3 ACKNOWLEDGMENTS ACKNOWLEDGMENTS: Special thaks to Michael Baker a his L A TEX formatte otes. They were the ispiratio for the structure of these otes. ii

Sprig 3 ABSTRACT Abstract The purpose of these otes is to provie a secoary referece for the material covere i STAT 33. Reaers shoul ote that early /3 of the class is spet reviewig cocepts leare i STAT 3/3 but later material ca prove to be sigificatly more ifficult. The author recommes that stuets who eroll i this shoul have a very goo backgrou i calculus as that is the core of the computatios oe i this course. iii

Sprig 3 REVIEW Overview Review Joit, Margial, a Coitioal Distributios 3 Fuctios of RVs 4 Covergece i P & i D 5 Poit Estimatio a Maximum Likelihoo 6 Hypothesis Testig Recommee Reaigs: - Itro to Probability a Mathematical Statistics Bai & Eglehart - Statistical Iferece Casella & Berger Test o Jue th Test o July 7th Review We briefly go over some basic cocepts itrouce i STAT 3 a STAT 3. Probability Spaces Defiitio.. Recall that a probability space is compose of a set S, calle the sample space or the set of all possible outcomes also sometimes give by Ω where E S is calle a evet, a sigma algebra Σ, geerate by S, a a probability fuctio P : Σ R where is usually. Axiom. Here are the properties of the probability fuctio Kolmogorov Axioms: P A, A S P S 3 If A A i are isjoit a I is coutable the P A P A i i I i I Note that 3 is also kow as σ aitivity. Defiitio.. We efie the coitioal probability P A B P A B P B iepeet or A B if P A P A B P A B P AP B. where P B, a we say that A a B are Note. Iepeece Disjoit. Raom Variables Defiitio.3. A raom variable is a fuctio X : S R with the followig properties a otatios: X x} w : w S, Xw x} P X x} P w : w S, Xw x} F X x where the seco form F X : R EXT [, ], is kow as the cf or cumulative istributio fuctio.

Sprig 3 REVIEW Propositio.. The cf has the followig properties: F is o-ecreasig F X F X.5 x < x F X x F X x 3 F X is right cotiuous 4 P a < X b P X b P X a F X b F X a, for a < b 5 P X b F X b lim x b F Xx, equal to if X is cotiuous Example.. Cosier T x e x, x R. By observatio it satisfies,, a 3. To check, ote that T x x e x + e x > Defiitio.4. For iscrete raom variables, say X, i aitio to a cf, we efie a probability mass fuctio, calle a pmf: Propositio.. Here are some properties of the pmf: f X x P X x f X x P X X x P X x k P X k Example.. Here is a small list of some iscrete istributios: Uiform [U ifa, b], Geometric [Geop], Poisso [P oissoλ], Biomial [Bi, p] Example.3. Suppose we have a re balls a b black balls a Let X the # of re balls i selectios without replacemet x a+b The PMF is Hyper-Geometric P X x a x b b Let X the # of re balls i selectios with replacemet a The PMF is Bi, a+b. Asie. m+ r r m k k k k k Calle the Vaermoe ietity Example.4. Suppose f X x p x l p. We will show that x N f X x it is clearly o-egative. Observe that x p x x l p l p p x x x a sice we have x l x p x x l p x, x < l p l p

Sprig 3 REVIEW Defiitio.5. For cotiuous raom variables, istea of a pmf P X X k we have a pf f X x calle a probability esity fuctio. Cotiuous raom variables still have a cf, eote by F X x P X x. Cotiuous raom variables also have the followig properties: f X x fx x 3 F X x x f Xt t Defiitio.6. The uiform istributio X Uiform[a, b] has cf x x a F X x a b a x x a b a a < x b x > b Example.5. Cosier the pf This is a vali pf provie that f X x θ x θ+ x x < f X x x θ θ θ θ >.3 The Gamma Fuctio Defiitio.7. The gamma fuctio Γα is efie by a has the followig properties. Γα α Γα Γ!, N 3 Γ π Γα y α e y y y α e y y y Defiitio.8. The gamma istributio X Gammaα, β is efie usig the pf f X x xα e x β, x, α >, β > Γαβα 3

Sprig 3 EXPECTATION AND VARIANCE a ote that I x α e x β Γαβ α x Γαβ α x α e x β x Γαβ α β α y α e y βy β α Γαβ α Γα Γα y α e y y with x β y x βy βy x. So the gamma istributio is a vali istributio. Defiitio.9. The Weibull istributio X Weibullθ, β is give by the pf f X x β θ β xβ e x θ β β x β θ β xβ exp, x >, θ >, β > θ a ote that for β, we have a Expoetialθ istributio. To see that it is a vali pf, observe that I f X xx β θ β xβ e x θ β x e y y usig y x β θ y βx β x. Suppose that θ. The θ β f X x βx β e xβ, F X x e xβ, x Expectatio a Variace We briefly go over the efiitios a properties of expectatio a variace.. Expectatio Defiitio.. The expectatio of a raom variable X eote as E[X], EX, EX, µ X or µ is efie as EX x Z xp X x i the iscrete case a EX xf X xx for the cotiuous case. We will illustrate examples a properties of expectatio i the cotiuous case from this poit forwar. For geeral fuctios of raom variables, gx, we have EgX 4 gxf X xx

