Ανάκτηση Πληροφορίας. Φροντιστήριο 3

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάκτηση Πληροφορίας. Φροντιστήριο 3"

Transcript

1 Ανάκτηση Πληροφορίας Φροντιστήριο 3 Τσιράκης Νίκος Νοέμβριος 2007

2 2 Περιεχόμενα Ανεστραμμένα Αρχεία Εισαγωγή Δημιουργία Συμπίεση Πιθανοτικά Μοντέλα

3 3 Ανεστραμμένα Αρχεία

4 4 Εισαγωγή Με ποιους τρόπους μπορούμε να αναζητήσουμε πληροφορία από μία συλλογή κειμένων; Ο πιο απλός και εύκολα υλοποιήσιμος τρόπος είναι να ψάξουμε σειριακά όλα τα κείμενα της συλλογής. Ένας άλλος τρόπος είναι να χτίσουμε ειδικές δομές δεδομένων (index structures) ώστε να επιταχύνουμε τη διαδικασία αναζήτησης.

5 5 Εισαγωγή Η χρήση δεικτών είναι ευρεία στα συστήματα βάσεων δεδομένων (π.χ. Oracle, MySQL, SQLserver). Οι δείκτες έχουν την ικανότητα να απορρίπτουν ένα μεγάλο τμήμα των δεδομένων το οποίο δεν συμμετέχει στην απάντηση. Παραδείγματα δεικτών: Β-δένδρα, Κατακερματισμός (hashing).

6 6 Εισαγωγή Ένα ανεστραμμένο αρχείο περιέχει, για κάθε όρο στο λεξικό, μια ανεστραμμένη λίστα που φυλάει μια λίστα από δείκτες σε όλες τις εμφανίσεις ενός όρου στο κείμενο, όπου κάθε δείκτης είναι ο αριθμός του κειμένου στο οποίο υπάρχει ο όρος. Ένα ευρετήριο εδώ απαιτεί ένα λεξικό., δηλαδή μια λίστα με όλους τους όρους που υπάρχουν στη βάση δεδομένων.

7 7 Δείκτες για Κείμενα Στην περίπτωση των κειμένων οι μηχανισμοί δεικτοδότησης διαφέρουν από τους αντίστοιχους για αριθμούς. Δείκτες για κείμενα: Αντεστραμμένα Αρχεία (Inverted Files) Suffix Trees, Suffix Arrays Αρχεία Υπογραφών (Signature Files)

8 8 Αντεστραμμένα Αρχεία n: μέγεθος κειμένου m: μήκος του pattern v: μέγεθος λεξιλογίου M: το μέγεθος της διαθέσιμης μνήμης

9 9 Αντεστραμμένα Αρχεία Είναι ένας μηχανισμός δεικτοδότησης στηριζόμενες σε λέξεις (word-based) ο οποίος χρησιμοποιείται για αποδοτικότερη αναζήτηση. Δομή αντεστραμμένου αρχείου: Λεξιλόγιο (vocabulary) Λίστες εμφάνισης

10 10 Παράδειγμα Κείμενο That house has a garden. The garden has many flowers. The flowers are beautiful Αντεστραμμένο Αρχείο Vocabulary Occurrences beautiful 70 flowers 45, 58 garden 18, 29 house 6

11 11 Αντεστραμμένα Αρχεία Οι απαιτήσεις χώρου για την αποθήκευση του λεξιλογίου (vocabulary) είναι αρκετά μικρές. Σύμφωνα με το νόμο του Heap το μέγεθος του λεξιλογίου αυξάνεται ανάλογα του O(n^β) όπου β είναι μία σταθερά μεταξύ 0 και 1. Στην πράξη το β παίρνει τιμές μεταξύ 0.4 και 0.6 Για παράδειγμα για κείμενα συνολικού μεγέθους 1GBytes από τη συλλογή TREC-2 το λεξιλόγιο καταλαμβάνει μόλις 5MBytes.

12 12 Αντεστραμμένα Αρχεία Το τμήμα των εμφανίσεων καταλαμβάνει πολύ περισσότερο χώρο. Εφόσον κάθε λέξη εμφανίζεται τουλάχιστον μία φορά στο κείμενο, ο επιπλέον απαιτούμενος χώρος είναι της τάξης του O(n). Ακόμη και μετά την απομάκρυνση των stopwords, το επιπλέον κόστος σε χώρο κυμαίνεται μεταξύ 30% και 40% του μεγέθους του κειμένου.

13 13 Αντεστραμμένα Αρχεία Για τη μείωση του απαιτούμενου χώρου χρησιμοποιείται η τεχνική της διευθυνσιοδότησης block (block addressing). Το κείμενο χωρίζεται σε τμήματα (blocks) και οι εμφανίσεις δείχνουν στα αντίστοιχα block και όχι σε χαρακτήρες. Οι κλασικές μέθοδοι που χρησιμοποιούν δείκτες σε θέσεις χαρακτήρων καλούνται full inverted indices.

14 14 Αντεστραμμένα Αρχεία Χρησιμοποιώντας block addressing απαιτούνται pointers μικρότερου μεγέθους διότι τα blocks είναι πολύ λιγότερα από τους χαρακτήρες του κειμένου. Επίσης εμφανίσεις που αναφέρονται σε λέξεις του ίδιου block εμφανίζονται με την ίδια αναφορά. Συνήθως το επιπλέον κόστος σε χώρο που απαιτείται με την τεχνική αυτή είναι περίπου 5% του μεγέθους του κειμένου.

