EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Σχετικά έγγραφα
Buried Markov Model Pairwise

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

(hidden Markov model: HMM) FUNDAMENTALS OF SPEECH SYNTHESIS BASED ON HMM. Keiichi Tokuda. Department of Computer Science

Applying Markov Decision Processes to Role-playing Game

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Research on Economics and Management

1,a) 1,b) 2 3 Sakriani Sakti 1 Graham Neubig 1 1. A Study on HMM-Based Speech Synthesis Using Rich Context Models

Βιοπληροφορική. Ενότητα 14: Μοντέλα Πολλαπλής Στοίχισης (2/2), 1.5ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

{takasu, Conditional Random Field

ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ. Δυναμικός Προγραμματισμός. Παντελής Μπάγκος

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

1. Panel Data.

Βιοπληροφορική. Ενότητα 14: Μοντέλα Πολλαπλής Στοίχισης (2/2), 1.5ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου

Automatic extraction of bibliography with machine learning

Βιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

:JEL. F 15, F 13, C 51, C 33, C 13

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Οι Εννοιολογικές Αλλαγές ως Συνιστώσα της Σύγχρονης Ιστοριογραφίας των Μαθηματικών

Εκπαιδευτική Ψυχολογία

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Study of urban housing development projects: The general planning of Alexandria City

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

ΠΑΡΑΔΟΤΕΟ 3.1 : Έκθεση καταγραφής χρήσεων γης

Η διδασκαλία της θεωρίας της εξέλιξης στη δευτεροβάθμια εκπαίδευση


Πολιτισμός και ψυχοπαθολογία:

Nondeterministic Finite Automaton Event Detection in Focusing Region. Sequence Analysis. Sequence Analysis. Feature Extraction. Feature Extraction

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

ER-Tree (Extended R*-Tree)

Probabilistic Approach to Robust Optimization

Bayesian Discriminant Feature Selection

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

clearing a space (focusing) clearing a space, CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc-

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Μ. Κορφιατη - Π. Γεωργίου ΒΙΒΛΙΟΘΗΚΗ & ΥΠΗΡΕΣΙΑ ΠΛΗΡΟΦΟΡΗΣΗΣ ΠΑΝ. ΠΑΤΡΩΝ


SPSS.

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

K. Oatley & J. Jenkins, Συγκίνηση: Ερμηνείες και Κατανόηση (μεταφ. Μ. Σόλμαν, Μπ. Ντάβου) Αθήνα, Εκδόσεις Παπαζήση, 2004, σελ

I student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

Butadiene as a Ligand in Open Sandwich Compounds

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Συνδυασμένη Οπτική-Ακουστική Ανάλυση Ομιλίας

τεχνική περιγραφή e-situ

Κβαντική Επεξεργασία Πληροφορίας


Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Θέµα 3: Dynamic Time Warping (DTW). Hidden Markov Models (HMM).

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

Supplementary Appendix

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Ποιοτικές Μέθοδοι Έρευνας

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Sparse Modeling and Model Selection

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

Κβαντικη Θεωρια και Υπολογιστες

Γονεϊκό στυλ διαπαιδαγώγησης και επιδόσεις μαθητών σχολικής ηλικίας: θεωρητικές και πρακτικές όψεις

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

RMT Tick RMT. Application of the RMT-test on Real Data: Hash Function and Tick Data of Stock Prices

Map Generation of Mobile Robot by Probabilistic Observation Model Considering Occlusion

High order interpolation function for surface contact problem

ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ

Quick algorithm f or computing core attribute

Επιθεώρηση Κοινωνικών Ερευνών

Κύρια σημεία. Μεθοδολογικές εργασίες. Άρθρα Εφαρμογών. Notes - Letters to the Editor. Εργασίες στη Στατιστική Μεθοδολογία

HMY 795: Αναγνώριση Προτύπων

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

GridFTP-APT: Automatic Parallelism Tuning Mechanism for Data Transfer Protocol GridFTP

