Quantitative Finance and Investments Advanced Formula Sheet. Fall 2017/Spring 2018

Σχετικά έγγραφα
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2016/Spring 2017

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015

coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log


SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Parts Manual. Trio Mobile Surgery Platform. Model 1033

A 1 A 2 A 3 B 1 B 2 B 3

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

The one-dimensional periodic Schrödinger equation

HONDA. Έτος κατασκευής

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Homework for 1/27 Due 2/5

(... )..!, ".. (! ) # - $ % % $ & % 2007

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Math221: HW# 1 solutions

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

ITU-R P (2009/10)

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Multi-dimensional Central Limit Theorem

m i N 1 F i = j i F ij + F x

SPECIAL FUNCTIONS and POLYNOMIALS

Jeux d inondation dans les graphes

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Solutions - Chapter 4

Geodesic Equations for the Wormhole Metric

Multi-dimensional Central Limit Theorem


Quantitative Finance and Investment Core Formula Sheet. Spring 2017

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Το άτομο του Υδρογόνου

m 1, m 2 F 12, F 21 F12 = F 21

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.


Every set of first-order formulas is equivalent to an independent set

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

rs r r â t át r st tíst Ó P ã t r r r â

#%" )*& ##+," $ -,!./" %#/%0! %,!

Coupling strategies for compressible - low Mach number flows

Points de torsion des courbes elliptiques et équations diophantiennes

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Homework 8 Model Solution Section

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Quantitative Finance and Investments Core Formula Sheet. Spring 2016


u(x, y) =f(x, y) Ω=(0, 1) (0, 1)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)


Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Exam Statistics 6 th September 2017 Solution

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

Answer sheet: Third Midterm for Math 2339

CNS.1 Compressible Navier-Stokes Time Averaged

Alterazioni del sistema cardiovascolare nel volo spaziale



Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Lecture 34 Bootstrap confidence intervals

Lecture 7: Overdispersion in Poisson regression

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Lifting Entry (continued)

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Financial Economic Theory and Engineering Formula Sheet

Mantel & Haenzel (1959) Mantel-Haenszel


ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

Answers to practice exercises

Ax = b. 7x = 21. x = 21 7 = 3.

The ε-pseudospectrum of a Matrix

ˆ ˆ œ - ˆ Š ˆ Š ˆ ˆ Œ ˆ

FORMULAS FOR STATISTICS 1

!"#$ % &# &%#'()(! $ * +

Transcript:

Quanave Fnance and Invesmens Advanced Formula Shee Fall 2017/Sprng 2018 Mornng and afernoon exam bookles wll nclude a formula package dencal o he one aached o hs sudy noe. The exam commee beleves ha by provdng many key formulas, canddaes wll be able o focus more of her exam preparaon me on he applcaon of he formulas and conceps o demonsrae her undersandng of he syllabus maeral and less me on he memorzaon of he formulas. The formula shee was developed sequenally by revewng he syllabus maeral for each major syllabus opc. Canddaes should be able o follow he flow of he formula package easly. We recommend ha canddaes use he formula package concurrenly wh he syllabus maeral. No every formula n he syllabus s n he formula package. Canddaes are responsble for all formulas on he syllabus, ncludng hose no on he formula shee. Canddaes should carefully observe he somemes suble dfferences n formulas and her applcaon o slghly dfferen suaons. Canddaes wll be expeced o recognze he correc formula o apply n a specfc suaon of an exam queson. Canddaes wll noe ha he formula package does no generally provde names or defnons of he formula or symbols used n he formula. Wh he wde varey of references and auhors of he syllabus, canddaes should recognze ha he leer convenons and use of symbols may vary from one par of he syllabus o anoher and hus from one formula o anoher. We rus ha you wll fnd he ncluson of he formula package o be a valuable sudy ade ha wll allow for more of your preparaon me o be spen on maserng he learnng objecves and learnng oucomes. 1