Sprig 3 EXPECTATION AND VARIANCE a for joit expectatios EXY we have EXY xyf XY x, yxy Summary. Some properties of expectatio are as follows. Liearity of Expectatio: Ea gx + b gy aex + bey eve if X is epeet o Y X Y EXY EXEY. Variace Defiitio.. We efie the variace of a raom variable X as E[X E[X] ] E[X ] E [X] EX µ X which usually eote as V arx, σ X or σ. Note that EX EX a these are equal whe X is a costat. Defiitio.3. We efie the followig momets arou X k th momet: E[X k ] k th momet arou the mea cetral momet: E [X µ k] 3 k th factorial momet: E [ x k] E[XX...X k + ] Example.. Suppose that X N,, the EX k+, k N sice the itegra is the prouct of a symmetric eve a atisymmetric o fuctio. Summary. Here are some properties of the variace fuctio. V arax + b a V arx V arax + by a V arx + b V arx + abcovx, Y Example.. If X P oisθ the E [ X k] θ k. To see this, we use the efiitio below. usig this result, we ca euce that [ E x k] E[XX...X k + ] e θ x< e θ k x< e θ x< e θ y< θ k e θ θ k y< x k θ k x! x k θ k x! θ k x kx k... θ k y!, y x k EX θ, EXX θ EX EX V arx θ y! 5

Sprig 3 3 MOMENT GENERATING FUNCTIONS MGFS Example.3. If X Gammaα, β the E[X p ] β p Γα+p Γα a to see this, we use the efiitio agai E[X p ] β p Γα x p xα e x β Γαβ α x x α+p e x β Γαβ α x y α+p β α+p Γαβ α e y βy, y x β y α+p β p e y y Γα β p Γα + p Γα y α+p e y y We the use this to get E[X] βα a E[X ] β αα with V arx β α. Note that if we kow E[X] a V ar[x], we ca solve for α a β. 3 Momet Geeratig Fuctios MGFs Defiitio 3.. A momet geeratig fuctio of X is create by the followig mappig Example 3.. Let X Bi, p. The E [ e tx] e tx p x p x x x X M X t E [ e tx] M X t x e t p x p x [ pe t + p ] x Example 3.. If X P oisθ the M X t e θet. To see this, we go by efiitio. E [ e tx] x< e tx e θ θ x x! e θ e t θ x x! x< e θ e θet e θet As a sie remark ote that if X Bi, p a, p with p θ the X P oisθ. We also shoul get that their momet geeratig fuctios shoul coverge. Example 3.3. If X Gammaα, β the M X t βt α. To see this, we also go by efiitio M X t E [ e tx] e tx xα e x β Γαβ α x Γαβ α x α e x t β x Γαβ α y α β α β t α β t α e y y α e y y Γα β α β t α βt α y, y β t β t x 6

Sprig 3 3 MOMENT GENERATING FUNCTIONS MGFS Example 3.4. Suppose that Z N,. The M Z t e t. As above, we go by efiitio. M Z t e tx π e x x π e x t e t x e t π e x t x e t 3. Liear Combiatios Propositio 3.. Give the MGF of X, we ca compute the MGF of ay liear combiatio of X, say Y ax + b. Proof. We ca o this irectly. M Y t E [ e Y t] [ E e ax+bt] e bt M X at Corollary 3.. If Y Nµ, σ, what is M Y t? Well if X N,, the Y µ + σx. Hece M Y t e µt e σ t e tµ+σ t Summary 3. Recall that Here are some properties of the MGF: M X e tx tx k k! k E [ e tx] k t k k! E [ x k] M X t k ktk k! E [ x k] M X E[X] 3 M X t kk t k k k! E [ x k] M X E[X ] 4 Iuctively, we ca get M X E[X ] 5 M X M Y F X F Y oly i this course; geerally this is ot true 6 If Y X i, the M Y t M X i t Example 3.5. If X Gammaα, β the M Xt αβ βt α E[X] M X αβ M Xt αβα + β βt α E[X ] M X αβ α + V ar[x] αβ α + α β αβ Example 3.6. Suppose that M X t. Fi the MGF of Y X a E[Y ], V ar[y ]. What is the istributio of Y? By observatio, M Y t e t e 4t, E[Y ], V ar[y ] 4 a the istributio of Y is N, 4. 7