Hydrologic Process in Wetland

Εργαστήριο Ιατρικής Φυσικής

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

το προφίλ της γάστρας, η ίσαλος σχεδίασης, η καμπύλη εμβαδών εγκαρσίων τομών και η κατανομή του κέντρου βάρους των εγκαρσίων τομών κατά μήκος του

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Supporting Information

Architecture for Visualization Using Teacher Information based on SOM

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Reading Order Detection for Text Layout Excluded by Image

Scrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal

-,,.. Fosnot. Tobbins Tippins -, -.,, -,., -., -,, -,.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY

Detection and Recognition of Traffic Signal Using Machine Learning

Curran et al.,**. Davies et al ,**, ,***,**/

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 3: Δειγματοληπτικές μέθοδοι

Transcript:

Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3. HMM EM 4. HMM 5. HMM Baum-Welch 6. Baum-Welch EM Baum- Welch 2 X.D.Huang Steve Young 3 4 Steve Young Baum-Welch 4 3 4 1 1 a, b, c E-mail murakami@ike.tottori-u.ac.jp Jin ichi Murakami, Member (Department of Information and Electronics, Graduate School of Engineering Tottori University 4-101, Koyamachou Minami, Tottori, 680-8552 Japan). Fundamentals Review Vol.xx No.xx pp.1 9 xxxxxx c xxxx Baum-Welch Hidden Markov Model 2. HMM 2. 1 HMM IEICE Fundamentals Review Vol.xx No.xx 1

2. 3 HMM Left-to-Right HMM 1 i = 0 π 0 = 1.0 HMM HMM Left-to- HMM Right HMM a i,j a i,j i j b i,j (O) 2. 2 Ergodic HMM Left-to-Right HMM HMM Left-to-Right HMMErgodic parameter tie 2.4 HMM Left-to-Right HMM Ergoic HMM 2 Left-to-Right HMM Left-to-Right HMM 4 3 HMM Left-to-Right HMM 3 i j O Ergodic HMM b i,j (O) i j 2 Left-to-Right HMM 3 Ergodic HMM Left-to-Right HMM ( ) Ergodic HMM HMM ( ) 5 Left-to-Right HMM 6 Ergodic-HMM 7 Left-to-Right HMM HMM 4 π i π i i b i,j (O) i j O parameter tie b i (O) 2. 4 parameter tie b i,j (O) = b i,i (O) = b i (O) b i,j (O) i i b i,i (O) parameter tie b i,j (O) = b i,i (O) = b i (O) b i,i (O) b i,j (O) parameter tieb i,j (O) = b i,i (O) 2. 5 HMM 2 IEICE Fundamentals Review Vol.xx No.xx

4 1 HMM 1.0 X π i = 1.0 i i j 1.0 X a i,j = 1.0 j 2Model B 2Model B i 1.0 2 Model B X b i (O) = 1.0 O K K O 2. 6 HMM HMM Model A 1 Model B 2 4 3 Left-to-Right HMM (i = {0,1,2}, j = {0,1,2,3}) α, β, γ3 ( K = {α, β, γ}) π 0 1Model A ( i = 0, i = 3) 4 Model A π 0 = 1.0 π 1 = 0.0 π 2 = 0.0 3 a 0,0 = 0.5 a 1,1 = 0.8 a 2,2 = 0.7 a 0,1 = 0.5 a 1,2 = 0.2 a 2,3 = 0.3 b 0 (α) = 0.1 b 1 (α) = 0.4 b 2 (α) = 0.1 b 0 (β) = 0.5 b 1 (β) = 0.2 b 2 (β) = 0.8 b 0 (γ) = 0.4 b 1 (γ) = 0.4 b 2 (γ) = 0.1 5 Model B 1 Model A π 0 = 1.0 π 1 = 0.0 π 2 = 0.0 3 a 0,0 = 0.7 a 1,1 = 0.6 a 2,2 = 0.1 a 0,1 = 0.3 a 1,2 = 0.4 a 2,3 = 0.9 b 0 (α) = 0.7 b 1 (α) = 0.4 b 2 (α) = 0.1 b 0 (β) = 0.2 b 1 (β) = 0.3 b 2 (β) = 0.1 b 0 (γ) = 0.1 b 1 (γ) = 0.3 b 2 (γ) = 0.8 3HMM 2.5 Model A Model BHMM 3 3 HMM π 0 + π 1 + π 2 = 1.0 a 0,0 + a 0,1 = 1.0 a 1,1 + a 1,2 = 1.0 a 2,2 + a 2,3 = 1.0 b 0 (α) + b 0 (β) + b 0 (γ) = 1.0 b 1 (α) + b 1 (β) + b 1 (γ) = 1.0 b 2 (α) + b 2 (β) + b 2 (γ) = 1.0 IEICE Fundamentals Review Vol.xx No.xx 3