Ineres Rae Models - Theory and Pracce, Brgo and Mercuro Chaper 3 Table 3.1 Summary of nsananeous shor rae models Model Dynamcs r > 0 r AB AO V dr = kθ r d + σdw N N Y Y CIR dr = kθ r d + σ r dw Y NCχ 2 Y Y D dr = ar d + σr dw Y LN Y N EV dr = r η a ln r d + σr dw Y LN N N HW dr = kθ r d + σdw N N Y Y BK dr = r η a ln r d + σr dw Y LN N N MM dr = r η λ γ 1+γ ln r d + σr dw Y LN N N CIR++ r = x + ϕ, dx = kθ x d + σ x dw Y* SNCχ 2 Y Y EEV r = x + ϕ, dx = x η a ln x d + σx dw Y* SLN N N *raes are posve under suable condons for he deermnsc funcon ϕ. 3.5 dr = kθ rd + σdw, r0 = r 0 3.6 r = rse k s + θ 1 e k s + σ s e k u dw u 3.7 E {r F s } = rse k s + θ 1 e k s Var{r F s } = σ2 1 e 2k s 2k B,T r 3.8 P, T = A, T e 3.9 dr = kθ B, T σ 2 krd + σdw T 3.11 dr = kθ k + λσrd + σdw 0, r0 = r 0 3.12 dr = b ard + σdw 0 3.13 r = rse a s + b 1 e a s + σ s a e a u dw 0 u 3.14 ˆα = n n r r 1 n r n r 1 n n r2 1 n r 1 2 n 3.15 ˆβ = r ˆαr 1 n1 ˆα 3.16 V 2 = 1 n r ˆαr 1 n ˆβ1 2 ˆα 3.19 E {r F s } = rse a s and Var{r F s } = r 2 se e 2a s σ2 s 1 3.20 P, T = rp π 2 0 sn2 r snh y 0 fz snyzdzdy + 2 Γ2p rp K 2p 2 r 3.21 dr = kθ rd + σ rdw, r0 = r 0 3.22 dr = kθ k + λσrd + σ rdw 0, r0 = r 0 2

3.23 E {r F s } = rse k s + θ 1 e k s Var{r F s } = rs σ2 e k s e 2k s + θ σ2 1 e k s 2 k 2k 3.24 B,T r P, T = A, T e 3.25 2kθ/σ 2 2h exp {k + ht /2} A, T = 2h + k + hexp {T h} 1 B, T = 2exp{T h} 1 2h + k + hexp {T h} 1, h = k 2 + 2σ 2 3.27 dr = kθ k + B, T σ 2 rd + σ rdw T 3.28 p T r rs x = p χ 2 υ,δ,s/q,sx = q, sp χ 2 υ,δ,sq, sx q, s = 2ρ s + ψ + B, T and δ, s = 4ρ s2 rse h s q, s B,T r Page 68 R, T = α, T + β, T r, P, T = A, T e 3.29 σ f, T = B, T σ, r T Page 69 dr = b, rd + σ, rdw b, x = λx + η, σ 2, x = γx + δ B, T + λb, T 1 2 γb, T 2 + 1 = 0, BT, T = 0 ln A, T ηb, T + 1 2 δb, T 2 = 0, AT, T = 1 Page 69/70 Vascek λ = k, η = kθ, γ = 0, δ = σ 2 Page 70 CIR λ = k, η = kθ, γ = σ 2, δ = 0 Page 71 bx = λx + η, σ 2 x = γx + δ θ lm E{r F s } = exp a + σ2 4a 2θ a + σ2 2a 3.31 lm Var{r F s } = exp exp 3.32 dr = ϑ ard + σdw 3.33 dr = ϑ ard + σdw σ 2 2a 1 3.34 ϑ = f M 0, + af M 0, + σ2 T 2a 1 e 2a 3.35 r = rse a s + s e a u ϑudu + σ s e a u dw u = rse a s + α αse a s + σ s e a u dw u 3.36 where α = f M 0, + σ2 2a 2 1 e a 2 3