Sprig 3 4 JOINT DISTRIBUTIONS 3. Characteristic Fuctio Defiitio 3.. The characteristic fuctio of a raom variable X is the Fourier trasform of the pf/pmf: I ω X x e iωx f X xx, e iωx where it always exists a has all of the properties of the MGF. 4 Joit Distributios Example 4.. Cosier rollig two ice, D a D. Let X D + D a Y D D. The P XY X 5, Y 3 P X 5, Y 3 36 8 a P X 7, Y 4 4 y P X 7, Y y 4 36 9 Summary 4. Here are some basic properties of the margials of a joit istributio i the iscrete case: F F X x P X x lim y F xy x, y F xy x, x y f xyx, y 3 P X X x y P X x, Y y, P Y Y y x P X x, Y y a ow i the cotiuous case: f XY x, y x y F XY x, y x F XY x, y y f XY s, t s t 3 f Y y f XY s, t s, f X x f XY s, t t Example 4.. Suppose that we have ActSc stuets, 9 Stats stuet a 6 Maths stuets. We select 5 stuets without replacemet. Let X # of ActSc stuets a Y # of Stats stuets. The joit PMF of X a Y is the margial of X is P X X x P XY X x, Y y y 9 x y 5 5 6 5 x y 9 6 x y 5 x y 5 5 x, x, y, x + y 5 5 5 y 9 6 y 5 x y 5 x 5 x 5 5 a similarly the margial of Y is P Y Y y x 9 x y 5 5 6 9 5 x y y 5 5 x 6 x 5 x y 9 6 y 5 y 5 5 8

Sprig 3 4 JOINT DISTRIBUTIONS Example 4.3. Let Let s check if f XY x, y. I x + y x y Let s try to compute P X 3, Y. I 3 x + y x y y y f XY y y x x + y x, y otherwise x + xy y + xy 3 y y y y y y + y + 3 y + y 8 36 + 4 5 7 Note that the cf of this pf is x, y xy F X,Y x, y x + y x, y x, y I the lecture here, we reviewe how to itegrate over arbitrary regios so I will oly give the importat etails Summary 5. If we are aske to compute P fx, Y < c for some costat c a raom variables r.v.s X a Y, isolate Y, raw the regio of itegratio a erive the appropriate itegrals. For example, if x, y, the a P r X + Y < P r Y < X x x y f XY x, y y x P r XY P r Y P Y > f XY x, y y x X X x y x where i the seco example, x y a y x. If X Y the f XY x, yx, y f X xf Y yx, y A A Exercise 4.. Give f XY ke y y, a < x < y <, What is k? As: k What is P X 3, Y 3? As: e 3 e e 3 What is P X < Y? As: 3 What is P X + Y? Hit: P X + Y P X + Y <, As: e 4 Are X a Y iepeet? As: No! Check the margials. Defiitio 4.. We efie the support of a r.v. as x : f X x > }. Propositio 4.. If X Y the gx hy for ay fuctios g a h. Example 4.4. Repeat of a previous example Suppose that we have ActSc stuets, 9 Stats stuet a 6 Maths stuets. We select 5 stuets without replacemet. Let X # of ActSc stuets a Y # of Stats stuets. Are X a Y iepeet? No, they re epeet Example 4.5. Let f XY x, y 3 y x for x, y. Are X a Y iepeet? Yes, check the margials 9

Sprig 3 4 JOINT DISTRIBUTIONS Example 4.6. Let f XY x, y θx+y e θ x!y!. This splits ito two iepeet poisso r.v.s. X a Y. Example 4.7. Let f XY x, y π where x y a y. Calculatig the margials gives us f Y y π y a f X x 4 π x. It is clear that X is ot iepeet of Y. Remark 4.. I geeral, X X... X are iepeet if a oly if f XX...X x, x,..., x f Xi x i Remark 4.. Give f XY Z x, y, z gx, yhy, z, we remark that X Z if Y is give. 4. Joit Expectatio a Variace Propositio 4.. If X X... X, the for ay set of equatios h i }. E [h i X i ] E [h i X i ] Defiitio 4.. Defie CovX, Y E[XY ] E[X]E[Y ] E[XY ] µ X µ Y. If X Y the CovX, Y. We also say that if E[XY ] E[X]E[Y ] the X a Y are ucorrelate. However, if for all fuctios f, g we have that the X Y. E[fXgY ] E[fX]E[gY ] Propositio 4.3. Suppose that X is ucorrelate to Y a that Y αx E[αX ] αe[x]e[x] E[X ] E[X] X is a costat so X a Y caot be liearly epeet still caot say that they are iepeet. Propositio 4.4. If X X... X the [ ] V ar a i X i a i V ar[x i ] a i σx i 4. Correlatio Coefficiet Defiitio 4.3. The correlatio coefficiet ρ for two r.v.s is efie as ρ XY CovX, Y σ X σ Y, ρ XY Example 4.8. Recall the pf f XY x, y x + y o x, y a otherwise. We showe that the margials were f X x x +, f Y y y + for x, y a otherwise. It ca be show that E[XY ] 3, E[X] 7 E[Y ], V arx V ary 44 σ X σ Y a so ρ 3 7 7. Propositio 4.5. ρ XY for ay r.v.s X a Y.

