THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE

Σχετικά έγγραφα
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Rectangular Polar Parametric

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Rectangular Polar Parametric

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Spherical Coordinates

Areas and Lengths in Polar Coordinates

Homework 8 Model Solution Section

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Inverse trigonometric functions & General Solution of Trigonometric Equations

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Section 8.3 Trigonometric Equations

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Areas and Lengths in Polar Coordinates

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Trigonometry Functions (5B) Young Won Lim 7/24/14

CRASH COURSE IN PRECALCULUS

Answer sheet: Third Midterm for Math 2339

Probability theory STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (2016) Basic probability theory. One-dimensional random variables

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Parametrized Surfaces

Second Order Partial Differential Equations

Trigonometric Formula Sheet

Review Exercises for Chapter 7

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Lifting Entry (continued)

PARTIAL NOTES for 6.1 Trigonometric Identities

Quantitative Aptitude 1 Algebraic Identities Answers and Explanations

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Matrices and Determinants

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Solution to Review Problems for Midterm III

F19MC2 Solutions 9 Complex Analysis

Core Mathematics C12

COMPLEX NUMBERS. 1. A number of the form.

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

D Alembert s Solution to the Wave Equation

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Differentiation exercise show differential equation

Oscillatory integrals

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Math221: HW# 1 solutions

Differential equations

ECE 468: Digital Image Processing. Lecture 8

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Section 9.2 Polar Equations and Graphs

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Example Sheet 3 Solutions

SPECIAL FUNCTIONS and POLYNOMIALS

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Trigonometry 1.TRIGONOMETRIC RATIOS

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

1 String with massive end-points

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

11.4 Graphing in Polar Coordinates Polar Symmetries

MathCity.org Merging man and maths

x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

TRIGONOMETRIC FUNCTIONS

FORMULAS FOR STATISTICS 1

Core Mathematics C34

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Solution Series 9. i=1 x i and i=1 x i.

Fourier Analysis of Waves

If we restrict the domain of y = sin x to [ π 2, π 2

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Core Mathematics C34

6.4 Superposition of Linear Plane Progressive Waves

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

is like multiplying by the conversion factor of. Dividing by 2π gives you the

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Section 8.2 Graphs of Polar Equations

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Transcript:

THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE UNIVERSITY PRESS, MSIDA, MALTA 208

THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE UNIVERSITY PRESS, MSIDA, MALTA 208

THIS BOOKLET IS NOT AN ORIGINAL COPY, BUT A RE-TRANSCRIPTION OF THE BOOKLET PROVIDED TO STUDENTS DURING MATSEC EXAMINATION SESSIONS FOR PURE MATHEMATICS (AM27/IM27). EFFORT WAS MADE TO ENSURE THAT THIS RE-TRANSCRIPTION IS AS ACCURATE AS POSSIBLE. TRANSCRIBED BY LUKE COLLINS CREATED WITH L A TEX 2ε AVAILABLE TO DOWNLOAD FOR FREE AT https://mths.com.mt MMXVIII

CONTENTS Pge MENSURATION ALGEBRA 2 HYPERBOLIC FUNCTIONS 3 CIRCULAR FUNCTIONS 4 COORDINATE GEOMETRY 5 CALCULUS I INFINITE SERIES 6 II DERIVATIVES 7 III INTEGRALS 8 IV APPLICATIONS 9 V APROXIMATIONS 2 VECTORS 2 MECHANICS 3 PROBABILITY 4 STATISTICS 6 I FORMULAE 6 II TABLES 8

MENSURATION Circle Are of circle, rdius r is πr 2 Circumference of circle is 2πr Sphere Volume of sphere, rdius r, is 4 3 πr3 Surfce re of sphere is 4πr 2 Right circulr cylinder Volume of cylinder, rdius r nd height h is πr 2 h Curved surfce re is 2πrh Right circulr cone Volume of cone, rdius r, nd height h is 3 πr2 h Curved surfce re is πrl where l is the slnt height of the cone.

ALGEBRA Fctors 3 + b 3 = ( + b)( 2 b + b 2 ) 3 b 3 = ( b)( 2 + b + b 2 ) Permuttions nd Combintions ( ) n n n! C r = = r r!(n r)! n P r = n! (n r)! Finite Series n q=0 ( + qd) = n 2 [2 + (n )d]; n q=0 r q = ( rn ) r n = r=r n 2 n(n + ); r=r 2 = n 6 n(n + )(2n + ); r 3 = r= 4 n2 (n + ) 2 ( + x) n = + nx + n(n ).2 x 2 + + ( ) n x r + + x n r (n +ve int.) de Moivre s Theorem If n is n integer, (cosθ + isinθ) n = cosnθ + isinnθ. If n is rtionl number, cosnθ + isinnθ is one of the vlues of (cosθ + isinθ) n. 2