3.37 E{r F s } = rse a s + α αse a s Var{r F s } = σ2 1 e 2a s 2a 3.38 dx = axd + σdw, x0 = 0 Page 74 Page 74 Page 75 x = xse a s + σ s e a u dw u α Q{r < 0} = Φ σ 2 2α 1 e 2α T rudu F N B, T r α + ln P M 0, + 1V 0, T V 0,, V, T P M 0,T 2 where B, T = 1 a 1 e at and V, T = σ2 a T + 2 2 a e at 1 2a e 2aT 3 2a B,T r 3.39 P, T = A, T e where A, T = P M 0,T P M 0, exp { B, T f M 0, σ2 4a 1 e 2a B, T 2 } 3.40 ZBC, T, S, X = P, SΦh XP, T Φh σ p 1 e 2aT where σ p = σ BT, S and h = 1 2a σ p ln P,S + σp P,T X 2 3.41 ZBP, T, S, X = XP, T Φ h + σ p P, SΦ h 3.42 Cap, T, N, X = N n 1 + Xτ 1 ZBP, 1,, 1+Xτ or Cap, T, N, X = N n P, 1Φ h + σp 1 + Xτ P, Φ h, where σp 1 e = σ 2a 1 B 2a 1, and h = 1 ln P, 1+Xτ σp P, 1 + σ p 2 3.43 Flr, T, N, X = N n 1 + Xτ P, Φh P, 1 Φh σp 3.44 CBO, T, T, c, X = n c ZBO, T, T, X 3.45 PS, T, T, N, X = N n c ZBP, T,, X 3.46 RS, T, T, N, X = N n c ZBC, T,, X 3.47 E{x +1 x = x,j } = x,j e a =: M,j Var{x +1 x = x,j } = σ2 1 e 2a =: V 2 2a 3 3.48 x = V 1 3 = σ 2a 1 e 2a 1 M,j 3.49 k =round x +1 3.50 p u = 1 6 + η2 j,k + η j,k 6V 2 2, p m = 2 3V 3 η2 j,k, p 3V 2 d = 1 6 + η2 j,k 6V 2 2 3V 3.64 dx α = µx α ; αd + σx α ; αdw x η j,k 4

3.65 P x, T = Π x, T, x α ; α 3.66 r = x + ϕ; α, 0 3.67 P, T = exp T ϕs; αds Π x, T, r ϕ; α; α 3.68 ϕ; α = ϕ ; α := f M o, f x 0, ; α 3.69 exp T ϕs; αds = Φ, T, x 0 ; α := P M 0, T Π x 0,, x 0 ; α Π x 0, T, x 0 ; α P M 0, 3.70 Π, T, r ; α = Φ, T, x 0 ; απ, T, r ϕ ; α; α 3.71 V x, T, τ, K = Ψ x, T, τ, K, x α ; α dϕ; α 3.74 dr = kθ + kϕ; α + kr d + σdw d Page 100 ϕ V AS ; α = f M 0, + e k 1 k2 θ σ 2 /2 k 2 Page 101 P, T = P M 0, T A0, exp{ B0, x 0 } P M 0, A0, T exp{ B0, T x 0 } A, T exp{ B, T r ϕ V AS ; α} σ2 2k 2 e k 1 e k x 0 e k 3.76 dx = kθ xd + σ xdw, x0 = x 0, r = x + ϕ 3.77 ϕ CIR ; α = f M 0, f CIR 0, ; α f CIR 0, ; α = h = k 2 + 2σ 2 Chaper 4 4.4 r = x + y + ϕ, r0 = r 0 4.5 dx = axd + σdw 1, x0 = 0 2kθexp{h} 1 2h + k + hexp{h} 1 + x 4h 2 exp{h} 0 2h + k + hexp{h} 1 2 dy = byd + ηdw 2, y0 = 0 4.6 E{r F s } = xse a s + yse b s + ϕ Var{r F s } = σ2 1 e 2a s + η2 1 e 2b s + 2ρ ση 1 e a+b s 2a 2b a + b 4.7 r = σ 0 e a u dw 1 u + η 0 e b u dw 2 u + ϕ 4.8 dx = axd + σd W 1 dy = byd + ηρd W 1 + η 1 ρ 2 d W 2 4.9 M, T = where dw 1 = d W 1 and dw 2 = ρd W 1 + 1 ρ 2 d W 2 1 e at 1 e bt x + y a b 5

