Large Deviations for Stochastic Systems with Memory

Σχετικά έγγραφα
On Generating Relations of Some Triple. Hypergeometric Functions

Homework for 1/27 Due 2/5

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Uniform Convergence of Fourier Series Michael Taylor

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

A study on generalized absolute summability factors for a triangular matrix

On Inclusion Relation of Absolute Summability

Every set of first-order formulas is equivalent to an independent set

Solve the difference equation

LAD Estimation for Time Series Models With Finite and Infinite Variance

EN40: Dynamics and Vibrations

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

Example Sheet 3 Solutions

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Solutions: Homework 3

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Statistical Inference I Locally most powerful tests


Other Test Constructions: Likelihood Ratio & Bayes Tests

C.S. 430 Assignment 6, Sample Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

IIT JEE (2013) (Trigonomtery 1) Solutions

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

2 Composition. Invertible Mappings

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Fractional Colorings and Zykov Products of graphs

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

Proof of Lemmas Lemma 1 Consider ξ nt = r

ST5224: Advanced Statistical Theory II

The Heisenberg Uncertainty Principle

Homework 3 Solutions

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

SOME PROPERTIES OF FUZZY REAL NUMBERS

Degenerate Perturbation Theory

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

The Neutrix Product of the Distributions r. x λ

A Note on Intuitionistic Fuzzy. Equivalence Relation

Lecture 2. Soundness and completeness of propositional logic

Homework 4.1 Solutions Math 5110/6830

derivation of the Laplacian from rectangular to spherical coordinates

On a four-dimensional hyperbolic manifold with finite volume

Ψηφιακή Επεξεργασία Εικόνας

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

EE512: Error Control Coding

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Matrices and Determinants

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

Homomorphism in Intuitionistic Fuzzy Automata

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Congruence Classes of Invertible Matrices of Order 3 over F 2

Bessel function for complex variable

Second Order Partial Differential Equations

α β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Tridiagonal matrices. Gérard MEURANT. October, 2008

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Data Dependence of New Iterative Schemes

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Solution Series 9. i=1 x i and i=1 x i.

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

Areas and Lengths in Polar Coordinates

EE 570: Location and Navigation

Reminders: linear functions

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

5. Choice under Uncertainty

Certain Sequences Involving Product of k-bessel Function

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

1. Introduction. Main Result. 1. It is well known from Donsker and Varadhan [1], the LDP for occupation measures. I(ξ k A) (1.

Presentation of complex number in Cartesian and polar coordinate system

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Srednicki Chapter 55

Inverse trigonometric functions & General Solution of Trigonometric Equations

Knaster-Reichbach Theorem for 2 κ

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Section 8.3 Trigonometric Equations

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Transcript:

Souther Illiois Uiversity Carbodale OpeSIUC Articles ad Preprits Departmet of Mathematics 7-6 Large Deviatios for Stochastic Systems with Memory Salah-Eldi A. Mohammed Souther Illiois Uiversity Carbodale, salah@sfde.math.siu.edu Tusheg Zhag Uiversity of Machester Follow this ad additioal works at: http://opesiuc.lib.siu.edu/math_articles Part of the Mathematics Commos This is a pre-copy-editig, author-produced PDF of a article accepted for publicatio i Discrete ad Cotiuous Dyamical Systems-Series B followig peer review. The defiitive publisher-autheticated versio "Large Deviatios for Stochastic Systems with Memory", Discrete ad Cotiuous Dyamical Systems-Series B, 64, 881-893 is available olie at: http://aimscieces.org/jourals/dcdsb/ dcdsb_olie.jsp. Recommeded Citatio Mohammed, Salah-Eldi A. ad Zhag, Tusheg. "Large Deviatios for Stochastic Systems with Memory." Jul 6. This Article is brought to you for free ad ope access by the Departmet of Mathematics at OpeSIUC. It has bee accepted for iclusio i Articles ad Preprits by a authorized admiistrator of OpeSIUC. For more iformatio, please cotact opesiuc@lib.siu.edu.