Sprig 3 5 CONDITIONAL DISTRIBUTIONS Proof. Cosier [ X µx E a so CovX,Y σ X σ Y. σ X + Y µ Y σ Y ] [ σx E X µ X ] + [ σy E Y µ Y ] + E[X µ X Y µ Y ] σ X σ Y σ X σx + σ Y σy + CovX, Y σ X σ Y [ ]. A similar metho ca be costructe usig E X µx σ X Y µ Y σ Y i the above to get CovX,Y σ X σ Y 5 Coitioal Distributios Defiitio 5.. For r.v.s X a Y, f X Y x y f XY x, y, p X Y x y p XY x, y a f Y, p Y > f Y y p Y y Example 5.. Cosier f XY x, y π o y, x y a otherwise. We compute the margials to be f X x 4 π x a f Y x π y. It is easy to show that f X Y x y y, f Y Xy x Remark 5.. Prouct Rule We ca express the joit i the followig way x f XY x, y f X Y x y f Y y f Y X y x f X x Example 5.. Suppose that Y P oisµ a X Y y Biy, p. What is the margial of X? The joit istributio is p XY x, y e µ µ y [ ] y! y! x!y x! px p y x e µ µp x µ p y x x!y x! so a X P oisµp. P Hp X x e µ µp x µ p y x yx e µ x! µpx x!y x! yx e µ e µ p µp x x! e µp µp x x! µ p y x y x! Example 5.3. Give P XY x, y θx+y e θ x!y! for x, y,,,... It ca be show that P X x P XY x, y θx e θ, P Y X y x θy e θ x! y! y

Sprig 3 5 CONDITIONAL DISTRIBUTIONS Example 5.4. Suppose that Y Gamma α, θ a X Y y Weiy p, p. What is fx? We kow that It ca be show that f Y y Gammaα, β xα e x β β α Γα, Weiθ, β β θ β xβ e x β θ, x θα Γα yα e θy, f X Y x y This gives a equatio for f XY i the form of a itegratig gives us f X x p y p p x p e x y p p f XY x, y pyθα Γα xp y α e θy e yx P f XY x, y y pθ α x p Γαθ + x p α+ t α e t t, t yθ + x p Γα + pθα x p Γαθ + x p α+ pyx p e yxp, x, y 5. Coitioal Expectatio Defiitio 5.. E[gY x] y gyf XY y x E[gY X x] a if X Y the E[gY X x] E[gY ]. Variace is efie i a similar way: V ar[y X x] E[Y X x] E [Y X x]. Example 5.5. Let f Y X y x x, x y x. We wat to compute the variace. First, E[Y X x] sice the term i the itegral is a o fuctio. The, E[Y X x] So V ar[y X x] 3 x. x x x y x x y x Propositio 5.. The ouble expectatio formula states y x y x y y x 3 3 x 3 x E[X] E E[X Y ] V ar[x] E[V arx Y ] + V are[x Y Example 5.6. If P Uif[, ] a Y P p Bi, p the E[E[Y P ]] E[P ] E[P ] 5 a V ar[e[y P ] V ar[p ] Some examples we skip here because they are trivial

Sprig 3 6 MULTIVARIABLE DISTRIBUTIONS Example 5.7. Give f XY 6xy x y < x, y < otherwise we ca show that E[XY ] 3, f X Y 6x x y 4 3y with f Y y4 3y, < y < Defiitio 5.3. The joit MGF of XY is efie as a i geeral, with Propositio 5.. As y, F XY x, y F X x. Example 5.8. Give we ca show that M XY t E [ e tx+ty ] M k Xit,.., t k E [e ] k l txi M k Xit, t,..., t k E [ e tx] M X t f XY M XY t, t e y < x < y < otherwise Propositio 5.3. If X k } are a set of iepeet raom variables, t + t t M X k t,..., t M Xk t k Exercise 5.. Show that if X,..., X are ii N, r.v.s, the Y X N,. First remark that V ary V ar [ X ]. We ca further calculate the MGF of Y as a so Y X N,. M Y t ] E [e x t e t e t t e Theorem 5.. If Y,..., Y N, a they are iepeet, the Ȳ µ σ / N, 6 Multivariable Distributios Here, we examie various istributios that comprise of multiple variables. 6. Multiomial Distributio Defiitio 6.. Let X i be the umber of times i comes before total repetitios, a p i be the probability of gettig the item i. The! P X x,..., X k x k x!...x k! px... px k k where x i, p i. We say that X,..., X k Mult, p,..., p k. 3