15 15 Παράδειγμα Κείμενο Block 1 Block 2 Block 3 Block 4 That house has a garden. The garden has many flowers. The flowers are beautiful Αντεστραμμένο Αρχείο Vocabulary Occurrences beautiful flowers garden house

16 16 Σύγκριση Index Small collection Medium collection Large collection (1Mb) (200Mb) (2Gb) Addressing words 45% 73% 36% 64% 35% 63% Addressing documents 19% 26% 18% 32% 26% 47% Addressing 256 blocks 18% 25% 1.7% 2.4% 0.5% 0.7% Ευρετηριοποίηση χωρίς τις λέξεις τερματισμού Ευρετηριοποίηση όλων των λέξεων

17 17 Αναζήτηση σε Αντ. Αρχείο Μία τυπική μέθοδος αναζήτησης σε αντεστραμμένο αρχείο ακολουθεί τα παρακάτω βήματα: 1. Αναζήτηση Λεξιλογίου: οι λέξεις που προσδιορίζονται στο ερώτημα απομονώνονται και αναζητούνται στο λεξιλόγιο. 2. Ανάκτηση Εμφανίσεων: προσδιορίζονται οι εμφανίσεις της κάθε λέξης. 3. Επεξεργασία Εμφανίσεων: οι εμφανίσεις επεξεργάζονται για την επίλυση φράσεων, ομοιότητας ή λογικών τελεστών (boolean operators). Εάν χρησιμοποιείται block addressing μπορεί να απαιτηθεί απευθείας αναζήτηση στο κείμενο.

18 18 Αναζήτηση σε Αντ. Αρχείο Εφόσον η αναζήτηση ξεκινά με το λεξιλόγιο, μία καλή πρακτική είναι να αποθηκεύεται σε ξεχωριστό αρχείο. Είναι πιθανόν, ακόμη και για μεγάλες συλλογές κειμένων, το λεξιλόγιο να χωράει στην κύρια μνήμη. Σε διαφορετική περίπτωση μέρος του λεξιλογίου βρίσκεται στην κύρια μνήμη και το υπόλοιπο στη βοηθητική μνήμη (δίσκο, CD-ROM).

19 19 Αναζήτηση σε Αντ. Αρχείο Ερωτήματα μίας λέξης (single-word queries) μπορούν να απαντηθούν χρησιμοποιώντας κάποια βολική δομή δεδομένων για τη γρήγορη επεξεργασία του ερωτήματος. Κατακερματισμός, TRIES, Β-δένδρα. Χρόνος αναζήτησης O(m) για τις δύο πρώτες μεθόδους, Ο(m*log(n)) για τα B-δένδρα.

20 20 Αναζήτηση σε Αντ. Αρχείο Για να απαντήσουμε ερωτήσεις διαστήματος η δομή του κατακερματισμού δεν είναι κατάλληλη. Για την περίπτωση αυτή μπορούμε να χρησιμοποιήσουμε δυαδικά δένδρα αναζήτησης, TRIES ή Β-δένδρα.

21 21 Παράδειγμα Να βρεθούν κείμενα που περιέχουν λέξεις οι οποίες λεξικογραφικά βρίσκονται μεταξύ της λέξης cluster και της λέξης damage.

22 22 Παράδειγμα Age basket cat cube cluster creature creative damage

23 23 Αναζήτηση σε Αντ. Αρχείο Σε περίπτωση που το ερώτημα αποτελείται από μεμονωμένες λέξεις η αναζήτηση σταματά όταν έχουμε προσδιορίσει τις εμφανίσεις των συγκεκριμένων λέξεων στα κείμενα. Σε περίπτωση που πάνω από μία λέξεις του ερωτήματος έχουν βρεθεί ακολουθεί η διαδικασία της ένωσης (union) των εμφανίσεων.

24 24 Αναζήτηση σε Αντ. Αρχείο Στις περιπτώσεις όπου έχουμε αναζήτηση ολόκληρων φράσεων (όχι μεμονωμένων λέξεων) ή ερωτήματα γειτνίασης (proximity), η επεξεργασία είναι δυσκολότερη. Για κάθε λέξη δημιουργείται μία λίστα εμφανίσεων. Στη συνέχεια πραγματοποιείται επεξεργασία των λιστών ώστε να προσδιοριστεί η τελική απάντηση του ερωτήματος.

25 25 Παράδειγμα Έστω ότι αναζητείται η φράση: modern information retrieval Έστω ότι μετά την αναζήτηση του λεξιλογίου έχουν προκύψει οι ακόλουθες λίστες: modern 10, 50, 80 information 17, 57, 120 retrieval 29, 90, 400 Ποια θα είναι η απάντηση στο ερώτημα; Υπάρχει ή φράση στο κείμενο ή όχι;

26 26 Κατασκευή Αντ. Αρχείου Η κατασκευή και η ενημέρωση ενός αντεστραμμένου αρχείου είναι σχετικά εύκολη διαδικασία. Ένα αντεστραμμένο αρχείο για ένα κείμενο n χαρακτήρων μπορεί να κατασκευαστεί σε χρόνο O(n).