Mauscript submitted to Website: http://aimscieces.org AIMS Jourals Volume, Number, Xxxx XXXX pp. LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG Abstract. I this paper, we develop a large deviatios priciple for stochastic delay equatios drive by small multiplicative white oise. Both upper ad lower large deviatios estimates are established. 1. Itroductio. Large deviatios were studied by may authors begiig with the fudametal work of Dosker ad Varadha [4],[5],[6]. Subsequetly several issues cocerig large deviatio priciples ad their applicatios to stochastic differetial equatios were studied by may authors, e.g. Freidli ad Wetzell [8], Stroock [18], Deuschel ad Stroock [3], de Hollader [], ad others. However, there is little published work o large deviatios for stochastic systems with memory. The problem of large deviatios for such systems was first studied by M. Scheutzow [16] withi the cotext of additive white oise. Stochastic systems with memory or stochastic differetial delay equatios sdde s serve as viable models i a variety of applicatios, ragig from ecoomics ad fiace to sigal processig Elsaosi, ksedal ad Sulem [7], Kolmaovskii ad Myshkis [1]. The origis of the qualitative theory of stochastic systems with memory goes back to work by Itô ad Nisio [9], Kusher [11], Mizel ad Trutzer [13], Mohammed [14], Scheutzow [17], Mao [1] ad others. I this paper we examie the questio of small radom perturbatios of systems with memory ad the associated problem of large deviatios. Our aalysis allows for multiplicative oise with possible depedece o the history i the diffusio coefficiet. Our approach is similar to that i [1] ad [18], but itroduces a ew iductio argumet i order to hadle the delay.. Basic Settig ad Notatio. Let W t := Wt 1, Wt,..., Wt l deote a stadard l-dimesioal Browia motio o a complete filtered probability space Ω, F, F t t, P, with W =. Let b = b 1, b,..., b d : R + R d R d R d, σ = σ ij i=1, d,j=1,,l : R + R d R d R d R l be Borel measurable fuctios. We itroduce the followig coditios: The research of the first author is ported i part by NSF grats DMS-973596, DMS-9989 ad DMS-3368. 1

SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG A1 The fuctios b, σ satisfy a Lipschitz coditio. That is, there exist costats L 1, L such that for all x 1, x, y 1, y ad t [,, σt, x 1, y 1 σt, x, y R d R L 1 x l 1 x + y 1 y, 1 bt, x 1, y 1 bt, x, y R d L x 1 x + y 1 y. A The fuctios b, x, y, σ, x, y are cotiuous o [,, uiformly i x, y R d, i.e., bs, x, y bt, x, y =, 3 s t x,y R d σs, x, y σt, x, y =. 4 s t x,y R d Let τ > be a fixed delay, ad ψ be a give cotiuous fuctio o [ τ, ]. Cosider the followig differetial delay equatio dde: dxt = bt, Xt, Xt τ dt, t, Xt = ψt, t [ τ, ], ad the associated perturbed sdde: dx t = b t, X t, X t τ dt + 1 σ t, X t, X t τ dw t, t, X t = ψt, t [ τ, ], with solutio X. 5 6 Throughout this paper, we will assume, without loss of geerality, that the delay τ is equal to 1. 3. Statemet of the Mai Theorem ad Proofs. Let C [, m], R l deote the space of all cotiuous fuctios g : [, m] R l with g =. If g C [, m], R l is absolutely cotiuous, set eg = m ġt dt. Otherwise, defie eg =. Let F g be the solutio to the dde F gt = F g + + F gt = ψt, 1 t. b s, F gs, F gs 1 ds σ s, F gs, F gs 1 ġsds, < t m Deote by C ψ [ 1, m], R d the set of all cotiuous fuctios f : [ 1, m] R d such that ft = ψt for all t [ 1, ]. 7 Theorem 3.1. Let µ be the law of X o C ψ [ 1, m], R d, equipped with the uiform topology. The family {µ, > } satisfies a large deviatio priciple with the followig good rate fuctio { } 1 If := if eg; F g = f, f C ψ [ 1, m], R d. 8 That is,

LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 3 i for ay closed subset C C ψ [ 1, m], R d, ii for ay ope subset G C ψ [ 1, m], R d, log µ C if If, 9 f C if log µ G if If. 1 f G The rest of the paper is devoted to the proof of this result. The proof is split ito several lemmas. For ay > ad ay 1, deote by X the solutio to the sdde: X t = X + + 1 X t = ψt, t [ 1, ]. b s, Xs, Xs 1 ds [s] [s] σ, X [s], X 1 dw s, t >, 11 We eed the followig lemma from Stroock [18] p. 81. Lemma 3.. Let α : [, Ω R d R l ad β : [, Ω R d be F t t -progressively measurable processes. Assume that α A ad β B, where the orm of α is the Hilbert-Schmidt orm ad the orm of β is the usual orm i R d. Set ξt := αsdw s + βsds for t. Let T > ad R > satisfy d 1 BT < R. The P ξt R d exp R d 1 BT /A dt. 1 t T Lemma 3.3. I additio to A.1 ad A., assume that b, σ are bouded. The for ay m 1, δ >, the followig is true: log P X t X t > δ =. 13 Proof. We prove 13 by iductio o m. We first prove it for m = 1. Set Y t := X t X t, t. The For ρ >, defie τ,ρ Y t = [ b s, X s, X s 1 b s, X s, X s 1 ] ds + 1 ξ,ρ := if{t, Y,ρt δ}. The [ σ s, X s, X s 1 ] [s] X 1 [s] σ, X dw s, t. [s] := if{t ; X t X [t] ρ}, ad set Y,ρt := Y t τ,ρ, t, P Y t > δ = P Y t > δ, τ,ρ 1 t 1 t 1 + P Y t > δ, τ,ρ > 1 t 1 P τ,ρ 1 + P ξ,ρ 1., 14 15

4 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG Observe that P τ,ρ 1 k=1 P k 1 t k Usig Lemma 3., there exists a costat c ρ > such that Hece, X t X k 1 ρ. 16 P τ,ρ 1 exp c ρ /, 1. 17 For λ >, defie φ λ y := ρ + y λ, y R d. By Itô s formula, M,ρ t is a martigale with iitial value zero, where, log P τ,ρ 1 =. 18 := φ λ Y,ρt τ,ρ γ λs := λρ + Y s λ 1 Y s, bs, X s, X s 1 γ λsds ρ λ 19 b s, X s, X s 1 + λλ 1ρ + Y s λ σ s, X s, X s 1 [s] [s] σ, X, X [s] 1 Y s + λ ρ + Y s λ 1 σ s, X s, X s 1 [s] [s] [s] σ, X, X 1 H.S. for s t τ,ρ. Noticig that X u = ψu ad X u = ψu for u, we see that γ λs cλφ λ Y s + { 4λλ 1 ρ + Y s λ Y s + λ ρ + Y s λ 1} { σs, X s, X s 1 [s] σ, X s, X s 1 + Y s + [s] X s X + [s] } ψs 1 ψ 1. By uiform cotiuity, there exists a iteger N so that ad for s 1 ad all N. Thus for N, σs, X s, X s 1 σ [s], X s, X s 1 < ρ ψs 1 ψ [s] 1 < ρ γ λs cλ + λ + λ φ λ Y s. 1 Choose λ = 1 ad take expectatios i 19 to obtai E[ρ + Y,ρt 1/ ] ρ / + C E[ρ + Y,ρs 1/ ]ds.

LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 5 Hece, E[ρ + Y,ρt 1/ ] ρ / e Ct. Sice we have Therefore, ρ + δ 1 P ξ,ρ 1 E[ρ + Y,ρ1 1/ ], 1 ρ P ξ,ρ 1 ρ + δ e C. ρ log P ξ,ρ 1 log ρ + δ + C. 3 Give M >, first choose ρ sufficietly small so that log ρ +δ + C M, ad the use 18 to choose N so that log P τ,ρ 1 M for N. Combiig these two facts gives log P 1 t 1 ρ X t X t > δ M. Sice M is arbitrary, we have proved 13 for m = 1. Assume ow 13 holds for some iteger m. We will prove it is also true for m + 1. Let Y, τ,ρ be defied as before. I additio, itroduce two ew stoppig times: τ 1,,ρ := if{t ; X t 1 Xt 1 ρ}, { τ,ρ, := if t ; [t] Xt 1 X 1 ρ}, ad defie Z,ρt := Y t τ 1,,ρ τ,,ρ τ,ρ ad ξ,ρ := if{t ; Z,ρt δ}. We the have As i the proof of 18, P Y t > δ P τ,ρ 1, τ,ρ, τ,ρ m + 1 t m+1 + P Y t > δ, τ,ρ 1, τ,ρ, τ,ρ > m + 1 t m+1 P τ 1,,ρ m + 1 + P τ,ρ τ,,ρ m + 1 + P ξ,ρ m + 1. 4 By the iductio hypothesis, Agai by Itô s formula, log P τ,ρ τ,ρ, m + 1 =. 5 log P τ,ρ 1, m + 1 log P M,ρ t τ := φ λ Z,ρt,ρ X t X t > ρ =. 1,, τ,ρ τ,ρ 6 γ λsds ρ λ 7

6 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG is a martigale with M,ρ =, where γ λs λρ + Y s λ 1 Y s Y s + X s 1 X s 1 + { 4λλ 1ρ + Y s λ Y s + λρ + Y s λ 1} { σs, X s, X s 1 [s] σ, X s, X s 1 [s] + Y s + X s X + } X [s] s 1 X 1 + X s 1 Xs 1 λρ + Y s λ 1 Y s Y s + ρ 8 + { 4λλ 1ρ + Y s λ Y s + λρ + Y s λ 1} Y s + 4ρ cλ + λ + λ φy s for s τ,ρ τ 1,,ρ τ,,ρ m + 1, ad sufficietly large. Usig 5, 6 ad followig the proof of the case for m = 1, we see that 13 is also true for m + 1. This completes the proof of the lemma. For 1, defie the map F : C [, m], R l C ψ [ 1, m], R d by F ωt := ψt, 1 t k t F ωt := F ω + bs, F ωs, F ωs 1ds k k k k k + σ, F ω, F ω 1 ωt ω for k t k+1. It is easy to see that F : C [, m], R l C ψ [ 1, m], R d is cotiuous. 9 Lemma 3.4. {g;eg α} F gt F gt =. Proof. Note that for g with eg α, Thus, F gt =F g + b s, F gs, F gs 1 ds [s] [s] [s] + σ, F g, F g 1 ġsds. F gt F gt = + [ bs, F gs, F gs 1 b s, F gs, F gs 1 ] ds [ [s] σ, F g [s] [s], F g 1 3 31 σ s, F gs, F gs 1 ] ġsds.

LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 7 By the liear growth coditio o b ad σ, we have F gt ψ + C + C Usig Growwall s iequality, this implies that 1 + F gu ds 1 u s 1 + F gu ġ sds. 1 u s I particular, M α = 1 1 u m g;eg α 1 1 u m F g u C exp m + eg. 3 Agai by the liear growth coditio ad 3, we have F gu C expm + α <. 33 [s] F gt F g + σ [t] t b s, F gs, F gs 1 ds [t] [s] [s] [s], F g, F g 1 ġ sds 1 1 C α M α 34 uiformly over the set {g; eg α}. Thus, F gt F gt C + C + F gs F gs ds + C F gs 1 F gs 1 ds [s] σ, x, y σs, x, y ġ sds x,y [ F gs 1 F gs 1 + F gs F gs ] ġ sds [ F [s] + gs F g + ] [s] F gs 1 F g 1 ġ sds 35 [ 1 1 [s] C α + σ s x,y, x, y σs, x, y ] + + 1 u s 1 u s F gu F gu ds F gu F gu ġ sds. 36