4.10 V, T = σ2 a 2 T + 2 a e at 1 2a e 2aT 3 2a + η2 T + 2 b 2 b e bt 1 2b e 2bT 3 2b +2ρ ση ab 4.11 P, T = exp T + e at 1 a { T + e bt 1 b e a+bt 1 a + b ϕudu 1 e at 1 e bt x y + 1 } a b 2 V, T 4.12 ϕt = f M 0, T + σ2 1 e at 2 η 2 + 1 e bt 2 ση + ρ 2a 2 2b 2 ab 1 e at 1 e bt { 4.13 exp } T ϕudu = P M 0, T { P M 0, exp 12 } V 0, T V 0, 4.14 P, T = P M 0, T P M 0, exp {A, T } A, T := 1 1 e at 1 e bt V, T V 0, T + V 0, x y 2 a b 4.15 P, T = A, T exp{ Ba,, T x Bb,, T y} 4.16 σ f, T = σ 2 e 2aT + η 2 e 2bT + 2ρσηe a+bt Page 152 Covdf, T 1, df, T 2 d = σ 2 B T a,, T 1 B T a,, T 2 + η 2 B T b,, T 1 B T b,, T 2 B +ρση T a,, T 1 B T b,, T 2 + B T a,, T 2 B T b,, T 1 = σ 2 e at 1+T 2 2 + η 2 e bt 1+T 2 2 +ρση e at 1 bt 2 +a+b + e at 2 bt 1 +a+b Corrdf, T 1, df, T 2 = σ2 e at 1+T 2 2 + η 2 e bt 1+T 2 2 σ f, T 1 σ f, T 2 + ρση e at 1 bt 2 +a+b + e at 2 bt 1 +a+b σ f, T 1 σ f, T 2 6

Page 153 f, T 1 T 2 = ln P, T 1 ln P, T 2 T 2 T 1 df, T 1, T 2 =...d + Ba,, T 2 Ba,, T 1 σdw 1 T 2 T 1 + Bb,, T 2 Bb,, T 1 ηdw 2 T 2 T 1 σ f, T 1, T 2 = σ 2 βa,, T 1, T 2 2 + η 2 βb,, T 1, T 2 2 + 2ρσηβa,, T 1, T 2 βb,, T 1, T 2 where βz,, T 1, T 2 = Bz,, T 2 Bz,, T 1 T 2 T 1 Covdf, T 1, T 2, df, T 3, T 4 d σ 2 Ba,, T 2 Ba,, T 1 Ba,, T 4 Ba,, T 3 T 2 T 1 T 4 T 3 +η 2 Bb,, T 2 Bb,, T 1 Bb,, T 4 Bb,, T 3 T 2 T 1 T 4 T 3 Ba,, T2 Ba,, T 1 Bb,, T 4 Bb,, T 3 +ρση T 2 T 1 T 4 T 3 + Ba,, T 4 Ba,, T 3 Bb,, T 2 Bb,, T 1 T 4 T 3 T 2 T 1 Page 160 σ 3 = dz 3 = σ 2 1 + σ2 2 ā b 2 + 2 ρ σ 1σ 2 b ā σ 1 dz 1 σ 2 ā b dz 2, σ 4 = σ 2 σ 3 ā b Page 161 a = ā, b = b, σ = σ 3, η = σ 4, ρ = σ 1 ρ σ 4 σ 3 ϕ = r 0 e ā + 0 θve ā v dv ā = a, b = b, σ1 = σ 2 + η 2 + 2ρση, σ 2 = ηa b ρ = σρ + η σ2 + η 2 + 2ρση, dϕ θ = + aϕ d Managng Cred Rsk: The Grea Challenge for Global Fnancal Markes, Caouee, e. al. Chaper 20 20.2 R p = N X EAR 20.3 V p = N j=1 N X X j σ σ j ρ j 7