27 27 Κατασκευή Αντ. Αρχείου Το λεξιλόγιο οργανώνεται με τη βοήθεια μίας βολικής δομής δεδομένων (π.χ. TRIE). Κάθε λέξη του κειμένου διαβάζεται και αναζητείται στο λεξιλόγιο. Εάν η νέα λέξη δε βρεθεί στο λεξιλόγιο, τότε εισάγεται σε αυτό και ενημερώνεται η λίστα εμφανίσεων για τη συγκεκριμένη λέξη. Εάν η λέξη υπάρχει στο λεξιλόγιο, τότε απαιτείται μόνο ενημέρωση της λίστας εμφανίσεων.

28 28 Κατασκευή Αντ. Αρχείου This is a text. A text has many words. Words are made from letters l m letters: 60 a d made: 50 w t text: 11, 19 n many: 28 words: 33, 40

29 29 Κατασκευή Αντ. Αρχείου Γενικά είναι καλό να χωρίζουμε το ευρετήριο σε δύο αρχεία Στο πρώτο η λίστα των occurrences αποθηκεύονται συνεχόμενα (posting file). Στο δεύτερο το λεξικό αποθηκεύεται λεξικογραφικά, για κάθε λέξη, ένας δείκτης στην λίστα της στο πρώτο αρχείο περιέχεται Αυτό επιτρέπει στο λεξικό να φυλάσεται στη μνήμη κατά την αναζήτηση στις περισσότερες περιπτώσεις

30 30 Κατασκευή Αντ. Αρχείου Εφόσον για την επεξεργασία κάθε χαρακτήρα του κειμένου απαιτείται χρόνος Ο(1), και για την ενημέρωση μίας λίστας εμφανίσεων απαιτείται χρόνος Ο(1), η συνολική πολυπλοκότητα της προηγούμενης μεθόδου είναι Ο(n). Σε περίπτωση που η δομή δεν μπορεί να χωρέσει στην κύρια μνήμη, η μέθοδος παρουσιάζει προβλήματα, διότι απαιτούνται πολλές προσπελάσεις στο δίσκο, με αποτέλεσμα να αυξάνεται δραματικά ο χρόνος κατασκευής.

31 31 Κατασκευή Αντ. Αρχείου Εναλλακτική Μέθοδος Η προηγούμενη διαδικασία συνεχίζεται μέχρι να γεμίσει η κύρια μνήμη. Σχηματίζεται ένα τμήμα της δομής δεδομένων Ii το οποίο αποθηκεύεται στο δίσκο. Ακολουθώντας την ίδια διαδικασία σχηματίζεται ένα σύνολο τμημάτων Ii τα οποία είναι αποθηκευμένα στο δίσκο. Ακολουθούν διαδοχικές συγχωνεύσεις ώστε να προκύψει η συνολική δομή.

32 32 Κατασκευή Αντ. Αρχείου I final index 7 level 3 I I level 2 I I I I I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 level 1 initial dumps

33 33 Κατασκευή Αντ. Αρχείου Πολυπλοκότητα Εναλλακτικής Μεθόδου Χρόνος κατασκευής των τμημάτων Ii είναι O(n). Αριθμός τμημάτων O(n/M). Κάθε φάση συγχώνευσης απαιτεί χρόνο O(n). Για τη συγχώνευση των O(n/M) τμημάτων απαιτούνται log(n/m) φάσεις συγχώνευσης. Επομένως συνολικά Ο(n * log(n/m))

34 34 Κατασκευή Αντ. Αρχείου

35 35 Κατασκευή Αντ. Αρχείου

36 36 Κατασκευή Αντ. Αρχείου Για την κατασκευή του ευρετηρίου ο πίνακας αλληλομετατίθεται

37 37 Κατασκευή Αντ. Αρχείου Μετά από εδώ η κατασκευή είναι γνωστή Η Βίβλος περιέχει 8965 μοναδικούς όρους και κείμενα 4 bytes ακέραιος για κάθε entry στον πινακα συχνοτήτων 4*8.965* bytes of main memory Tο TREC περιέχει μοναδικούς όρους και κείμενα 4 bytes ακέραιος για κάθε entry στον πινακα συχνοτήτων 4* * bytes of main memory

38 38 Βασικές φάσεις δημιουργίας Φάση 1: Τα κείμενα σαρώνονται για την εξαγωγή λέξεων και αυτές αποθηκεύονται με το Document ID. Doc 1 I did enact Julius Caesar I was killed i' the Capitol; Brutus killed me. Doc 2 So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious Term Doc # I 1 did 1 enact 1 julius 1 caesar 1 I 1 was 1 killed 1 i' 1 the 1 capitol 1 brutus 1 killed 1 me 1 so 2 let 2 it 2 be 2 with 2 caesar 2 the 2 noble 2 brutus 2 hath 2 told 2 you 2 caesar 2 was 2 ambitious 2