3. 3. 1 α α β γ O t t O 0 = α, O 1 = α, O 2 = γ, O 3 = β, O 4 = β, O 5 = γ) O 0 = α, O 1 = α, O 2 = β, O 3 = γ 40ms N 256 3. 2 Model A 6 HMM grid HMM α i (j) α i HMM 0 i j Model A O t t 4 3 grid 4 forward grid t 0 1 2 3 O t α α β γ path1: 0 0 1 2 3 path2: 0 1 1 2 3 path3: 0 1 2 2 3 5 path1: 5 a 0,0 b 0 (O 0 ) a 0,1 b 0 (O 1 ) a 1,2 b 1 (O 2 ) a 2,3 b 2 (O 3 ) = a 0,0 b 0 (α) a 0,1 b 0 (α) a 1,2 b 1 (β) a 2,3 b 2 (γ) = 0.7 0.7 0.3 0.7 0.4 0.3 0.9 0.8 = 0.00889 path2: a 0,1 b 0 (O 0 ) a 1,1 b 1 (O 1 ) a 1,2 b 1 (O 2 ) a 2,3 b 2 (O 3 ) = a 0,1 b 0 (α) a 1,1 b 1 (α) a 1,2 b 1 (β) a 2,3 b 2 (γ) = 0.3 0.7 0.6 0.4 0.4 0.3 0.9 0.8 = 0.00435 path3: a 0,1 b 0 (O 0 ) a 1,2 b 1 (O 1 ) a 2,2 b 2 (O 2 ) a 2,3 b 2 (O 3 ) = a 0,1 b 0 (α) a 1,2 b 1 (α) a 2,2 b 2 (β) a 2,3 b 2 (γ) = 0.3 0.7 0.4 0.4 0.1 0.1 0.9 0.8 = 0.000241 0.01349(= 0.00889 + 0.00435 + 0.000241) 4(O 0 = α, O 1 = α, O 2 = β, O 3 = γ) 3 6( 10 3. 3 Forward 3.2 forward α t (j) = α t 1 (j) a j,j b j (O t 1 ) +α t 1 (j 1) a j 1,j b j 1 (O t 1 ) Model A grid α 0 (0) = 1.0 α 1 (0) = α 0 (0) a 0,0 b 0 (O 0 ) = α 0 (0) a 0,0 b 0 (α) = 1.0 0.7 0.7 = 0.49 α 1 (1) = α 0 (0) a 0,1 b 0 (O 0 ) = α 0 (0) a 0,1 b 0 (α) = 1.0 0.3 0.7 = 0.21 α 2 (1) = α 1 (1) a 1,1 b 1 (O 1 ) + α 1 (0) a 01 b 0 (O 1 ) = α 1 (1) a 1,1 b 1 (α) + α 1 (0) a 01 b 0 (α) = 0.21 0.6 0.4 + 0.49 0.3 0.7 = 0.1533 α 2 (2) = α 1 (1) a 1,2 b 1 (O 1 ) = α 1 (1) a 1,2 b 1 (α) = 0.21 0.4 0.4 = 0.0336 α 3 (2) = α 2 (2) a 2,2 b 2 (O 2 ) + α 2 (1) a 1,2 b 1 (O 2 ) = α 2 (2) a 2,2 b 2 (β) + α 2 (1) a 1,2 b 1 (β) = 0.0336 0.1 0.1 + 0.1533 0.4 0.3 = 0.018732( 0.01873) α 4 (3) = α 3 (2) a 2,3 b 2 (O 3 ) = α 3 (2) a 2,3 b 2 (γ) = 0.018732 0.9 0.8 = ( 0.01349) = α 4 (3) = 4 IEICE Fundamentals Review Vol.xx No.xx