20.5 UAL p = N N X X j σ σ j ρ j 1 Page 403 j=1 CV arcl = EAD LGD ρφ 1 CL + Φ 1 P D Φ P D 1 ρ 1 + M 2.5 bp D 1 1.5bP D Bond-CDS Bass Handbook: Measurng, Tradng and Analysng Bass Trades, Elzalde, Docor, and Saluk Page 13, Equaon 1 S = P D 1 R Page 15, Equaon 2 F R = U AI RA + F C Page 18, Equaon 3 P V c + p BP SS = RF A Page 25, Equaon 4 BT P 1 = CN 100 R U CP F C+BN R+CR BP F C Page 25, Equaon 5 BT P 2 = BN 100 + CR BP F C CN U + CP + F C Page 43, Equaon 7 CN = BP R 100 R U BN A Survey of Behavoral Fnance, Barbers and Thaler 1 x, p : y, q = πpvx + πqvy 2 π vx where v = xα f x 0 λ x α f x < 0 and π = wp wp, wp = P γ P γ + 1 P γ 1/γ 3 D +1 D = e g D+σ D ε +1 4 5 C +1 = e g C+σ C η +1 C ε 0 1 w N, 0 w 1 η 6 E 0 ρ C1 γ =0 1 γ C+1 γ 7 1 = ρe R +1 C,..d.over me 8 R +1 = D +1 + P +1 P = 1 + P +1/D +1 P /D D +1 D 9 r +1 = d +1 +cons. d +1 d +cons. 8

10 E π v1 wr f,+1 + wr +1 1 11 E 0 ρ C1 γ 1 γ + b 0C γ ˆvX +1 =0 13 R +1 = P +1 + D +1 P 14 p d = E ρ d +1+j E 15 E 0 =0 j=0 j=0 ρ C1 γ 1 γ + b 0C γ ṽx +1, z 16 r r f = β.1 F 1 r f +... + β,k F K r f ρ r +1+j + E lm ρ j p +j d +j +cons. j 17 r, r f, = α + β,1 F 1, r f, +... + β,k F K, r f, + ε, 18 R f = 1 ρ eγg C+0.5γ 2 σ 2 C 19 1 = ρ 1 + f e g D γg C +0.5σD 2 +γ2 σc 2 2γσ Cσ D w f 20 R +1 = D +1 + P +1 P = 1 + P +1/D +1 P /D D +1 D = 1 + f e g D+σ D ε +1 f CAIA Level II: Advanced Core Topcs n Alernave Invesmens, Black, Chambers, Kazem Chaper 16 16.1 P repored 16.2 P repored 16.3 P rue 16.4 P rue = α + β 0 P rue = αp rue = 1/α P repored = P repored 1 + β 1 P rue 1 + β 2 P rue 2 + + α1 αp rue 1 + α1 α 2 P rue 2 + 1 α/α P repored 1 + 1/α P repored P repored 1 16.5 R,repored β 0 R,rue + β 1 R 1,rue + β 2 R 2,rue + 16.6 P repored 16.7 P repored = 1 ρp rue = 1 ρ P rue + ρp repored 1 + ρ P repored 1 16.8 R,repored 1 ρr,rue + ρr 1,repored 16.9 R,rue = R,repored ρr 1,repored /1 ρ 16.10 ˆρ = corrr,repored R 1,repored 16.11 ρ,j = σ j /σ σ j 16.12 R repored = α + β 1 R repored 1 + β 2 R repored 2 + + β k R repored k + ε 9

Managng Invesmen Porfolo: A Dynamc Process, Magnn, Tule, Pno, McLeavey Chaper 8 Page 523 T RCI = CR + RR + SR Page 553 RR n, = R + R 1 + R 2 +... + R n /n Page 554 n DD = r, 0 2 n 1 Page 555 ARR rf Sharpe Rao = SD Page 556 ARR rf Sorno Rao = DD The Secular and Cyclc Deermnans of Capalzaon Raes: The Role of Propery Fundamenals, Macroeconc Facors, and Srucural Changes, Chervachdze, Cosello, Wheaon 1 LogC j, = a 0 + a 1 logc j, 1 + a 2 logc j, 4 + a 3 logrri j, + a 4 RT B + a 7 Q2 1.1 RRI j, s = RR j, /MRR j +a 8 Q3 + a 9 Q4 + a 10 D j 2 LogC j, = a 0 + a 1 logc j, 1 + a 2 logc j, 4 + a 3 logrri j, s + a 4 RT B 2.1 DEBT F LOW = T NBL /GDP +a 5 SP READ + a 6 DEBT F LOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j 3 LogC j, = a 0 + a 1 logc j, 1 + a 2 logc j, 4 + a 3 logrri j, s + a 4 RT B +a 5 SP READ + a 6 DEBT F LOW + a 7 Q2 + a 8 Q3 + a 9 Q4 4 LogC j, = a 0 + a 1 yearq + a 2 logc j, 1 + a 3 logc j, 4 + a 4 logrri j, s + a 5 RT B +a 6 SP READ + a 7 DEBT F LOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j Analyss of Fnancal Tme Seres, Tsay Chaper 9 9.1 r = α + β 1 f 1 + + β m f m + ɛ, = 1,..., T, = 1,..., k 9.2 r = α + βf + ɛ, = 1,..., T 9.3 R = α 1 T + Fβ + E 9.4 R = Gξ + E 9.5 r = α + β r m + ɛ, = 1,..., k = 1,..., T 9.11 Vary = w Σ r w, = 1,..., k 9.12 Covy, y j = w Σ r w j,, j = 1,..., k 10