39 39 Βασικές φάσεις δημιουργίας Φάση 2: Αφού σαρωθούν όλα τα κείμενα το ανεστραμμένο αρχείο ταξινομείται σύμφωνα με τους όρους Αυτό είναι σημαντικό. Υπάρχουν πολλοί όροι. Term Doc # I 1 did 1 enact 1 julius 1 caesar 1 I 1 was 1 killed 1 i' 1 the 1 capitol 1 brutus 1 killed 1 me 1 so 2 let 2 it 2 be 2 with 2 caesar 2 the 2 noble 2 brutus 2 hath 2 told 2 you 2 caesar 2 was 2 ambitious 2 Term Doc # ambitious 2 be 2 brutus 1 brutus 2 capitol 1 caesar 1 caesar 2 caesar 2 did 1 enact 1 hath 1 I 1 I 1 i' 1 it 2 julius 1 killed 1 killed 1 let 2 me 1 noble 2 so 2 the 1 the 2 told 2 you 2 was 1 was 2 with 2

40 40 Βασικές φάσεις δημιουργίας Φάση 3: Γίνεται συμπίεση των δεδομένων (merge per doc) και επιπλέον αποθηκεύουμε τη συχνότητα εμφάνισης με μια επιπλέον στήλη

41 41 Βασικές φάσεις δημιουργίας Φάση 4:

42 42 Κατασκευή Αντ. Αρχείου Υπάρχουν περιορισμοί για το μέγεθος της κύριας μνήμης σε συνδιασμό με το μέγεθος μιας συλλογής Αυτό μπορεί να οδηγήσει σε πολύ μεγάλους χρόνους κατασκευής του ανεστραμμένου αρχείου Υπάρχουν πιο οικονομικές μέθοδοι κατασκευής

43 43 Παράμετροι ΠΑΡΑΜΕΤΡΟΣ Συνολικό μέγεθος κειμένου Αριθμός εγγράφων Αριθμός διακριτών λέξεων Συνολικός αριθμός λέξεων Αριθμός δεικτών ευρετηρίου Τελικό μέγεθος συμπιεσμένου αντεστραμμένου αρχείου Μέγεθος δομής δεδομένων δυναμικού ευρετηρίου Χρόνος μετακίνησης στο δίσκο Χρόνος μεταφοράς στο δίσκο Κωδικοποίηση αντεστραμμένου αρχείου Χρόνος σύγκρισης και εναλλαγής για εγγραφές 10 byte Χρόνος parsing, stemming και αναζήτησης για κάθε όρο Διαθέσιμη κύρια μνήμη ΣΥΜΒΟΛΟ B N N F F l L ts tr td tc tp M

44 44 Τεχνικές αντιστροφής αρχείων Χρήση μόνο Κύριας Μνήμης Χωρίς Συμπίεση Αντιστροφή στην κύρια μνήμη με χρήση Συνδεδεμένων Λιστών Με συμπίεση Αντιστροφή Ευρείας Μνήμης Χρήση Κύριας Μνήμης και Δίσκου Αντιστροφή στο Δίσκο με χρήση Συνδεδεμένων Λιστών Αντιστροφή μέσω Διάταξης Αντιστροφή με Κατάτμηση Λεγικού Αντιστροφή με Κατάτμηση Κειμένου Διάταξη και Συμπίεση Πολλαπλή Συγχώνεψη Πολλαπλή In-place Συγχώνεψη

45 45 Αντιστροφή βασισμένη στη μνήμη Δημιουργείται η δομή δεδομένων για το λεξικό Για κάθε έγγραφο αναζητείται κάθε όρος του εγγράφου στο λεξικό και προστίθεται ένας κόμβος που περιέχει την πληροφορία για το έγγραφο και τη συχνότητα εμφάνισης για τον κάθε όρο Τελικά δημιουργείται το ανεστραμμένο αρχείο, διασχίζοντας τη δομή του λεξικού και κατασκευάζοντας τη λίστα των όρων και των αντίστοιχων αριθμών των γραμμών

46 46 Αντιστροφή βασισμένη στη μνήμη

47 47 Αντιστροφή βασισμένη στη μνήμη Οι όροι αρχικά είναι αποθηκευμένοι τυχαία (ή και αλφαβητικά) στο λεξικό. Χρόνος αντιστροφής Τ=Β*tr+F*tp + (διάβασμα και ανάλυση κειμένων) Ι*(td+tr) (γράψιμο αντεστραμμένου αρχείου)

48 48 Αντιστροφή βασισμένη στο δίσκο Αντιμετωπίζει το πρόβλημα της περιορισμένης μνήμης Βασίζεται στη μεταφορά των συνδεδεμένων λιστών των αριθμών των εγγράφων από τη μνήμη στο δίσκο

49 49 Αντιστροφή βασισμένη στο δίσκο

50 50 Αντιστροφή βασισμένη στο δίσκο Χρόνος αντιστροφής Τ=Β*tr+F*tp + (διάβασμα και ανάλυση κειμένων) f*ts+10*f*tr + (διάσχιση λιστών στο δίσκο) Ι*(td+tr) (γράψιμο αντεστραμμένου αρχείου) Η τεχνική αυτή απαιτεί πολύ χρόνο και πολύ χώρο Δεν αξιοποιεί την κύρια μνήμη Ανεπαρκής για μεγάλες συλλογές Ιδανική λύση για μικρές συλλογές