HYPERBOLIC FUNCTIONS sinhx = ex e x 2 coshx = ex + e x 2 sinh x = ln[x + (x 2 + )] Principl vlue of cosh x = ln[x + (x 2 )] (x ) tnh x = / 2 ln + x x ( x < ) 3

CIRCULAR FUNCTIONS sin 2 A + cos 2 A = sec 2 A = + tn 2 A cosec 2 A = + cot 2 A If sinθ = sinα, If cosθ = cosα, If tnθ = tnα then θ = nπ + ( ) n α then θ = 2nπ ± α then θ = nπ + α where n = 0,±,±2,... sin(a ± B) = sinacosb ± cosasinb cos(a ± B) = cosacosb sinasinb tna ± tnb tn(a ± B) = tnatnb sina + sinb = 2sin / 2 (A + B)cos / 2 (A B) sina sinb = 2cos / 2 (A + B)sin / 2 (A B) cosa + cosb = 2cos / 2 (A + B)cos / 2 (A B) cosa cosb = 2sin / 2 (A + B)sin / 2 (A B) 2sinAcosB = sin(a + B) + sin(a B) 2cosAsinB = sin(a + B) sin(a B) 2cosAcosB = cos(a + B) + cos(a B) 2sinAsinB = cos(a B) cos(a + B) sin2a = 2sinAcosA cos2a = cos 2 A sin 2 A = 2sin 2 A = 2cos 2 A tn2a = 2tnA tn 2 A If tn A 2 = t, then sina = 2t t2 ; cosa = + t2 + t 2 4

COORDINATE GEOMETRY Perpendiculr distnce from (h,k) to x+by+c = 0 is h + bk + c ( 2 + b 2 ) The cute ngle between two lines with grdients m, m 2 is tn m m 2 + m m 2 Are of Tringle is x x 2 x 3 / 2 [x (y 2 y 3 ) + x 2 (y 3 y ) + x 3 (y y 2 )] = / 2 y y 2 y 3 Circle The eqution x 2 + y 2 + 2gx + 2 f y + c = 0 represents circle with centre t ( g, f ) nd rdius (g 2 + f 2 c). The prmetric equtions of circle with centre t (,b) nd rdius r re x = + r cost, y = b + r sint. Point dividing P P 2 in the rtio k : hs coordintes ( x + kx 2 + k, y + ky 2 + k, z ) + kz 2 + k Angle φ between two lines with direction cosines l, m, n : l, m, n ±(ll + mm + nn ) is given by cosφ = (l 2 + m 2 + n 2 ) (l 2 + m 2 + n 2 ) Distnce from P (x,y,z ) to plne Ax + By +Cz + D = 0 is Ax + By +Cz + D (A 2 + B 2 +C 2 ) Plne distnce p from origin, direction cosines of norml l, m, n, lx + my + nz = p. Line through (x,y,z ), direction cosines l, m, n. x x l = y y m = z z = t. n 5

CALCULUS I. INFINITE SERIES Tylor s Theorem f (+x) = f ()+x f ()+ x2 2! f ()+ + xr (r )! f (r ) ()+, with reminder term xr r! f (r) ( + θx), where 0 < θ <. Mclurin s Theorem f (x) = f (0) + x f (0) + x2 2! f (0) + + xr (r )! f (r ) (0) +, with reminder term xr r! f (r) (θx), where 0 < θ <. expx e x = + x + x2 xr + + 2! r! + * log e ( + x) ln( + x) = x x2 2 + x3 3 vlid for < x. + ( )r xr r + sinx = x x3 3! + x5 5! + ( )r x 2r+ (2r + )! + * cosx = x2 2! + x4 4! + ( )r x 2r (2r)! + * sinhx = / 2 (e x e x ) = x + x3 3! + x5 x2r+ + + 5! (2r + )! + * coshx = / 2 (e x + e x ) = + x2 2! + x4 x2r + + 4! (2r)! + * * These series re vlid for ll finite x. 6

II DERIVATIVES f (x) x n sinx cosx tnx cotx secx cosecx e x x ( > o) log e x lnx sinhx coshx uv u v f (x) nx n cosx sinx sec 2 x cosec 2 x secxtnx cosecxcotx e x x ln x coshx sinhx uv + u v (vu uv )/v 2 7