Sprig 3 6 MULTIVARIABLE DISTRIBUTIONS Propositio. Some properties iclue:. M X t p e t +... + p t k k. CovX i, X j p i p j + p k+ 6. Bivariate Normal Distributio Defiitio 6.. If X a X have the followig joit PDF: f XX x, x exp } π Σ / x µt Σ x µ, x x µ σ, µ, Σ ρσ σ x µ ρσ σ σ the X X, X t BivNµ, Σ. Note that the matrix Σ must be positive efiite. Remark 6.. If ρ the f XX exp πσ σ σ σ x µ σ e πσ }} Nµ,σ x µ x µ t σ x µ σ e πσ }} Nµ,σ σ x µ x µ } So X a X are iepeet. This is special to oly the bivariate ormal r.v. Note. I geeral, if X Nµ, σ a X Nµ, σ the if ρ XX it is ot always true that X X. This is oly the case if X a X, collectively, are bivariate ormal. Summary 6. Here are some values that may be useful i the computatio of f X,X : a so f X,X x, x Σ σ σ ρ, Σ / σ σ ρ Σ σ σ ρ πσ σ exp ρ σ σ ρ [ πσ σ exp x µ ρ ρ σ ρσ σ ρσ σ σ [ x µ σ x µ x µ ρσ σ + x µ σ ] } σ + x µ σ ρx ]} µ x µ σ σ Fact 6.. The momet geeratig fuctio is M X t, t E where X Nµ, σ, X Nµ, σ a [ e tt X ] E [ e tx+tx]... e µt t+ tt Σt M X M X t,, M X M X, t Propositio 6.. If C C C t the C t X NC t µ, C t ΣC a Y AX + b Y NAµ + b, AΣA t. Remark 6.. For a coitio istributio X X x with X, X beig joitly bivariate, we have X X x Nµ + ρ σ σ x µ, σ ρ This ca be oe by puttig the joit over of the margial of X. For the sake of saity, I will ot be bashig through the computatio of this. 4

Sprig 3 7 FUNCTIONS OF RANDOM VARIABLES Fact 6.. E[X X ] E[E[X X X ]] Example 6.. Suppose that X X are BIV µ, Σ. The a so E[X X X ] X µ + ρ σ σ X µ. Thus, E[X X X x ] x E[X X x ] x µ + ρ σ σ x µ E[X X ] E[E[X X X ]] E[X ]µ + ρ σ σ E[X ] µ µ µ + ρσ σ a so we ca represet the covariace of X a X as CovX, X µ µ + ρσ σ µ µ ρσ σ 7 Fuctios of Raom Variables Example 7.. Suppose that X Z a f Z z π e z /. Remark that So takig erivatives, we have a ote that X Gam,. F X x P X x P Z x P x Z x F Z x F Z x Fact 7.. If Z,..., Z are iepeet N, the f X x x f Zx / πx / e x/ X Z +... + Z χ a E[X]. Example 7.. Suppose that f XY 3y 3y x y otherwise Fi the pf of T XY. Now sice P T t P XY < t P XY > t the we calculate P XY > t as P XY > t y t t y 3y x y + t t 3t What is the pf of T? By irect computatio, this is What is the pf of S Y X. Well, the cf is F S s f T 3 3t, t y y s 3y x y s a so the pf is s F Ss f S s s Example 7.3. Suppose that X,..., X are ii with pf f X a cf F X. Let Y maxx,.., X a T mix,.., X. So F Y y P Y y P X y,..., X y 5 F Xi y FXy f Y y f X yfx y

Sprig 3 7 FUNCTIONS OF RANDOM VARIABLES a F T t P T < t P T t F Xi t F X t f T t F X t f X t Example 7.4. If each X i was expλ i the F Xi x e λix a so a T exp λ i. F T t e λit, t F T t e λit, t Example 7.5. Suppose that Z a Z are i.i.. r.v.s that are N,. What is the istributio of X Z Z? Well, ote that Z Z N, so Z Z χ 7. -to- Bivariate Trasformatios If we are give a X, Y bivariate vector r.v.s a f X,Y x, y is kow, the let A x, y, f XY > }, B u, v, u h x, y, v h x, y} If U h X, Y, V h X, Y a X w U, V, Y w U, V the g UV u, v f XY x, y x, y u, v f XY w u, v, w u, v x, y u, v Example 7.6. Suppose that a the U X + Y, V X Y g UV u, v f XY x, y e x +y π π e u +v 4 X U + V π e u, Y U V π e v Example 7.7. Suppose that X Uif[, a Y Uif[,. Usig the Box-Muller trasformatio, if U l X cos πy, V l X si πy it ca be show that U, V are iepeet N,. Also the Jacobia is J x π. Now ote that U + V l x X exp Example 7.8. Suppose that we have U +V f XY x, y so J π e U +V. e y < x < y < o/w If U X + Y a V X. The X V, Y U V a the support is < v < u <. Our Jacobia is J 6