51 51 Αντιστροφή βασισμένη στην ταξινόμηση Οι προηγούμενες μέθοδοι απαιτούν πολλή κύρια μνήμη Η σειριακή προσπέλαση στο δίσκο είναι η μόνη αποτελεσματική υπολογιστική μέθοδος για μεγάλα αρχεία δίσκου Τα τυχαία ψαξίματα (όπως πριν) είναι χρονοβόρα Χρήση του δίσκου για μεγάλες συλλογές αρχείων

52 52 Αντιστροφή βασισμένη στην ταξινόμηση Φάση 1: Φάση 2: Δημιουργία άδειας δομής λεξικού S Δημιουργία ενός άδειου προσωρινού αρχείου στο δίσκο Διάταξη Φαση 3: Διάταξη

53 53 Αντιστροφή βασισμένη στην ταξινόμηση Χρόνος αντιστροφής Τ=Β*tr+F*tp + 10*f*tr (διάβασμα και ανάλυση, γράψιμο αρχείου) 20*f*tr+R(1,2logk)tc + (ταξινόμηση ακολουθιών) logr (20f*tr+f*tc) + (συγχώνεψη ομάδων) 10*f*tr + Ι*(td+tr) (γράψιμο αντεστραμμένου αρχείου)

54 54 Αντιστροφή βασισμένη στην ταξινόμηση με χρήση συμπίεσης Χρήση αλγόριθμων συμπίεσης για τη μείωση των απαιτήσεων της διαδικασίας αντιστροφής Το προσωρινό αρχείο που απαιτείται για την αντιστροφή συμπιέζεται και απαιτείται λιγότερος δίσκος Συμπίεση προσωρινών αρχείων Πολλαπλή συγχώνεψη Πολλαπλή συγχώνεψη επι τόπου

55 55 Συμπιεσμένη μέσα στη μνήμη αντιστροφή Αντιστροφή ευρείας μνήμης Βασίζεται στην αντιστροφή βασισμένη στην ταξινόμηση Καλή για μικρές συλλογές Τμηματοποίηση βασισμένη στο λεξικό Δυο περάσματα στο λεξικό Τμηματοποίηση με βάση το κείμενο

56 56 Συμπεράσματα Για μεγάλες συλλογές Βασισμένη στην ταξινόμηση Πολλαπλής συγχώνευσης επί τόπου Τμηματοποίηση βασισμένη στο λεξικό

57 57 Μειονεκτήματα Αντ. Αρχείων Η μέθοδοι των αντεστραμμένων αρχείων υποθέτουν ότι το κείμενο μπορεί να θεωρηθεί σαν μία ακολουθία λέξεων Αυτό το χαρακτηριστικό περιορίζει αρκετά τον τύπο των ερωτημάτων που μπορούν να επεξεργαστούν από το σύστημα Ερωτήματα όπως αναζήτηση φράσεων είναι ακριβά στην επεξεργασία τους

58 58 Αντεστραμμένα Αρχεία Ανεστραμμένο αρχείο = ένας μηχανισμός βασισμένος σε λέξεις για την ευρετηριοποίηση μίας συλλογής κειμένων έτσι ώστε να γίνεται πιο γρήγορα μια διαδικασία αναζήτησης Ένα τέτοιο αρχείο αποτελείται από: Λεξικό: σύνολο λέξεων σε ένα κείμενο Περιστατικά: λίστα με πληροφορίες για κάθε λέξη του λεξικού (κείμενα που υπάρχει η λέξη, συχνότητα εμφάνισης, θέση κ.τ.λ.)

59 59 Αντεστραμμένα Αρχεία a lexicon: ένας κατάλογος όλων των όρων που επιλέχτηκαν για να περιληφθούν στο index ένα inverted file περιέχει, για κάθε όρο στο λεξικό, μία inverted list που αποθηκεύει μία λίστα από pointers προς όλες τις εμφανίσεις του όρου στο κείμενο Π.χ., κάθε δείκτης είναι ο αριθμός του εγγράφου στο οποίο εκείνος ο όρος εμφανίζεται To inverted file απαιτεί ένα λεξικό Το λεξικό υποστηρίζει την αντιστοίχιση όρων με την ανάλογη inverted list.

60 60 Παράδειγμα Έχουμε την πρόταση That house has a garden. The garden has many flowers. The flowers are beautiful Ανεστραμμένο αρχείο Λεξικό Περιστατικά beautiful 70 flowers 45, 58 garden 18, 29 house 6

61 61 Παράδειγμα Doc Text 1 Pease porridge hot, pease porridge cold, 2 Pease porridge in the pot, 3 Nine days old. 4 Some like it hot, some like it cold, 5 Some like it in the pot, 6 Nine days old. Notation: N: number of documents; (=6) n: number of distinct terms; (=13) f: number of index pointers; (=26) Terms Documents cold <2; 1, 4> days <2; 3, 6> hot <2; 1, 4> in <2; 2, 5> it <2; 4, 5> like <2; 4, 5> nine <2; 3, 6> old <2; 3, 6> pease <2; 1, 2> porridge <2; 1, 2> pot <2; 2, 5> some <2; 4, 5> the <2; 2, 5>