9.13 k Varr = rσ r = k λ = k Vary 9.14 ˆΣ r ˆσ j,r = 1 T 1 9.15 ˆρ r = Ŝ 1 ˆΣ r Ŝ 1 T =1r rr r, r = 1 T T r =1 9.16 r µ = βf + ɛ 9.17 Σ r = Covr = Er µr µ = Eβf + ɛ βf + ɛ = ββ + D 9.18 Covr, f = Er µf = βef f + Eɛ f = β 9.19 ˆβ ˆβj = ˆλ1 ê 1 ˆλ2 ê 2 ˆλm ê m 9.20 LRm = T 1 1 6 2k + 5 2 3 m ln ˆΣ r ln ˆβ ˆβ + ˆD Handbook of Fxed Income Secures, Fabozz Chaper 69 69 4 Asse Allocaon s w P s w B s R B s 69 5 Secury Selecon s w P s R P s R B s 69 12 α P k f P k αb k f B k = s α P k,s f P k,s s α B k,s f B k,s Chaper 70 70 1 Asse Allocaon w P 70 2 Secor Managemen s s w P s w wb s T R B P w B s T R B w P s T R P s T R B s 70 3 Top-Level Exposure w P w B T R B 70 4 Asse Allocaon w P w P s w wb s ER B P w B s ER B 70 5 Secor Managemen s s w P s ER P s ER B s 70 6 Top-Level Exposure w P w B ER B 70 7 Ouperformance from average carry yavg P yavg B 70 8 Key rae conrbuons ω P j yj yavg P ω B j yj yavg B j 70 9 Ouperformance from avg. parallel shfs OAD P OAD B y avg 70 10 Ouperformance from reshapng KRD P j KRDj B yj y avg j 11

70 11 Asse Allocaon OASD P w P s OASDs P wb s OASDs B OASD P OASD B s 70 12 Secury Selecon s OAS s B OAS B w P s OASD P s OAS P s OAS B s 70 13 Spread Duraon Msmach OASD P OASD B OAS B w P s OASDs P ws B OASDs B OAS B s 70 14 Asse Allocaon s 70 15 Secury Selecon s w P s OASD P s OAS P s OAS B s Inroducon o Cred Rsk Modelng, 2nd ed., Bluhm, Overbeck, Wagner Chaper 6 Page 237 M n = M n 1 Guaranees and Targe Volaly Funds, Morrson and Tadrowsk Page 4 w equy ˆσ equy = mn σarge 2 = λ ˆσ equy ˆσ equy, 100% 2 2 1 S + 1 λ ln S Proxy Funcons for he Projecon of Varable Annuy Greeks, Clayon, Morrson, Turnbull, and Vysnasuskas Page 4 ˆV, V proxy S,, R, σ, 2 proxy S, R, σ = S V proxy S, R, σ ρ proxy S, R, σ = R V proxy S, R, σ V proxy S, R, σ = σ V proxy S, R, σ 12