Sprig 3 7 FUNCTIONS OF RANDOM VARIABLES a so g UV u, v e u v < v < u < o/w g U u g V v u/ v e u e v v e u/ e u e u e v u e v e v e v e v Example 7.9. Suppose that we have f XY x, y e x y < x, y < o/w a U X + Y, V X the X V a Y U V with J. The support is < v < u < a g UV u, v e v u v e u. Defiitio 7.. If Z N,, X χ, a Y χ X m the Z/ t a X/ Y/m F,m. Remark 7.. If W F,m the V W F m,. X Example 7.. To compute the pf of t let U X a V Z/. The X U a Z V U. We ca use the Jacobia metho above to compute the pf. 7. Momet-Geeratig Fuctio Metho Fact 7.. If X, X,..., X are iepeet a X i has MGF M Xi t the if Y X i we have M Y t M Xi t a if the X i s are i.i.. the M Y t M X t Example 7.. Suppose that X Nµ, σ a Y ax + b where M X t e µt e σ t /. The M Y t E[e ty ] e bt E[e atx ] e bt e aµt+ σ a t e aµ+bt e a σ t Y Naµ + b, a σ Now if X i Nµ i, σ i a Y a ix i the M Y t E[e t aixi ] E[e taixi ] e aiµit e a i σ i t e t aiµi e t Corollary 7.. Suppose that we have X i Nµ, σ where X,..., X are i.i.. the X i Nµ, σ, X a i σ i Y N a i µ i, a i µ i X i Nµ, σ Fact 7.3. We have Example 7.. We kow that Xi µ σ } } χ Y χ m i Xi X χ mi σ }} from other χ Xi + X σ } } χ 7

Sprig 3 8 CONVERGENCE OF RANDOM VARIABLES Proof is a exercise. Corollary 7.. X a S Xi X are iepeet. Corcha s Theorem Fact 7.4. We have that if X i Nµ, σ a X a S are efie as above, the X µ s/ t Fact 7.5. If X i Nµ, σ a Y j Nµ, σ are i.i.. for i,..., a j,..., m the S X /σ S Y /σ F 8 Covergece of Raom Variables Covergece ca take place from strogest to weakest: Everywhere Almost surely i L, L,... See PMATH 45 I istributio I probability We will examie the last two efiitios of covergece. Defiitio 8.. The sequece X, X,..., X coverges i probability to X if for ay ɛ > we have We eote this by X p X. lim P X X ɛ lim P X X < ɛ Defiitio 8.. We say that X : Ω A } coverges i istributio to X : Ω B if for ay ɛ > we have lim P X k P X k lim P X P X < ɛ, k A B A example woul be the cetral limit theorem. Alteratively, this is equivalet to lim F X x F X x at all parts where F X x is cotiuous. We the write X X. Propositio 8.. If X p X the X X. Example 8.. Suppose that X k } k are i.i.. Uif[, ]. Let X max k X k a X mi k X k. What is the limitig istributio of X? First remark that the support of X is,. The ote that for < x < we have P X x P X > x P k X k > x x 8

Sprig 3 8 CONVERGENCE OF RANDOM VARIABLES So x F x P X x x < x < x lim F x x e x x > What is the limitig istributio of X? Similar to above, the support of X is, a P X x P X > x P a i the limit, we have the same istributio i. That is lim F x X x x e x x > P k X k x x 3 What is the limitig istributio of X? This ca be show to have limitig cf of lim F x x < x X 4 Similarly, what is the limitig istributio of X? This ca be show to have limitig cf of lim F x x < x X Defiitio 8.3. Give a sequece of r.v.s. X }, with correspoig cfs F x} if lim F x < b x x b the X b. Theorem 8.. If X b the X p b. Proof. By irect evaluatio, so takig limits gives us P X b > ɛ P X < b ɛ + P X > b + ɛ P X b ɛ + P X > b + ɛ F b ɛ + F b + ɛ lim b > ɛ lim b ɛ + lim b + ɛ + 9

Sprig 3 8 CONVERGENCE OF RANDOM VARIABLES Example 8.. Give X i } i.i.. r.v.s, with f Xi x e x θ x θ o/w Let Y mi i X i a show that Y p θ. It is easier to show that Y as require. P Y x θ. Remark that the support of Y is θ,. We the have x < θ e x θ x θ Fact 8.. Markov s Iequality For ay k N, lim P Y x x < θ x θ Y P X > C E[ X k ] C k P X > C E[ X ] V arx + E[X] C C, k Propositio 8.. A property of the arithmetic mea of raom variables is X p µ. θ Proof. We have P X µ > ɛ ɛ E[ X µ ] ɛ V ar X σ ɛ Remark 8.. If X X the X X but X p X. Theorem 8.. Cetral Limit Theorem σ X µ N, where X } are i.i.. r.v.s. with X µ, σ Proof. No. Observe that for the cf of ay r.v. X we have M X t e t /, f l M X, Now if A σ X µ a Y i Xi µ σ the sice Now from above, a hece lim M Y f M X M X, f M X M X M X M X σ E[e ta ] E [e t ] Yi X i µ t t f Y l M Y t + Ot3 M Y t e t / N,. e t Y i t MY σ X i µ X i µ σ t t e t / M Y e t/ Proof. No. Alteratively, usig otatio from the previous proof, M A t M Yi/ t M Y t