62 62 Word-level Inverted File Index Doc Text 1 Pease porridge hot, pease porridge cold, 2 Pease porridge in the pot, 3 Nine days old. 4 Some like it hot, some like it cold, 5 Some like it in the pot, 6 Nine days old. Notation: N: number of documents; (=6) n: number of distinct terms; (=13) f: number of index pointers; (=31) Terms Documents cold <2; (1;6), (4;8)> days <2; (3;2), (6;2)> hot <2; (1;3), (4;4)> in <2; (2;3), (5;4)> it <2; (4;3,7), (5;3)> like <2; (4;2,6), (5;2)> nine <2; (3;1), (6;1)> old <2; (3;3), (6;3)> pease <2; (1;1,4), (2;1)> porridge <2; (1;2,5), (2;2)> pot <2; (2;5), (5;6)> some <2; (4;1,5), (5;1)> the <2; (2;4), (5;5)>

63 63 Πιθανοτικά Μοντέλα

64 64 Πιθανοτικό Μοντέλο Στόχος: να ορίσουµε το IR πρόβληµα σε πιθανοτικό πλαίσιο Για κάθε user query υπάρχει ένα ιδανικό σύνολο κειµένων που το ικανοποιεί Η ερώτηση επεξεργάζεται µε βάση τις ιδιότητες αυτού του συνόλου Ποιες είναι όµως αυτές οι ιδιότητες; Αρχικά γίνεται µία πρόβλεψη και στη συνέχεια η πρόβλεψη βελτιώνεται Προτάθηκε αρχικά από τους Robertson και Sparck Jones, 1976

65 65 Πιθανοτικό Μοντέλο Αρχικά επιστρέφεται µε κάποιο τρόπο ένα σύνολο κειµένων Ο χρήστης εξετάζει τα κείµενα αναζητώντας σχετικά κείµενα (αρκεί να εξετάσει τα πρώτα) Το σύστηµα IR χρησιµοποιεί το feedback του χρήστη ώστε να προσδιοριστεί καλύτερα το ιδανικό σύνολο κειµένων Η διαδικασία επαναλαµβάνεται Η περιγραφή του ιδανικού συνόλου κειµένων βελτιώνεται Η περιγραφή του ιδανικού συνόλου κειµένων πραγµατοποιείται πιθανοτικά

66 66 Πιθανοτικό Μοντέλο Έστω ερώτηµα q και κείµενο dj. Το πιθανοτικό µοντέλο προσπαθεί να προσδιορίσει την πιθανότητα το κείµενο dj να είναι χρήσιµο στο χρήστη Το µοντέλο θεωρεί ότι αυτή η πιθανότητα εξαρτάται µόνο από το ερώτηµα και το κείµενο dj Πώς υπολογίζονται οι πιθανότητες; Ποιος είναι ο δειγµατοχώρος;

67 67 Πιθανοτικό Μοντέλο Πλεονεκτήµατα: Τα κείµενα ταξινοµούνται σε φθίνουσα διάταξη ως προς την πιθανότητα να είναι σχετικά Αρκετοί ερευνητές έχουν υποστηρίξει ότι το πιθανοτικό µοντέλο υπερτερεί του vector space Μειονεκτήµατα Πρέπει να µαντέψουµε το αρχικό σύνολο σχετικών και µη-σχετικών κειµένων εν λαµβάνεται υπόψη η συχνότητα εµφάνισης των όρων στα κείµενα Οι όροι θεωρούνται ανεξάρτητοι µεταξύ τους

68 68 Πιθανοτικά Μοντέλα Δυο μοντέλα Inference network παρέχει μια θεωρητική βάση για την μηχανή ανάκτησης σε ένα σύστημα (inquery system). Έτσι οδηγηθήκαμε στη χρήση των bayesian networks με συστήματα ανάκτησης δεδομένων. Belief network γενικεύει το πρώτο

69 69 Bayesian Networks Ένα Bayesian Network είναι ένας κατευθυνόμενος γράφος χωρίς κύκλους όπου οι κόμβοι είναι τυχαίες μεταβλητές, οι ακμές δηλώνουν συσχέτιση μεταξύ των μεταβλητών, και η ισχύς μίας συσχέτισης δηλώνεται με υπό συνθήκη πιθανότητες.

70 70 Bayesian Networks Βασικά αξιώματα: 0 < P(A) < 1 ; P(sure)=1; P(A V B)=P(A)+P(B) αν τα A και B είναι αμοιβαία αποκλειόμενα

71 71 Bayesian Networks Y1 X Y2 Yn yi : parent nodes x : child node To yi προκαλεί το x Y σύνολο γονέων του x Η επίδραση του Y στο x εκφράζεται με τη σχέση F(x,Y) έτσι ώστε Σ F(x,Y) = 1 0 < F(x,Y) < 1 για κάθε χ Για παράδειγμα, F(x,Y)=P(x Y)

72 72 Bayesian Networks P(X1, X2, X3, X4, X5) = P(X1)P(X2 X1)P(X3 X1)P(X4 X2,X3)P(X5 X3) X2 X4 X1 X3 X5 Από τις εξαρτήσεις του Bayesian Network, η κοινή πιθανότητα μπορεί να υπολογιστεί ως γινόμενο τοπικών υπό συνθήκη πιθανοτήτων.