Page 5 S sress1, S sress2, S sress3, S base, S base, S base, R sress1, R sress2, R sress3, R base, R base, R base, ˆ, proxy S,, R,, σ, 2 ˆρ, ρ proxy S,, R,, σ, 2 ˆV, V proxy S,, R,, σ, 2 ˆV base, Page 6 S, S w V proxy S,, R,, σ, 2 h S s w, h S σ sress1, σ sress2, σ sress3, σ base, σ base, σ base,, R, R, σ, σ ˆV base h R h σ, V proxy, S, S h S, R, R, σ, σ h R h σ ˆ, ˆρ, ˆV, S,, R,, σ, = 2 ˆV, sress1 ˆV, sress2 ˆV, sress3 2 ˆV base, V proxy, S,, R,, σ, base ˆV, base ˆV, base ˆV, Recen Advances n Cred Rsk Modelng, Capuano, Chan-Lau, Gasha, Mederos, Sanos, and Souo II.1 E = max0, V D ln V D + µ 1 2 σ2 T II.2 DD T = σ T II.3 II.4 II.5 II.6 II.7 x = a M + 1 a 2 Z Prob{x < x M} = q M = Φ x a M 1 a 2 p K+1 0, M = p K 0, M1 q K+1 M p K+1 l, M = p K l, M1 q K+1 M + p K l 1, Mq K+1 M, l = 1,..., K p K+1 K + 1, M = p K K, Mq K+1 M II.8 pl, = pn l, MφMdM III.1 τ = nf{ 0 V K} 13

Marke Models: A Gude o Fnancal Daa Analyss, Chaper 6, Aledander 6.1 P = XW 6.2 X = w 1 P 1 + w 2 P 2 + + w k P k 6.3 σ K σ AT M = bk S 6.4 σ K σ AT M = w K1 P 1 + w K2 P 2 + w K3 P 3 6.5 P, = γ, S + ε, 6.6 σ AT M = α + β S + ε 6.7 β K, = β + Σw K γ, 6.8 y = a + Pb + e 6.9 y = a + X b + e 6.10 y = c + Xd + e 6.11 rcac = 0.0003 1.45 + 0.1943 14.71 rparbas +0.2135 17.21 rsocgen +0.2995 20.55 6.12 0.85867P 1 + 0.047495P 2 + 0.091244P 3 + 0.35181P 4 Sochasc Modelng, Theory and Realy from an Acuaral Perspecve I.B-1 ds = µsd + σsdz I.B-2 ln S T Nln S 0 + r σ 2 /2T, σ T I.B-3 µ = ln S 0 + r σ 2 /2T, σ = σ T I.B-4 ĉ = 1 N c N I.B-5 c = S 0 Nd 1 Ke rt Nd 2 I.B-6 d 1 = lns 0/K + r + σ 2 /2T σ, d 2 = d 1 σ T T I.B-7 MC samplng error = 1 Sdevc N I.B-8 1 f = 2 fu 1 + fu 2 I.B-9 1 Sdev f N rdan I.B-10 I.B-11 f u g u + gu 1 Sdevfu gu N 14

I.B-12 h = 1 n N I.B-13 I.B-14 j=1 fv j k ˆf = x +1 x h k x +1 x Sdevhj lm of he sum should be k 1 N fz I.B-15 N gz N fz I.B-16 Sdev gz n I.B-17 S 0 = e r ps 0 u + 1 ps 0 d I.B-18 I.B-19 p = er d u d u = e σ and d = u 1 I.B-20 C 0 = e r pc u + 1 pc d I.B-21 S m = S 0 u n d m n, n = 0, 1,..., m here s an error n he book formula, he upper here s an error n he book formula, s n ha goes from 0 o m I.B-22 S m = S 0 1 ηu n d m n, n = 0, 1,..., m same error I.B-23 p = r 12 12σ 2 σ2 + 1 6, p 0 = 2 3, p + = p + 2 6, I.B-24 I.B-25 u = e σ3, d = u 1 S log Nµ r, σ 2 r log S r S+1 S ρ Nµ ρ, σ 2 ρ I.B-26 p j = Prρ + 1 = j ρ =, = 1, 2,..., K, j = 1, 2,..., K here s an error n he book formula, y + 1 should be + 1 I.B-27 LΘ = fy 1 Θfy 2 Θ, y 1 fy 3 Θ, y 1, y 2 fy n Θ, y 1, y 2,..., y n 1 I.B-28 fρ, ρ 1, y Θ, y 1, y 2,..., y 1 for ρ = 1, 2 and ρ 1 = 1, 2 I.B-29 π, 1 pρ 1 = Θ, y 1, y 2,..., y 1 I.B-30 p j = pρ = j ρ 1 =, Θ y µ j I.B-31 g j, = fy ρ = j, Θ = φ = σ j 1 exp 1 σ j 2π 2 2 y µ j σ j 15