3.2 4. 2 HMM HMM 1.0 4.1 HMM 6 7 6 forward 3. 4 1 7 α α β γ O t t O 0 = α, O 1 = α, O 2 = β, O 3 = γ 2 Model AHMMModel BHMM HMM Model AHMM 0.01349 Model BHMM 0.00009 Model A Model B Model A Model 4. HMM forwardgrid 8 3. HMM 4. 5. HMM 6 HMM π 0 = 1.0 π 1 = 0.0 π 2 = 0.0 3 a 0,0 = 0.5 a 1,1 = 0.0 a 2,2 = 0.0 a 0,1 = 0.5 a 1,2 = 1.0 a 2,3 = 1.0 b 0 (α) = 1.0 b 1 (α) = 0.0 b 2 (α) = 0.0 b 0 (β) = 0.0 b 1 (β) = 1.0 b 2 (β) = 0.0 b 0 (γ) = 0.0 b 1 (γ) = 0.0 b 2 (γ) = 1.0 4. 1 α α β γ O t t O 0 = α, O 1 = α, O 2 = β, O 3 = γ HMM HMM 8 2.5 3 0.25 IEICE Fundamentals Review Vol.xx No.xx 5

5. Baum-Welch 4.2 Baum-Welch 2 β 4 (3) = 1.0 β 4 (2) = 0.0 β 4 (1) = 0.0 β 4 (0) = 0.0 backward grid Left-to-Right HMM β t (j) = β t+1 (j + 1) a j,j+1 b j (O t ) Baum-Welch t i j Γ t (i, j) forward backward Γ t (i, β j) 4 (3) = 1.0 β 3 (2) = β 4 (3) a 2,3 b 2 (O 3 ) = β 4 (3) a 2,3 b 2 (γ) 5. 1 Forward = 0.72 0.1 0.1 = 0.0072 4.1 β 2 (1) = β 3 (2) a 1,2 b 1 (O 2 ) = β 3 (2) a 1,2 b 1 (β) 1 = 0.72 0.4 0.3 = 0.0864 forward β 1 (1) = β 2 (2) a 1,2 b 1 (O 1 ) + β 2 (1) a 1,1 b 1 (O 1 ) 9 3.3 6 = β 2 (2) a 1,2 b 1 (α) + β 2 (1) a 1,1 b 1 (α) forward grid α t (i) = 0.0072 0.4 0.4 + 0.0864 0.6 0.4 α t (j) = α t 1 (j) a j,j b j (O t 1 ) α 0 (0) = 1.0 α 1 (0) = 0.49 α 1 (1) = 0.21 α 2 (1) = 0.1533 α 2 (2) = 0.0336 α 3 (2) = 0.01873 α 4 (3) = 0.01349 = α 4 (3) = 0.01349 +α t 1 (j 1) a j 1,j b j 1 (O t 1 ) backword grid β t (i) β t (i) t i forward grid α t (i) +β t+1 (j) a j,j b j (O t ) grid = 1.0 0.9 0.8 = 0.72 β 2 (2) = β 3 (2) a 2,2 b 2 (O 2 ) = β 3 (2) a 2,2 b 2 (β) = 0.021888( 0.02189) β 1 (0) = β 2 (1) a 0,1 b 0 (O 1 ) = β 2 (1) a 0,1 b 0 (α) = 0.0864 0.3 0.7 = 0.018144( 0.01814) β 0 (0) = β 1 (1) a 0,1 b 0 (O 0 ) + β 1 (0) a 0,0 b 0 (O 0 ) = β 1 (1) a 0,1 b 0 (α) + β 1 (0) a 0,0 b 0 (α) = 0.021888 0.3 0.7 + 0.018144 0.7 0.7 = ( 0.01349) Backword grid β 0 (0) Forward grid α 4 (3) = β 0 (0) = α 4 (3) = 0.01349 9 forward 5. 2 Backword 10 backward Backward forward 10 6 IEICE Fundamentals Review Vol.xx No.xx