73 73 Bayesian Networks X2 X4 X1 X3 X5 Σε ένα Bayesian Network κάθε τυχαία μεταβλητή x είναι υπό συνθήκη ανεξάρτητη από τους μη απογόνους Για παράδειγμα: P(Χ4, Χ5 Χ2, Χ3)= P(Χ4 Χ2, Χ3)P( Χ5 Χ3)

74 74 Inference Network Model Επιστημολογική αντιμετώπιση του προβλήματος ανάκτησης πληροφορίας. Τυχαίες μεταβλητές που σχετίζονται με κείμενα, index terms και ερωτήματα των χρηστών. Μία τυχαία μεταβλητή που σχετίζεται με το κείμενο dj δηλώνει το γεγονός να παρατηρήσουμε αυτό το κείμενο. Έτσι η παρατήρηση ενός κειμένου είναι η αιτία για την αύξηση της πίστης στις μεταβλητές που σχετίζονται με τους index terms του.

75 75 Inference Network Model k1 q dj k2 q2 end. or ki. kt Κόμβοι documents (dj) index terms (ki) queries (q, q1, και q2) ανάγκη πληροφορίας (I) Ακμές από dj σε index term nodes ki δηλώνουν ότι η παρατήρηση του dj αυξάνει την πίστη μας για τις μεταβλητές ki I or q1

76 76 Inference Network Model k1 q dj k2 q2 end. ki. kt Οι index term και document μεταβλητές αναπαρίστανται σαν κόμβοι στο δίκτυο. Οι ακμές είναι κατευθυνόμενες από το κείμενο προς τους Index terms του ώστε να δηλώνουν πως η παρατήρηση του κειμένου αποφέρει βελτιωμένη πίστη στους Index terms του. or I or q1

77 77 Inference Network Model dj dj έχει k2, ki, και kt q έχει k1, k2, και ki q1=((k1 ^ k2) v ki) I = (q v q1) k1 q I or k2 q2 end. or q1 ki. kt Η τυχαία μεταβλητή που σχετίζεται με το ερώτημα ενός χρήστη καθορίζει πως η αιτούμενη πληροφορία έχει παρουσιαστεί. Έτσι η τυχαία αυτή μεταβλητή είναι επίσης κόμβος και η πίστη σε αυτή είναι μια συνάρτηση για την πίστη στους κόμβους που σχετίζονται με τους όρους του ερωτήματος.

78 78 Inference Network Model k 1, d j,, και q τυχαίες μεταβλητές. k=(k 1, k 2,...,k t ) διάνυσμα με t διαστάσεις k i, i {0, 1}, τότε k έχει 2 t δυνατές καταστάσεις d j, j {0, 1}; q {0, 1} Ο βαθμός ενός κειμένου d j υπολογίζεται ως P(qΛ d j )

79 79 Inference Network Model P(q Λ d j )= Σ k P(q Λ d j k) P(k) = Σ k P(q Λ d j Λ k) = Σ k P(q d j Λ k) P(d j Λ k) = Σ k P(q k) P(k d j ) P( d j ) P( (q Λ d j )) = 1 - P(q Λ d j )

80 80 Inference Network Model Η εκ των προτέρων πιθανότητα P(dj) δείχνει πόσο πιθανό είναι να παρατηρήσουμε ένα κείμενο dj Υπολογισμός: Ενιαία για N κείμενα P(dj) = 1/N P( dj) = 1-1/N Βάσει της νόρμας του διανύσματος dj P(dj)= 1/ dj P( dj) = 1-1/ dj

81 81 Inference Network Model Για το Boolean Model P(dj) = 1/N P(ki dj) = 1 αν gi(dj)=1 ή P(ki dj) = 0 αλλιώς P( ki dj) = 1 - P(ki dj) μόνο οι κόμβοι που συνδέονται με τα index terms του κειμένου dj ενεργοποιούνται

82 82 Belief Network Model Όπως και στο Inference Network Model Επιστημολογική προσέγγιση Τυχαίες μεταβλητές αντιστοιχούν σε κείμενα, index terms και ερωτήματα Αντίθετα με το Inference Network Model Καλά ορισμένος δειγματοχώρος Συνολοθεωρητική άποψη Διαφορετική τοπολογία δικτύου

83 83 Belief Network Model Ο Χώρος Πιθανοτήτων Ορισμός: K={k1, k2,...,kt} ο δειγματοχώρος (χώρος εννοιών) u ένα υποσύνολο του K (μία έννοια) ki ένας index term (μία στοιχειώδης έννοια) k=(k1, k2,...,kt) ένα διάνυσμα που συνδέεται με κάθε u ki μία δυαδική τυχαία μεταβλητή που συνδέεται με ένα index term ki

84 84 Belief Network Model Συνολοθεωρητική Προσέγγιση Ορισμοί: ένα κείμενο dj και μία ερώτηση q ως έννοιες στο K μία γενική έννοια c στο K μία κατανομή πιθανότητας P στο K P(c)= Σ u P(c u) P(u) P(u)=(1/2) t Το P(c) είναι ο βαθμός κάλυψης του χώρου K από το c

85 85 Belief Network Model q query side k1 k2. ki. kt K=U d1 dj dh document side

86 86 Belief Network Model Υπόθεση P(dj q) είναι ο βαθμός σχετικότητας του κειμένου dj ως προς το ερώτημα q. Δείχνει το βαθμό κάλυψης στην έννοια dj από την έννοια q.