III INTEGRALS (Constnts of integrtion re omitted; ln log e ) f (x) ( 2 x 2 ) ( 2 + x 2 ) ( 2 + x 2 ) x ( 2 + x 2 ) ( 2 x 2 ) sinx cosx f (x)dx ( sin x ) ( x ) tn ln{x + (x 2 + 2 ( )} or sinh x ) ( 2 + x 2 ) ln{x + (x 2 2 ( )} or cosh x ) cosx sinx tn x ln(sec x) cot x ln(sin x) secx ln(secx + tnx) { ( x or ln tn 2 + π )} 4 cosecx lntn x 2 coshx sinhx u dv dx sinhx coshx uv v du dx dx 8

IV APPLICATIONS For curve y = f (x), x b. Are between curve nd x-xis = y dx Men vlue = y dx b Volume of revolution bout x-xis = π y 2 dx Centroid of re between curve nd x-xis hs coordintes x = xy dx y dx ; y = / 2 y 2 dx y dx Centroid of solid of revolution bout x-xis: x = xy 2 dx y 2 dx 9

For the re shown in Figure y First moment bout x-xis = 2 y 2 dx y = f (x) First moment bout y-xis = xy dx Second moment bout x-xis = 3 y3 dx 0 Fig. b x Second moment bout y-xis = x 2 y dx For the solid of revolution shown in Figure 2 First moment bout xy-plne = 0 y y = f (x) First moment bout yz-plne = π xy 2 dx 0 b x Second moment bout x-xis = π 2 y4 dx Second moment bout y-xis = π y 2 (x 2 + y2 4 ) dx Fig. 2 0

Length of rc = (dy) t 2 2} { + dx = (ẋ 2 + ẏ 2 )dt dx Are of surfce of revolution = 2π y { + ( dy) 2} dx dx t t 2 = 2π y (ẋ 2 + ẏ 2 )dt t { + ( dy) 2} 3/2 Rdius of curvture ρ = dx d 2 y dx 2 = (ẋ2 + ẏ 2 ) 3/2 ẋÿ ẍẏ Polr Coordintes θ 2 Are enclosed by curve = / 2 r 2 dθ θ Length of rc = θ 2 θ {r 2 + ( dr dθ ) r 2 2} dθ = r { + r 2 ( dθ ) 2} dr dr / d p Rdius of curvture ρ = r dr

V APPROXIMATIONS Trpezoidl Rule: y dx / 2 h{(y o + y n ) + 2(y + y 2 + + y n )} Simpson s rule (n even) y dx / 3 h{(y o + y n ) + 4(y + y 3 + + y n ) + 2(y 2 + y 4 + + y n 2 ) Newton s pproximtion to root of f (x) = 0: x n+ = x n f (x n) f (x n ) VECTORS Line through point, position vector, prllel to b r = +tb Position vector of point dividing the line joining P, Q with position λp + µq vectors p, q in the rtio λ : µ is λ + µ Plne through point, position vector, perpendiculr to n (r ). n = 0 Sclr product =. 2 = 2 cosθ = x x 2 + y y 2 + z z 2 i j k Vector product = 2 = 2 = 2 sinθ ˆn = x y z x 2 y 2 z 2 2

MECHANICS Centre of mss Arc, rdius r, ngle 2θ r sinθ/θ from centre Sector of circle, rdius r, ngle 2θ 2 3 r sinθ/θ from centre Hemisphere, rdius r 3 8 r from centre Hemisphericl shell, rdius r 2 r from centre Solid cone, height h 2 from vertex Conicl shell, height h 2 3 h from vertex Moments of inerti Rod, length 2l, bout perpendiculr xis through centre 3 ml 2 Disc, rdius r, bout perpendiculr xis through centre 2 mr 2 Hoop, rdius r, bout dimeter 2 mr 2 Solid sphere, rdius r, bout dimeter 2 5 mr 2 Sphericl shell, rdius r, bout dimeter 2 3 mr 2 Prllel xes theorem I A = I G + M(GA) 2 Perpendiculr xes theorem for lmin I oz = I ox + I oy Simple hrmonic motion d 2 y dt 2 = ω2 x, ( dx) 2 = ω 2 ( 2 x 2 ), x = sin(ωt + ε) dt Compound pendulum Period = 2π (k 2 + h 2 )/gh Components of ccelertion r r θ 2 long rdius vector 2ṙ θ + r θ perpendiculr to rdius vector 3

PROBABILITY Probbility lws P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) P(B A) Discrete vrible X with probbility function P(X = x) Continuous vrible X with probbility density function f (X) Distribution function F(X) F(x o ) = P(X x o ) = x x o P(x) Expecttion of X E(X) = ΣxP(X = x) Expecttion of g(x) E[g(x)] = Σg(x)P(X = x) F(x) = P(X < x) x o = f (x) dx E(X) = x f (x) dx E[g(X)] = g(x) f (x)dx Vrince σ 2 Vr(X) = E[{X E(X) 2 }] Covrince Cov(X,X 2 ) = E[{X E(X )}{X 2 E(X 2 )}] Correltion coefficient ρ 2 (X,X 2 ) ρ 2 = Cov(X,X 2 ) {Vr(X )Vr(X 2 )} Liner regression coefficient, β 2, for X on X 2 β 2 = Cov(X,X 2 ) Vr(X 2 ) 4