5. 3 Γ t (i, j) 5. 4 a i,j Baum-Welch a i,j Γ t (i, j) Γ t (i, j) t i j Baum-Welch ForwardBackword P t Γ t (i, j) a i,j = Γ t(i, j) P P t j Γ t(i, j) Γ t (i, j) = α t(i)a i,j b i (O t )β t+1 (j) likelihood likelihood = = α 4 (3) Γ t (i, j) Γ 0 (0,0) = α 0(0)a 0,0 b 0 (O 0 )β 1 (0) = α 0(0)a 0,0 b 0 (α)β 1 (0) = 1.0 0.7 0.7 0.018144 = 0.65919 Γ 0 (0,1) = α 0(0)a 0,1 b 0 (O 0 )β 1 (1) = α 0(0)a 0,1 b 0 (α)β 1 (1) = 1.0 0.3 0.7 0.021888 = 0.34081 Γ 1 (0,1) = α 1(0)a 0,1 b 0 (O 1 )β 2 (1) = α 1(0)a 0,1 b 0 (α)β 2 (1) = 0.49 0.3 0.7 0.0864 = 0.65919 Γ 1 (1,1) = α 1(1)a 1,1 b 1 (O 1 )β 2 (1) = α 1(1)a 1,1 b 1 (α)β 2 (1) = 0.21 0.6 0.4 0.0864 = 0.32287 Γ 1 (1,2) = α 1(1)a 1,2 b 1 (O 1 )β 2 (2) = α 1(1)a 1,2 b 1 (α)β 2 (2) = 0.21 0.4 0.4 0.0072 = 0.01794 Γ 2 (1,2) = α 2(1)a 1,2 b 1 (O 2 )β 3 (2) = α 2(1)a 1,2 b 1 (β)β 3 (2) = 0.1533 0.4 0.3 0.72 = 0.98206 Γ 2 (2,2) = α 2(2)a 2,2 b 2 (O 2 )β 3 (2) = α 2(2)a 2,2 b 2 (β)β 3 (2) = 0.0336 0.1 0.1 0.72 = 0.01794 Γ 3 (2,3) = α 3(2)a 2,3 b 2 (O 3 )β 4 (3) = α 3(2)a 2,3 b 2 (γ)β 4 (3) = 0.018732 0.9 0.8 1.0 = 1.0 b j (O)Γ t (i, j) Γ 0 (0,0) + Γ 0 (0,1) = 1.0 Γ 1 (0,1) + Γ 1 (1,1) + Γ 1 (1, 2) = 1.0 Γ 2 (1,2) + Γ 2 (2,2) = 1.0 Γ 3 (2,3) = 1.0 Γ t (i, j) t i j Γ t (i, j) t O t O t O Baum-Welch 11Γ t (i, j) 11 Γ t (i, j) a i,j a 0,0 = a 0,1 = a 1,1 = a 1,2 = a 2,2 = a 2,3 = Γ 0 (0,0) Γ 0 (0,0)+Γ 0 (0,1)+Γ 1 (0,1) = 0.39756 Γ 0 (0,1)+Γ 1 (0,1) Γ 0 (0,0)+Γ 0 (0,1)+Γ 1 (0,1) = 0.60244 Γ 1 (1,1) Γ 1 (1,1)+Γ 1 (1,2)+Γ 2 (1,2) = 0.2441 Γ 1 (1,2)+Γ 2 (1,2) Γ 1 (1,1)+Γ 1 (1,2)+Γ 2 (1,2) = 0.7559 Γ 2 (2,2) Γ 2 (2,2)+Γ 3 (2,3) = 0.01762 Γ 3 (2,3) Γ 2 (2,2)+Γ 3 (2,3) = 0.98238 a 0,0 + a 0,1 = 1.0 a 1,1 + a 1,2 = 1.0 a 2,2 + a 2,3 = 1.0 5. 5 b j (O) P P t O k b j (O) = Γ t(j, k) P P t k Γ t(j, k) b j (O) b 0 (α) = Γ 0(0,0)+Γ 0 (0,1)+Γ 1 (0,1) Γ 0 (0,0)+Γ 0 (0,1)+Γ 1 (0,1) = 1.0 0 b 0 (β) = Γ 0 (0,0)+Γ 0 (0,1)+Γ 1 (0,1) = 0.0 0 b 0 (γ) = Γ 0 (0,0)+Γ 0 (0,1)+Γ 1 (0,1) = 0.0 Γ b 1 (α) = 1 (1,1)+Γ 1 (1,2) Γ 1 (1,1)+Γ 1 (1,2)+Γ 2 (1,2) = 0.2576 Γ b 1 (β) = 2 (1,2) Γ 1 (1,1)+Γ 1 (1,2)+Γ 2 (1,2) = 0.7424 0 b 1 (γ) = Γ 1 (1,1)+Γ 1 (1,2)+Γ 2 (1,2) = 0.0 0 b 2 (α) = Γ 2 (2,2)+Γ 3 (2,3) = 0.0 Γ b 2 (β) = 2 (2,2) Γ 2 (2,2)+Γ 3 (2,3) = 0.01762 Γ b 2 (γ) = 3 (2,3) Γ 2 (2,2)+Γ 3 (2,3) = 0.98238 b 0 (α) + b 0 (β) + b 0 (γ) = 1.0 b 1 (α) + b 1 (β) + b 1 (γ) = 1.0 b 2 (α) + b 2 (β) + b 2 (γ) = 1.0 IEICE Fundamentals Review Vol.xx No.xx 7