Sprig 3 8 CONVERGENCE OF RANDOM VARIABLES Usig a st orer Taylor series, t lim M Y lim + t e t / Corollary 8.. If X i } are i.i.. P oisµ a Y X i the Y µ µ N, If X i } are i.i.. χ mea of χ k is k a variace is k a Y X i the Y N, 8. Useful Limit Theorems p D. If X a the gx p D ga. That is g is cotiuous at a.. Slutsky s Theorem Suppose that X X a Y p b. The, a X + Y b X Y X + b b X c X /Y X/b, b Example 8.3. Suppose X, X,..., X are i.i. X i Uif[,. We showe that X p e X p e a X Z exp. Remark 8.. F X X Uif[, ] Example 8.4. If X i } are P oisµ the Z X µ X µ X X }} N, X N, µ }} p a similarly X µ N, µ 8. Delta Metho Propositio 8.3. Suppose that for X, X,..., X we have X θ N, σ If gx is ifferetiable at θ a g θ the gx gθ N, g θ σ

Sprig 3 9 POINT ESTIMATION 9 Poit Estimatio Suppose that we observe X,..., X i.i.. from fx, θ a θ is ukow. The goal is to estimate θ. Defiitio 9.. The t statistic is a fuctio of ata that oes t epe o θ or µ or ay ukow parameter. We eote it by T X T X,..., X as a raom variable a t tx,..., x as its value. The followig are ifferet methos for poit estimatio.. Metho of Momets. Maximum Likelihoo 3. Bayes Estimatio 9. Metho of Momets Here, we wat to set the sample/observe k th momet equal to the theoretical momet. That is we wat M k for l,,..., l}. Example 9.. If X,..., X are i.i.. P oisµ the E[X i ] µ a Xi k E[X l ] ˆµ MM X i Example 9.. If X,..., X are i.i.. a f X θ e x/θ x θ otherwise The E[X i ] θ a Example 9.3. If X,..., X are i.i.. Nµ, σ the ˆθ MM N X i Example 9.4. If X,..., X are i.i.. a The we ca show E[X] ˆµ MM f X X i, ˆσ MM + ˆµ MM θe θ x otherwise, θ > θ θ + θ E[X] E[X] X i ˆθ MM X X Example 9.5. Suppose that X Gamα, β the E[X] αβ a V arx αβ. So ˆ αβ MM X i, αβ ˆ MM + αβmm ˆ X i

Sprig 3 9 POINT ESTIMATION Example 9.6. If X,..., X are i.i.. Uif[, θ] the Remark that ˆθ MLE maxx,..., X. ˆθ MM ] X i, E [ˆθMM θ 9. Maximum Likelihoo Estimatio Defiitio 9.. Suppose that X,..., X are i.i.. from fx, θ. We call Lθ, X fx i, θ the likelihoo of θ a l ll the log-likelihoo fuctio. The MLE estimate is Example 9.7. If X,..., X are i.i.. a The it ca be show that If we set lθ θ the ˆθ ML ˆθ MLE argmax Lθ argmax lθ f X Example 9.8. Suppose that X,..., X P oisθ. The θ e x/θ x θ otherwise lθ l θ + l e x+...+x/θ l θ x +... + x θ Lθ e θ θ xi x i! ˆθ ML x i lθ θ + l θ x i l x i! a so l θ + x i θ ˆθ ML x i Example 9.9. Recall that if fx, θ θx θ, < x <, θ > the It ca be show that a so ˆθ MM X X θ Lθ θ x i lθ l θ + θ l x i l θ θ + l x i ˆθ ML l x i Example 9.. Suppose that X,..., X Exp/θ a i.i... The Lθ θ e θ xi lθ lθ θ 3 x i

Sprig 3 9 POINT ESTIMATION a hece l θ θ + θ Example 9.. Suppose that X,..., X Berp a i.i... The a so Note that x i ˆθ ML x i x Lp p xi p xi lp l p l p p [ l p x i p + + x i + l p p ˆp ML x i ] x i p < Example 9.. Suppose that X,..., X are i.i.. Nµ, σ. It ca be show that a hece Lθ πσ xi e x i µ σ lθ l π l σ x i µ l µ σ l σ σ + σ 3 x i µ ˆµ ML x i σ x i µ ˆσ ML x i ˆµ ML Example 9.3. Suppose that X,..., X are i.i.. Uif[, θ]. The it ca be show that with f X have a hece ˆθ ML maxx,..., x. Lθ /θ x, x,.., x [, θ] /θ Imaxx o/w,...,x θ Propositio 9.. E[X a ] V ar[x] a equality hols whe a E[X]. /θ x θ o/w we Proof. We have E[X E[X] + E[X] a ] V ar[x] + E[X] a + E [X E[X] E[X] a] V ar[x] }} 9.3 Notable Fuctios a Matrices Defiitio 9.3. The score fuctio is The iformatio fuctio is Iθ θ Sθ l fx, θ θ Sθ l fx, θ θ 4