Probbility generting function G(z) G(z) = P(0) + P()z + P(2)z 2 + + P(r)z r +, where P(r) = P(X = r) Binomil distribution (X, p,n) P(X = k) = ( N k E(X) = N p ) p k ( p) N k Vr(X) = N p( p) G(z) = [pz + ( p)] N Poisson distribution (X,m) P(X = k) = e m m k k! E(X) = m Vr(X) = m G(z) = e m e mz Norml distribution If X is distributed N(µ,σ 2 ) then X µ σ is distributed N(0,) where σ is the stndrd devition nd σ 2 is the vrince. 5

STATISTICS µ, σ 2 popultion men nd vrince X i ith rndom selection in smple size n Smple men X = n ΣX i Smple vrince S 2 = n Σ(X i X) 2 E(S 2 ) = σ 2 E(X) = µ Vr(X) = Vr(X) n = σ 2 n One smple t-test t n = X µ o S/ n Two smple t-test t n +n 2 2 = X X 2 S ( + ) n n 2 where S 2 = Σ(x x ) 2 + Σ(x 2 x 2 ) 2 n + n 2 2 nd n, n 2 re the sizes of the two smples 6

Pired smple t-test t n = s 2 = Vr(y) Y S ( ) where Y j = X j X 2 j ( j =,2,3,...,n) nd n Spermn s rnk correltion coefficient ρ ρ = 6Σ d2 n(n 2 ) Kendll s rnk correltion coefficient r ( ) ( ) Number of greed Number of different pir rnkings pir rnkings r = = Number of pirs S 2n(n ) Pired smple Wilcoxon (n > 8) T = (sum of the rnks with the less frequent sign) Z = T T s distributed N(0,); T = n(n + ) ; s 2 n(n + )(2n + ) = 4 24 7

Tble The stndrdised norml distribution Entry represents re under the stndrdized norml distribution from the men to Z Z.00.0.02.03.04.05.06.07.08.09 0.0.0000.0040.0080.020.060.099.0239.0279.039.0359 0..0398.0438.0478.057.0557.0596.0636.0675.074.0754 0.2.0793.0832.087.090.0948.0987.026.064.03.4 0.3.79.27.255.293.33.368.406.443.480.57 0.4.554.59.628.664.700.736.772.808.844.879 0.5.95.950.985.209.2054.2088.223.257.290.2224 0.6.2258.229.2324.2357.2389.2422.2454.2486.258.2549 0.7.2580.262.2642.2673.2704.2734.2764.2794.2823.2852 0.8.288.290.2939.2967.2996.3023.305.3079.306.333 0.9.359.386.322.3238.3264.3289.335.3340.3365.3389.0.343.3438.346.3485.3508.353.3554.3577.3599.362..3643.3665.3686.3708.3729.3749.3770.3790.380.3830.2.3849.3869.3888.3907.3925.3944.3962.3980.3997.405.3.4032.4049.4066.4082.4099.45.43.447.462.477.4.492.4207.4222.4236.425.4265.4279.4292.4306.439.5.4332.4345.4357.4370.4382.4394.4406.448.4430.444.6.4452.4463.4474.4485.4495.4505.455.4525.4535.4545.7.4554.4564.4573.4582.459.4599.4608.466.4625.4633.8.464.4649.4656.4664.467.4678.4686.4693.4700.4706.9.473.479.4726.4732.4738.4744.4750.4756.4762.4767 2.0.4773.4778.4783.4788.4793.4798.4803.4808.482.487 2..482.4826.4830.4834.4838.4842.4846.4850.4854.4857 2.2.486.4865.4868.487.4875.4878.488.4884.4887.4890 2.3.4893.4896.4898.490.4904.4906.4909.49.493.496 2.4.498.4920.4922.4925.4927.4929.493.4932.4934.4936 2.5.4938.4940.494.4943.4945.4946.4948.4949.495.4952 2.6.4953.4955.4956.4957.4959.4960.496.4962.4963.4964 2.7.4965.4966.4967.4968.4969.4970.497.4972.4973.4974 2.8.4974.4975.4976.4977.4977.4978.4979.4980.4980.498 2.9.498.4982.4983.4983.4984.4984.4985.4985.4986.4986 3.0.49865.49869.49874.49878.49882.49886.49889.49893.49896.49900 3..49903.49906.4990.4993.4996.4998.4992.49924.49926.49929 3.2.4993.49934.49936.49938.49940.49942.49944.49946.49948.49950 3.3.49952.49953.49955.49957.49958.49960.4996.49962.49964.49965 3.4.49966.49968.49969.49970.4997.49972.49973.49974.49975.49976 3.5.49977.49978.49978.49979.49980.4998.4998.49982.49983.49983 3.6.49984.49985.49985.49986.49986.49987.49987.49988.49988.49989 3.7.49989.49990.49990.49990.4999.4999.49992.49992.49992.49992 3.8.49993.49993.49993.49994.49994.49994.49994.49995.49995.49995 3.9.49995.49995.49996.49996.49996.49996.49996.49996.49997.49997 0 Z 8