5. 6 forward DNA 12 0 Baum-Welch 8 9 Baum-Welch Ergodic HMM = 0.1503 12 forward 0.1503 5.1 0.01349 5. 7 Baum-Welch 5.1 5.5 13 (likelihood) 4.2 0.25 7. Baum-Welch Baum-Welch 6. Baum-Welch a i,j Γ t (i, j) b j (O)Γ t (i, j) HMM Ergodic HMM 7 Ergodic HMM Ergodic HMM Baum- Welch 13 Γ t (i, j) Γ t (i, j) a i,j b j (O) HMM Baum-Welch 8 IEICE Fundamentals Review Vol.xx No.xx

1S. Rolf, Maximum likelihood theory for incomplete data from an exponential family, Scandinavian Journal of Statistics 1, pp.49-58, 1974. 2L.E.Baum and T.Petrie, Statistical inference for probabilistic functtions of finite state Markov chains, The Annals of Mathematical Statistics, vol.37, no.6, pp.1554-1563, 1966. 3X.D.Huang, Y. Ariki, M.A.Jack, Hidden Markov Models For Speech Recognition, 0-7486-0162-7, Edinburgh University Press, Edinburgh, 1990. 4S.J. Young, Sj Young, The HTK Hidden Markov Model Toolkit: Design and Philosophy, Entropic Cambridge Research Laboratory, vol 2, pp.2-44, 1994. http://htk.eng.cam.ac.uk/. 5Kai-Fu Lee, Automatic Speech Recognition: The Development of the SPHINX Recognition System, 978-0898382969, Springer, New York, 1988. 6F. Jerinek, Statistical Methods for Speech Recognition, 0-262-10066-5, The MIT Press Cambride, Massachusetts London, Massachusetts, 1997. 7,,, Ergodic HMM,, SIG-SLUD-9204-3, pp.17-24, 1993. 8, Baum-Welch,, SP94-97, pp.45-50, 1995. 9C.Burge,S. Karlin, Prediction of complete gene structures in human genomic DNA, J. Mol. Biol. 268, pp.78-94, 1997. 1984 3 1986 NTT NTT 1991 (ATR) 1995NTT 1998 IEICE Fundamentals Review Vol.xx No.xx 9