8 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG This gives, Hece, F gu F gu 1 u m CC α [ 1 1 + s {g;eg α} [s] σ x,y, x, y σs, x, y ]. F gt F gt =. 37 This proves the lemma. Proof of Theorem 3.1 whe b, σ are bouded. Notice that X s = F 1 W s, where W is the Browia motio. The theorem follows from Lemma 3.3, Lemma 3.4 ad the geeralized cotractio priciple Theorem 4..3 [1] i large deviatios theory.. Next, we remove the boudedess assumptios o b ad σ. We begi with Propositio 3.5. Assume that σt, x, y C1 + x + y, 38 bt, x, y C1 + x + y, 39 for all x, y R d. The for each iteger m 1, R where X is the solutio to equatio 6. log P X t > R = 4 Proof. We use iductio o m. We first prove 4 for m = 1. For λ >, set φ λ y := 1 + y λ, y R d. By Itô s formula, the process M λ t := φ λ X t γ λsds 1 + x λ, t, 41 is a martigale with iitial value zero, where γλs = λ 1 + X s λ 1 X s, b s, X s, X s 1 + λλ 1 1 + X s λ σs, X s, X s 1 X s + λ 1 + X s λ 1 σ s, X s, X s 1 H.S,

LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 9 for s 1. Sice X u = ψu for u, it follows that γ λs λ 1 + X s λ 1 X s [ 1 + X s + 1 t + λλ 1 1 + X s λ X s [ 1 + X s + ψt ] + λ 1 + X s λ 1[ 1 + X s 1 t + ψt ] Cψ λ + λλ + 1 φλ X s. 1 t ψt ] 4 Let ξr := if{t, X t > R}. Choosig λ = 1, it follows from 4 that E [ 1 + X t ξr 1 ] Hece, 1 + x 1 + C E [ 1 + X s ξr ] 43 1 ds. E [ 1 + X t ξr ] 1 1 + x 1 C e. 44 This implies Hece, R P X t > R P ξr 1 1 t 1 45 1 + R 1 1 + x 1 C e. log P 1 t 1 X t > R =. 46 Assume ow that 4 holds for some m. We will prove that it is also true for m + 1. For R 1 >, set ξ 1 := if{t, X t 1 R 1 } ad X 1t := X t ξ 1. Defie ξ R := if{t, X 1t R}. The, P As before, by Itô s formula, +1 X t > R 47 P ξ 1 m + 1 + P ξ R m + 1 48 = P X t > R 1 + P ξr m + 1. 49 M λ t ξ := φ λ X1t 1 γλsds 1 + x λ, t, 5 is a martigale with iitial value zero, where γ λs λ 1 + X s λ 1 X s [ 1 + X s + R 1 ] + 4λλ 11 + X s λ X s [1 + X s + R 1 ] + λ 1 + X s λ 1[ 1 + X s + R 1 ] 51 C R1 λ + λλ + 1 φλ X s. for s 1 ξ 1.

1 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG Usig 51 ad the proof of 46, we get log P ξr m + 1 log1 + R + log1 + x + C R1 m + 1. 5 Thus it follows from 49 that log P X t R t m+1 log P X t R 1 t m log1 + R + log1 + x + C R1 m + 1. 53 Hece, R log P X t R t m+1 log P X t R 1. t m Usig the iductio hypothesis ad lettig R 1 we obtai 4 for m + 1. This completes the proof of the propositio. For R >, defie m R := { bt, x, y, σt, x, y ; t [, m], x R, y R} ad b R i := m R 1 b i m R + 1, σ R i,j := m R 1 σ i,j m R + 1, 1 i, j d. Put b R := b R 1, b R,..., b R d ad σ R := σ R i,j 1 i,j d. The b R t, x, y = bt, x, y, σ R t, x, y = σt, x, y, for t [, m], x R, y R. Furthermore, b R ad σ R satisfy the Lipschitz coditio A.1 with the same Lipschitz costat. Let XR be the solutio to the sdde X Rt = X R + + 1 X Rt = ψt, t [ 1, ]. b R s, X Rs, X Rs 1ds σ R s, X Rs, X Rs 1dW s, t >, 54 Propositio 3.6. Fix m 1. The R log P X t X Rt > δ =. 55 Proof. Agai we will use iductio. We omit the proof for the case m = 1 sice it is similar to that of Lemma 3.3. Let us assume that 55 holds for some m. We will prove that it also holds for m + 1. Set

LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 11 YR t := X t XR t. For R 1 >, defie ξr 1 := if{t ; X t R 1 }. For ay R R 1 we have Y Rt ξ R 1 = ξ R 1 [ br s, X s, X s 1 b R s, X Rs, X Rs 1 ] ds + 1 ξ R 1 [ σr s, X s, X s 1 σ R s, X R s, X Rs 1 ] dw s, t. 56 For ρ >, let φ λ y := ρ + y λ ad τr,ρ := if{t ; X t 1 XR t 1 ρ}. Set Y R,ρ t := YR t ξ R 1 τr,ρ ad ξ R,ρ := if{t ; Y R,ρ t δ}. The P YRt > δ +1 P ξ R 1 m + 1 + P τr,ρ m + 1 + P ξr,ρ m + 1 P X t > R 1 +1 + P X t XRt > ρ + P ξr,ρ m + 1. 57 By the iductio hypothesis, By Itô s formula, log P X t XRt > ρ R =. 58 ξ φ λ YR,ρt R τ 1 R,ρ γλsds ρ λ = M R,ρ t 59 is a martigale with iitial value zero, where, as i the proof of Lemma 3.3, for s t ξ R 1 τ R,ρ, γ λs Cλ + λλ + 1φ λ Y Rs. 6 As before, this implies that Hece, it follows from 57, 58 ad 6 that ρ log P ξr,ρ m + 1 log ρ + δ + C. 61 R log P log P { ρ log ρ + δ +1 +1 } + C. Y Rt > δ X t > R 1 6 By Propositio 3.5, lettig first ρ ad the, R 1, we obtai 55 for m+1. The proof of Propositio 3.6 is complete.

1 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG For g with eg <, let F R g be the solutio to the dde F R gt = F R g + + F R gt = ψt, 1 t. b R s, FR gs, F R gs 1 ds σ R s, FR gs, F R gs 1 ġsds 63 Defie for each f C ψ [ 1, m] R d. If { } 1 I R f := if eg; F Rg = f F gt R, the F g = F R g. Therefore, 64 If = I R f, for all f with ft R. 65 Lemma 3.7. I is a good rate fuctio o C ψ [ 1, m], R d ; that is, for ay α, the level set {f; If α} is compact. Proof. As i Lemma 3.4, we ca show that R eg α F R g F g =. I particular, this implies that F is cotiuous o each level set {g; eg α}. Sice e is a good rate fuctio, this is sufficiet to coclude that I is also a good rate fuctio. Proof of Theorem 3.1 i the ubouded case. For R > ad a closed subset C C ψ [ 1, m], R l, set C R = C {f; f R}. C δ R deotes the δ-eighborhood of C R. Deote by µ R µ C µ C R1 + P X t > R 1 µ R C δ R 1 + P Usig the large deviatio priciple for {µ R, > }, we obtai Sedig R to ifiity gives log µ C X t X Rt > δ + P X t > R 1. if I R f log P f CR δ 1 log µ C log P X t X Rt > δ. if If log P f CR δ 1 Lettig first δ, ad the R 1, we obtai which is the upper boud 9 i Theorem 3.1. log µ C if If f C the law of XR. The we have X t > R 1 X t > R 1. 66 67 68

LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 13 Let G be a ope subset of C ψ [ 1, m] R d. Fix ay φ G ad choose δ > such that Bφ, δ = {f; f φ δ} G. The I R φ log µ R Bφ, δ log µ G log P X t XRt > δ Note that I R φ = Iφ for all R φ. So, lettig R i the above iequality, we get. 69 Sice φ is arbitrary, it follows that Iφ log µ G. 7 if If log µ G f G which is the lower boud 1 i Theorem 3.1. The proof of Theorem 3.1 is ow complete. Remark. The results i this paper ca be easily exteded to the case, where differet delays τ 1, τ are allowed i 6: dx t = b t, X t, X t τ 1 dt + 1 σ t, X t, X t τ dw t, X t = ψt, t [ τ 1 τ, ]. t,, 71 REFERENCES [1] Dembo, A. ad Zeitoui, A, Large Deviatios Techiques ad Applicatios, Spriger-Verlag, Berli Heidelberg, 1998. [] de Hollader, F., Large deviatios, Fields Istitute Moographs, 14. America Mathematical Society, Providece, RI,, pp.143 [3] Deuschel, J.-D., ad Stroock, D. W., Large Deviatios, Academic Press, Bosto, Sa Diego, New York, 1989. [4] Dosker, M., ad Varadha, S. R. S., Asymptotic evaluatio of certai Markov process expectatios for large time, I, Comm. Pure Appl. Math., 8, 1975, 1-47. [5] Dosker, M., ad Varadha, S. R. S., Asymptotic evaluatio of certai Markov process expectatios for large time, II, Comm. Pure Appl. Math., 8, 1975, 79-31. [6] Dosker, M., ad Varadha, S. R. S., Asymptotic evaluatio of certai Markov process expectatios for large time, III, Comm. Pure Appl. Math., 9, 1976, 389-461. [7] Elsaosi, I., ksedal, B., ad Sulem, A., Some solvable stochastic cotrol problems with delay, Stochastics Stochastics Rep. 71, o. 1-, 69-89. [8] Freidli, M. I., ad Wetzell, A. D., Radom Perturbatios of Dyamical Systems, Spriger-Verlag, New York, Berli, Heidelberg, Tokyo, 1984. [9] Itô, K., ad Nisio, M., O statioary solutios of a stochastic differetial equatio, J. Math. Kyoto Uiversity, 4-1 1964, 1 75. [1] Kolmaovskii, V., ad Myshkis, A., Itroductio to the theory ad applicatios of fuctioal-differetial equatios, Mathematics ad its Applicatios, 463, Kluwer Academic Publishers, Dordrecht 1999. [11] Kusher, H. J., O the stability of processes defied by stochastic differetial-differece equatios, J. Differetial Equatios, 4 1968, 44-443. [1] Mao, X., Stochastic differetial equatios ad their applicatios, Horwood Series i Mathematics & Applicatios, Horwood Publishig Limited, Chichester, 1997, pp. 366. [13] Mizel, V. J. ad Trutzer, V, Stochastic hereditary equatios: existece ad asymptotic stability, Joural of Itegral Equatios 7 1984, 1 7. [14] Mohammed, S.-E. A., Stochastic Fuctioal Differetial Equatios, Research Notes i Mathematics, 99, Pitma Advaced Publishig Program, Bosto, Lodo, Melboure 1984.

14 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG [15] Mohammed, S.-E. A., Stochastic differetial systems with memory: Theory, examples ad applicatios, Stochastic Aalysis ad Related Topics VI, The Geilo Workshop, 1996, eds. L. Decreusefod, J. Gjerde, B. ksedal ad A.S. Ustuel, Progress i Probability, vol. 4, Birkhauser 1998. [16] Scheutzow, M., Qualitative behaviour of stochastic delay equatios with a bouded memory, Stochastics 1 1984, o. 1, 41 8. [17] Scheutzow, M., Statioary ad Periodic Stochastic Differetial Systems: A study of qualitative chages with respect to the oise level ad asymptotics, Habilitatiosschrift, Fachbereich Mathematik, Uiversity of Kaiserslauter, Germay, 1988. [18] Stroock, D.W., A Itroductio to the Theory of Large Deviatios, Spriger-Verlag, Berli, 1984. [19] Zhag, T.S., O the small time asymptotics of diffusios o Hilbert spaces, Aals of Probability 8: 537-557. [] Zhag, T.S., A large deviatio priciple of diffusios o cofiguratio spaces, Stochastic Processes ad Applicatios 91 1 39-54. Departmet of Mathematics, Souther Illiois Uiversity, Carbodale, Illiois, U.S.A. Departmet of Mathematics, Uiversity of Machester, Oxford Road, Machester M13 9PL, Eglad, U.K.