Tble 2 Percentge points of Student s t-distribution α.0.05.025.0.005.00 v 3.078 6.34 2.706 3.82 63.657 38.309 2.886 2.920 4.303 6.965 9.925 22.327 3.638 2.353 3.82 4.54 5.84 0.25 4.533 2.32 2.776 3.747 4.604 7.73 5.476 2.05 2.57 3.365 4.032 5.893 6.440.943 2.447 3.43 3.707 5.208 7.45.895 2.365 2.998 3.499 4.785 8.397.860 2.306 2.896 3.355 4.50 9.383.833 2.262 2.82 3.250 4.297 0.372.82 2.228 2.764 3.69 4.44.363.796 2.20 2.78 3.06 4.025 2.356.782 2.79 2.68 3.055 3.930 3.350.77 2.60 2.650 3.02 3.852 4.345.76 2.45 2.624 2.977 3.787 5.34.753 2.3 2.602 2.947 3.733 6.337.746 2.20 2.583 2.92 3.686 7.333.740 2.0 2.567 2.898 3.646 8.330.734 2.0 2.552 2.878 3.60 9.328.729 2.093 2.539 2.86 3.579 20.325.725 2.086 2.528 2.845 3.552 2.323.72 2.080 2.58 2.83 3.527 22.32.77 2.074 2.508 2.89 3.505 23.39.74 2.069 2.500 2.807 3.485 24.38.7 2.064 2.492 2.797 3.467 25.36.708 2.060 2.485 2.787 3.450 26.35.706 2.056 2.479 2.779 3.435 27.34.703 2.052 2.473 2.77 3.42 28.33.70 2.048 2.467 2.763 3.408 29.3.699 2.045 2.462 2.756 3.396 30.30.697 2.042 2.457 2.750 3.385 40.303.684 2.02 2.423 2.704 3.307 60.296.67 2.000 2.390 2.660 3.232 20.289.658.980 2.358 2.67 3.60.282.645.960 2.326 2.576 3.090 t α,v α t 9