Sprig 3 9 POINT ESTIMATION The Fisher iformatio matrix is Jθ E [Iθ] Summary 7. Some properties iclue:. Sˆθ ML. E [ θ l fx, θ] a This follows from the fact that [ ] E l fx, θ θ θ l fx, θ fx, θx θ θ fx, θ fx, θ fx, θx fx, θx θ [ ] 3. E θ l fx, θ E [ θ l fx, θ ] a To see this, we take the partial with respect to θ of θ l fx, θ fx, θx to get θ l fx, θ fx, θx + [ ] E l fx, θ θ θ l fx, θ fx, θx θ θ l fx, θ l fx, θ fx, θx θ }} [ ] E l fx, θ E θ [ ] [ 4. If X,..., X are i.i.. the E θ l fx, θ E θ l fx, θ ] a This follows from the efiitio of Jθ with Jθ J θ. E[ θ l fx,θ] [ ] l fx, θ θ Propositio 9.. Cramer-Rao Lower Bou Suppose that T X,..., X is a estimator for θ. Remark that if T is ubiase if E[T X] θ. If E[T X] θ the E[T X] is biase. Also, if X,..., X are samples from fx, θ the V art θ E[T ] E [ θ l fx, θ ] [ ] E θ l fx, θ Proof. First remark that CovX, Y V arxv ary. Set X T X a Y θ l fx, θ. The Cov T X, θ [ ] [ ] l fx, θ E T X l fx, θ E l fx, θ E[T X] θ θ }} E[T X] θ T X fx, θx θ 5

Sprig 3 9 POINT ESTIMATION Sice V ar [ [ ] θ l fx, θ] E θ l fx, θ because E [ θ l fx, θ] the V ar[t X] θ E[T X] E [ θ l fx, θ ] J θ Example 9.4. Suppose that X P oisµ. The a with the C-R Cramer-Rao bou as Previously, we showe that a so the ML estimator is efficiet. Remark 9.. ˆθ ML ˆθ ML θ N l fx, µ µ µ µ + x l µ l x! + x µ µ l fx, µ x µ Iµ x E[X] Jµ µ µ µ p θ asymptotically This will also imply that ˆθ ML θ N ˆµ ML V art µ X i, Jθ asymptotically ormal µ V ar[µ ML ] µ µ, J θ N, Jθ a ˆθ ML N θ, Jθ. 9.4 Covex Fuctios Defiitio 9.4. We say that a fuctio f is covex if x, x a, b a λ [, ] we have fλx + λx λfx + λfx f > Remark 9.. If f is covex the f is cocave. Propositio 9.3. Jese s iequality If X is a r.v. a f is covex the E[fX] f E[X] Proof. Suppose that the iequality is true for k N. The k k p i p i fx i p k fx k + + p k fx i + p k k p k fx k + p k q i fx i 6

Sprig 3 9 POINT ESTIMATION a usig iuctio o the latter term we get k p i fx i p k fx k + + p k f f p k x k + p k k f p i x i k q i fx i k q i fx i Example 9.5. If Y x l x the because Y is cocave i x the l X i l X i X i This shows that the geometric mea is always less tha the arithmetic mea. Note 3. For the fial exam, pay attetio to the tutorial cotet o X i. Metho of Momets for Gamma Q where MM with V armm > V arml. x i, ML maxx,..., X 7

Sprig 3 INDEX Iex -to- bivariate trasformatios, 6 bivariate ormal istributio, 4 Box-Muller trasformatio, 6 cetral limit theorem, 8, cetral momet, 5 characteristic fuctio, 8 coitioal istributios, coitioal expectatio, covergece i istributio, 8 covergece i probability, 8 covex fuctios, 6 Corcha s theorem, 8 correlatio coefficiet, Cramer-Rao lower bou, 5 cumulative istributio fuctio, elta metho, expectatio, 4 Fisher iformatio matrix, 5 fuctios of raom variables, 5 gamma istributio, 3 gamma fuctio, 3 iformatio fuctio, 4 Jacobia, 6 Jese s iequality, 6 joit istributios, 8 Kolmogorov axioms, limitig istributio, 9 Markov s iequality, maximum likelihoo estimatio, 3 metho of momets, momet geeratig fuctio, 6 momets, 5 multiomial istributio, 3 poit estimatio, probability mass fuctio, probability space, score fuctio, 4 σ aitivity, Slutsky s theorem, support, 9 uiform istributio, 3 Vaermoe ietity, variace, 4 Weibull istributio, 4 8