I.B-32 π, = 2 π k, 1 p k g, k=1 2 j=1 2 π, 1 p j g j, p 21 p 12 I.B-33 π 1,0 =, π 2,0 = p 12 + p 21 p 12 + p 21 I.B-34 fy 1 Θ = fρ0 = 1, y 1 Θ + fρ0 = 2, y 1 Θ y1 µ 1 y1 µ 2 = π 1,0 φ + π 2,0 φ II.A-1 S0, 1 = ln{1/1 + C0, 1} II.A-2 II.A-3 II.A-4 II.A-5 σ 1 S0, 2 = 1/2 ln{1 C0, 2 exp S0, 1/1 + C0, 2} σ 2 S0, 3 = 1/3 ln{1 C0, 3 exp S0, 1 C0, 3 exp 2S0, 2/1 + C0, 3} r = σr/ r γ φ F + T = F 1 + T + q F + T = F 1 + T + q Λ q,t +1 φ q, Eexp F 0 0 F 1 1 F 2 2 F N N = exp F 0 0 F 0 1 F 0 2 F 0 N Λ g,t +1 φ q, + Λ q,t +1 Λ q,t +1 /2 + T +1 Λ q, II.A-6 P V = Eexp F 0 0 F 1 1 F 2 2 F N NCF N II.A-7 II.A-8 F + T = F 1 + T + g Λ q,t +1 φ q, +δ arge 1/ arge F arge + T F 0 arge + T +1 δ arge F arge + T F arge + T + 1 F + T = F 1 + T + k T Λ q.t +1 φ q, + Λ q,t +1 Λ q,t +1 /2 + T +1 Λ q, II.A-9 Λ 1,j = Λ 1,1 exp aj 1, Λ >1,j = 0 II.A-10 F acor1 = F acor1 0 + ρ 12 F acor2 0 + ρ 13 F acor3 0 II.A-11 F acor2 = 1 ρ 2 12 1/2 F acor2 0 + ρ 13 F acor3 0 F acor3 = 1 ρ 2 13 ρ 2 13 1/2 F acor3 0 S = S 1 expf 1 1 + σ 1 φ e 1 σ 2 1/2 II.A-12 X + 1 = X exprf F RF D q II.A-13 X + = X exprf F RF D vol 2 /2 + sqr vol Z II.A-14 ds = µ S d + σ S dw II.A-15 ds = S exp{µ σ 2 /2d + σ dw } II.A-16 S = S 1 exp{µ σ 2 /2d + σ φ } 16

II.A-17 S = S 1 exp{f + d σ 2 /2d + σ φ } II.A-18 S = S 1 exp{f + d q σ 2 /2d + σ φ } II.A-19 II.A-20 ds = µ S d + σs, dw ds = µ S d + σs α dw II.A-21 ds = µ S d + V S dw, dv = κθ V d + v V dz, ds, V = ρd II.A-22 µ = F + d + rp σ S II.A-23 σ F = sqr 2 σ 1 S 1 1 II.A-24 mn n σ model w σ marke 2 σ model II.A-25 EValue of Equy = AValue of Asses Nd 1 II.A-26 II.A-27 II.A-28 F Face Value of Deb e rt Nd 2 d 1 = loga/f + r + σ2 A /2 T σ A T d 2 = d 1 σ A T II.A-29 Spread = II.A-30 σ E = σ A Nd 1 A E Rsk Neural Probably of Defaul = N d 2 Recovery Rae = A N d 1 N d 2 T hreshold = Φ 1 D q = h exp hτdτ 0 π 1 qτdτ τ=0 T =0 T 1 R A rqνd =0 q {u + ed + πt ut d lnh = αβ lnh d + γdz 17