Tble 3 Percentge points of the χ 2 distribution α.995.99.975.95.50.20.0.05.025.0.005 v 0.000 0.0002 0.000 0.0039 0.45.64 2.7 3.84 5.02 6.63 7.88 2 0.00 0.020 0.05 0.03.39 3.22 4.6 5.99 7.38 9.2 0.60 3 0.072 0.5 0.26 0.352 2.37 4.64 6.25 7.8 9.35.34 2.84 4 0.207 0.30 0.484 0.7 3.36 5.99 7.78 9.49.4 3.28 4.86 5 0.42 0.55 0.83.5 4.35 7.29 9.24.07 2.83 5.09 6.75 6 0.676 0.87.24.64 5.35 8.56 0.64 2.59 4.45 6.8 8.55 7 0.989.24.69 2.7 6.35 9.80 2.02 4.07 6.0 8.48 20.28 8.34.65 2.8 2.73 7.34.03 3.36 5.5 7.53 20.09 2.95 9.73 2.09 2.70 3.33 8.34 2.24 4.68 6.92 9.02 2.67 23.59 0 2.6 2.56 3.25 3.94 9.34 3.44 5.99 8.3 20.48 23.2 25.9 2.60 3.05 3.82 4.57 0.34 4.63 7.28 9.68 2.92 24.72 26.76 2 3.07 3.57 4.40 5.23.34 5.8 8.55 2.03 23.34 26.22 28.30 3 3.57 4. 5.0 5.89 2.34 6.99 9.8 22.36 24.74 27.69 29.82 4 4.07 4.66 5.63 6.57 3.34 8.5 2.06 23.68 26.2 29.4 3.32 5 4.60 5.23 6.26 7.26 4.34 9.3 22.3 25.00 27.49 30.58 32.80 6 5.4 5.8 6.9 7.96 5.34 20.47 23.54 26.30 28.85 32.00 34.27 7 5.70 6.4 7.56 8.67 6.34 2.62 24.77 27.59 30.9 33.4 35.72 8 6.26 7.0 8.23 9.39 7.34 22.76 25.99 28.87 3.53 34.8 37.6 9 6.84 7.63 8.9 0.2 8.34 23.90 27.20 30.4 32.85 36.9 38.58 20 7.43 8.26 9.59 0.85 9.34 25.04 28.4 3.4 34.7 37.57 40.00 2 8.03 8.90 0.28.59 20.34 26.7 29.62 32.67 35.48 38.93 4.40 22 8.64 9.54 0.98 2.34 2.34 27.30 30.8 33.92 36.78 40.29 42.80 23 9.26 0.20.69 3.09 22.34 28.43 32.0 35.7 38.08 4.64 44.8 24 9.89 0.86 2.40 3.85 23.34 29.55 33.20 36.42 39.36 42.98 45.56 25 0.52.52 3.2 4.6 24.34 30.68 34.38 37.65 40.65 44.3 46.93 26.6 2.20 3.84 5.38 25.34 3.80 35.56 38.89 4.92 45.64 48.29 27.8 2.88 4.57 6.5 26.34 32.9 36.74 40. 43.9 46.96 49.64 28 2.46 3.56 5.3 6.93 27.34 34.03 37.92 4.34 44.46 48.28 50.99 29 3.2 4.26 6.05 7.7 28.34 35.4 39.09 42.56 45.72 49.59 52.34 30 3.79 4.95 6.79 8.49 29.34 36.25 40.26 43.77 46.98 50.89 53.67 40 20.7 22.6 24.43 26.5 39.34 47.27 5.8 55.76 59.34 63.69 66.77 50 27.99 29.7 32.36 34.76 49.33 58.6 63.7 67.5 7.4 76.5 79.49 60 35.53 37.48 40.48 43.9 59.33 68.97 74.40 79.08 83.30 88.38 9.95 70 43.28 45.44 48.76 5.74 69.33 79.7 85.53 90.53 95.02 00.43 04.2 80 5.7 53.34 57.5 60.39 79.33 90.4 96.58 0.88 06.63 2.33 6.3 90 59.20 6.75 65.85 69.3 89.33 0.05 07.57 3.5 8.4 24.2 28.3 00 67.33 70.06 74.22 77.93 99.33.67 8.50 24.34 29.56 35.8 40.2 α χ 2 α,v 20

Tble 4 Upper percentge points of the F-distribution () α = 0.0 v 2 3 4 5 6 7 8 9 0 2 5 20 24 30 v 2 4052.2 4999.5 5403.4 5624.6 5763.7 5859.0 5928.4 598. 6022.5 6055.8 606.3 657.3 6208.7 6234.6 6260.6 2 98.50 99.00 99.7 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 3 34.2 30.82 29.46 28.7 28.24 27.9 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.60 26.5 4 2.20 8.00 6.69 5.98 5.52 5.2 4.98 4.80 4.66 4.55 4.37 4.20 4.02 3.93 3.84 5 6.26 3.27 2.06.39 0.97 0.67 0.46 0.29 0.6 0.05 9.89 9.72 9.55 9.47 9.38 6 3.75 0.93 9.78 9.5 8.75 8.47 8.26 8.0 7.98 7.87 7.72 7.56 7.40 7.3 7.23 7 2.25 9.55 8.45 7.85 7.46 7.9 6.99 6.84 6.72 6.62 6.47 6.3 6.6 6.07 5.99 8.26 8.65 7.59 7.0 6.63 6.37 6.8 6.03 5.9 5.8 5.67 5.52 5.36 5.28 5.20 9 0.56 8.02 6.99 6.42 6.06 5.80 5.6 5.47 5.35 5.26 5. 4.96 4.8 4.73 4.65 0 0.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.7 4.56 4.4 4.33 4.25 9.65 7.2 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.0 4.02 3.94 2 9.33 6.93 5.95 5.4 5.06 4.82 4.64 4.50 4.39 4.30 4.6 4.0 3.86 3.78 3.70 3 9.07 6.70 5.74 5.2 4.86 4.62 4.44 4.30 4.9 4.0 3.96 3.82 3.67 3.59 3.5 4 8.86 6.52 5.56 5.04 4.70 4.46 4.28 4.4 4.03 3.94 3.80 3.66 3.5 3.43 3.35 5 8.68 6.36 5.42 4.89 4.56 4.32 4.4 4.00 3.90 3.8 3.67 3.52 3.37 3.29 3.2 6 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.4 3.26 3.8 3.0 7 8.40 6. 5.9 4.67 4.34 4.0 3.93 3.79 3.68 3.59 3.46 3.3 3.6 3.08 3.00 8 8.29 6.0 5.09 4.58 4.25 4.02 3.84 3.7 3.60 3.5 3.37 3.23 3.08 3.00 2.92 9 8.9 5.93 5.0 4.50 4.7 3.94 3.77 3.63 3.52 3.43 3.30 3.5 3.00 2.93 2.84 20 8.0 5.85 4.94 4.43 4.0 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2 8.02 5.78 4.87 4.37 4.04 3.8 3.64 3.5 3.40 3.3 3.7 3.03 2.88 2.80 2.72 22 7.95 5.72 4.82 4.3 3.99 3.76 3.59 3.45 3.35 3.26 3.2 2.98 2.83 2.75 2.67 23 7.88 5.66 4.77 4.26 3.94 3.7 3.54 3.4 3.30 3.2 3.07 2.93 2.78 2.70 2.62 24 7.82 5.6 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.7 3.03 2.89 2.74 2.66 2.58 25 7.77 5.57 4.68 4.8 3.86 3.63 3.46 3.32 3.22 3.3 2.99 2.85 2.70 2.62 2.54 26 7.72 5.53 4.64 4.4 3.82 3.59 3.42 3.29 3.8 3.09 2.96 2.82 2.66 2.59 2.50 27 7.68 5.49 4.60 4. 3.79 3.56 3.39 3.26 3.5 3.06 2.93 2.78 2.63 2.55 2.47 28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.2 3.03 2.90 2.75 2.60 2.52 2.44 29 7.60 5.42 4.54 4.05 3.73 3.50 3.33 3.20 3.09 3.0 2.87 2.73 2.57 2.50 2.4 30 7.56 5.39 4.5 4.02 3.70 3.47 3.30 3.7 3.07 2.98 2.84 2.70 2.55 2.47 2.39 40 7.3 5.8 4.3 3.83 3.5 3.29 3.2 2.99 2.89 2.80 2.67 2.52 2.37 2.29 2.20 60 7.08 4.98 4.3 3.65 3.34 3.2 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.2 2.03 20 6.85 4.79 3.95 3.48 3.7 2.96 2.79 2.66 2.56 2.47 2.34 2.9 2.04.95.86 6.64 4.6 3.78 3.32 3.02 2.80 2.64 2.5 2.4 2.32 2.9 2.04.88.79.70 α F α,v,v 2 2

Tble 4 (continued) () α = 0.025 v 2 3 4 5 6 7 8 9 0 2 5 20 24 30 v 2 647.79 799.50 864.6 899.58 92.85 937. 948.22 956.66 963.28 968.63 976.7 984.87 993.0 997.25 00.4 2 38.5 39.00 39.7 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.4 39.43 39.45 39.46 39.47 3 7.44 6.04 5.44 5.0 4.88 4.73 4.62 4.54 4.47 4.42 4.34 4.25 4.7 4.2 4.08 4 2.22 0.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.5 8.46 5 0.0 8.43 7.76 7.39 7.5 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6 8.8 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.7 5.2 5.07 7 8.07 6.54 5.89 5.52 5.29 5.2 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.42 4.36 8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.0 4.00 3.95 3.89 9 7.2 5.7 5.08 4.72 4.48 4.32 4.20 4.0 4.03 3.96 3.87 3.77 3.67 3.6 3.56 0 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.3 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.7 3.2 2 6.55 5.0 4.47 4.2 3.89 3.73 3.6 3.5 3.44 3.37 3.28 3.8 3.07 3.02 2.96 3 6.4 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.3 3.25 3.5 3.05 2.95 2.89 2.84 4 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.2 3.5 3.05 2.95 2.84 2.79 2.73 5 6.20 4.77 4.5 3.80 3.58 3.4 3.29 3.20 3.2 3.06 2.96 2.86 2.76 2.70 2.64 6 6.2 4.69 4.08 3.73 3.50 3.34 3.22 3.2 3.05 2.99 2.89 2.79 2.68 2.63 2.57 7 6.04 4.62 4.0 3.66 3.44 3.28 3.6 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 8 5.98 4.56 3.95 3.6 3.38 3.22 3.0 3.0 2.93 2.87 2.77 2.67 2.56 2.50 2.45 9 5.92 4.5 3.90 3.56 3.33 3.7 3.05 2.96 2.88 2.82 2.72 2.62 2.5 2.45 2.39 20 5.87 4.46 3.86 3.5 3.29 3.3 3.0 2.9 2.84 2.77 2.68 2.57 2.46 2.4 2.35 2 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.3 22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 23 5.75 4.35 3.75 3.4 3.8 3.02 2.90 2.8 2.73 2.67 2.57 2.47 2.36 2.30 2.24 24 5.72 4.32 3.72 3.38 3.5 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.2 25 5.69 4.29 3.69 3.35 3.3 2.97 2.85 2.75 2.68 2.6 2.5 2.4 2.30 2.24 2.8 26 5.66 4.27 3.67 3.33 3.0 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.6 27 5.63 4.24 3.65 3.3 3.08 2.92 2.80 2.7 2.63 2.57 2.47 2.36 2.25 2.9 2.3 28 5.6 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.6 2.55 2.45 2.34 2.23 2.7 2. 29 5.59 4.20 3.6 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.2 2.5 2.09 30 5.57 4.8 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.5 2.4 2.3 2.20 2.4 2.07 40 5.42 4.05 3.46 3.3 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.8 2.07 2.0.94 60 5.29 3.93 3.34 3.0 2.79 2.63 2.5 2.4 2.33 2.27 2.7 2.06.94.88.82 20 5.5 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.6 2.05.95.82.76.69 5.02 3.69 3.2 2.79 2.57 2.4 2.29 2.9 2. 2.05.94.83.7.64.57 22

Tble 4 (continued) () α = 0.05 v 2 3 4 5 6 7 8 9 0 2 5 20 24 30 v 2 6.45 99.50 25.7 224.58 230.6 233.99 236.77 238.88 240.54 24.88 243.9 245.95 248.0 249.05 250.0 2 8.5 9.00 9.6 9.25 9.30 9.33 9.35 9.37 9.38 9.40 9.4 9.43 9.45 9.45 9.46 3 0.3 9.55 9.28 9.2 9.0 8.94 8.89 8.85 8.8 8.79 8.74 8.70 8.66 8.64 8.62 4 7.7 6.94 6.59 6.39 6.26 6.6 6.09 6.04 6.00 5.96 5.9 5.86 5.80 5.77 5.75 5 6.6 5.79 5.4 5.9 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 6 5.99 5.4 4.76 4.53 4.39 4.28 4.2 4.5 4.0 4.06 4.00 3.94 3.87 3.84 3.8 7 5.59 4.74 4.35 4.2 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.5 3.44 3.4 3.38 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.5 3.2 3.08 9 5.2 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.8 3.4 3.07 3.0 2.94 2.90 2.86 0 4.96 4.0 3.7 3.48 3.33 3.22 3.4 3.07 3.02 2.98 2.9 2.85 2.77 2.74 2.70 4.84 3.98 3.59 3.36 3.20 3.09 3.0 2.95 2.90 2.85 2.79 2.72 2.65 2.6 2.57 2 4.75 3.89 3.49 3.26 3. 3.00 2.9 2.85 2.80 2.75 2.69 2.62 2.54 2.5 2.47 3 4.67 3.8 3.4 3.8 3.03 2.92 2.83 2.77 2.7 2.67 2.60 2.53 2.46 2.42 2.38 4 4.60 3.74 3.34 3. 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.3 5 4.54 3.68 3.29 3.06 2.90 2.79 2.7 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 6 4.49 3.63 3.24 3.0 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.9 7 4.45 3.59 3.20 2.96 2.8 2.70 2.6 2.55 2.49 2.45 2.38 2.3 2.23 2.9 2.5 8 4.4 3.55 3.6 2.93 2.77 2.66 2.58 2.5 2.46 2.4 2.34 2.27 2.9 2.5 2. 9 4.38 3.52 3.3 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.3 2.23 2.6 2. 2.07 20 4.35 3.49 3.0 2.87 2.7 2.60 2.5 2.45 2.39 2.35 2.28 2.20 2.2 2.08 2.04 2 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.8 2.0 2.05 2.0 22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.5 2.07 2.03.98 23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.3 2.05 2.0.96 24 4.26 3.40 3.0 2.78 2.62 2.5 2.42 2.36 2.30 2.25 2.8 2. 2.03.98.94 25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.6 2.09 2.0.96.92 26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.5 2.07.99.95.90 27 4.2 3.35 2.96 2.73 2.57 2.46 2.37 2.3 2.25 2.20 2.3 2.06.97.93.88 28 4.20 3.34 2.95 2.7 2.56 2.45 2.36 2.29 2.24 2.9 2.2 2.04.96.9.87 29 4.8 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.8 2.0 2.03.94.90.85 30 4.7 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.2 2.6 2.09 2.0.93.89.84 40 4.08 3.23 2.84 2.6 2.45 2.34 2.25 2.8 2.2 2.08 2.00.92.84.79.74 60 4.00 3.5 2.76 2.53 2.37 2.25 2.7 2.0 2.04.99.92.84.75.70.65 20 3.92 3.07 2.68 2.45 2.29 2.8 2.09 2.02.96.9.83.75.66.6.55 3.84 3.00 2.60 2.37 2.2 2.0 2.0.94.88.83.75.67.57.52.46 23