87 87 Belief Network Model Σύγκριση Inference Network Model το πρώτο που εμφανίστηκε Belief Network συνολοθεωρητική άποψη Belief Network καθορισμένος δειγματοχώρος Belief Network διαχωρισμός στοιχείων ερωτήματος και στοιχείων κειμένου Belief Network αναπαράγει κάθε βαθμολόγηση που παράγει το Inference Network ενώ το αντίθετο δεν ισχύει

88 88 Belief Network Model Υπολογιστικό Κόστος Το Inference Network Model επεξεργάζεται ένα κείμενο τη φορά, και το κόστος επεξεργασίας είναι γραμμικό ως προς τον αριθμό των κειμένων Στο Belief Network, επεξεργάζονται μόνο οι καταστάσεις που ενεργοποιούν τα query terms Επειδή στα δίκτυα αυτά δεν υπάρχουν κύκλοι δεν έχουμε άλλο υπολογιστικό κόστος

89 89 Τέλος 3 ου Φροντιστηρίου Αναφορές 1. Managing Gigabytes, Compressing and Indexing Documents and Images, Witten, Moffat, Bell 2. Modern Information Retrieval, Ricardo Baeza- Yates and Berthier Ribeiro-Neto

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #10 εικτοδότηση και Αναζήτηση Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #11 Suffix Arrays Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης Το παρόν

Διαβάστε περισσότερα

Ανάκτηση πληροφορίας

Ανάκτηση πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανάκτηση πληροφορίας Ενότητα 6: Ο Αντεστραμμένος Κατάλογος Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Διάλεξη 7η: 21/03/2016 1 Ch. 4 Κατασκευή του ευρετηρίου Πώς κατασκευάζουμε το ευρετήριο; Ποιες στρατηγικές μπορούμε ν ακολουθήσουμε

Διαβάστε περισσότερα

Δομές Ευρετηρίου: Διάρθρωση Διάλεξης

Δομές Ευρετηρίου: Διάρθρωση Διάλεξης Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and

Διαβάστε περισσότερα

Πληροφορική 2. Δομές δεδομένων και αρχείων

Πληροφορική 2. Δομές δεδομένων και αρχείων Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Φροντιστήριο 2

Ανάκτηση Πληροφορίας. Φροντιστήριο 2 Ανάκτηση Πληροφορίας Φροντιστήριο 2 Τσιράκης Νίκος Νοέμβριος 2007 2 Περιεχόμενα Querying Lexicon access Μοντέλα Φυλλομέτρησης 3 Querying 4 Querying Πως χρησιμοποιούμε ένα ευρετήριο για να εντοπίσουμε πληροφορίες

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 6: Συμπίεση Ευρετηρίου 1 Κεφ. 3 Τι είδαμε στο προηγούμενο μάθημα Κατασκευή ευρετηρίου Στατιστικά

Διαβάστε περισσότερα

Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι

Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι Κεφάλαιο 8 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 Ανάκτηση Πληροφορίας 2009-2010 1 Δομές

Διαβάστε περισσότερα

Δομές Ευρετηρίου: Διάρθρωση Διάλεξης

Δομές Ευρετηρίου: Διάρθρωση Διάλεξης Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

Ανάκληση Πληπουοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληπουοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληπουοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Γιάλεξη 2η: 23/02/2016 1 Μεγάλες συλλογές (corpora) Έστωσαν N = 1M έγγραφα, το κάθε ένα με περίπου 1K όρους Avg 6 bytes/term, συμπεριλαμβανόμενων

Διαβάστε περισσότερα

Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη

Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη Ευρετήρια 1 Αρχεία Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη µνήµη. Η µεταφορά δεδοµένων από το δίσκο στη µνήµη και από τη

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται

Διαβάστε περισσότερα

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΥ463 Συστήµατα Ανάκτησης Πληροφοριών Εργασία: Ανεστραµµένο Ευρετήριο Εισαγωγή Σκοπός της εργασίας είναι η δηµιουργία ενός ανεστραµµένου ευρετηρίου για τη µηχανή αναζήτησης Μίτος, το

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #04 Εισαγωγή στα Μοντέλα Ανάκτησης Πληροφορίας Boolean Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Λειτουργικά Συστήματα Κεφάλαιο 2 Οργάνωση Συστήματος Αρχείων 2.1 Διαχείριση Αρχείων και Σύστημα Αρχείων(File System)

Λειτουργικά Συστήματα Κεφάλαιο 2 Οργάνωση Συστήματος Αρχείων 2.1 Διαχείριση Αρχείων και Σύστημα Αρχείων(File System) 2.1.1 Εισαγωγή στη διαχείριση αρχείων Οι Η/Υ αποθηκεύουν τα δεδομένα και τα επεξεργάζονται. Εφαρμογή Προγράμματος C:\Documents and Settings\user\Τα έγγραφά μου\leitourgika.doc Λ.Σ. File System Γι αυτό

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΚΕΦΑΛΑΙΑ 3 και 9 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΠΙΝΑΚΕΣ Δεδομένα αφαιρετική αναπαράσταση της πραγματικότητας και συνεπώς μία απλοποιημένη όψη της δηλαδή.

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε. Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να

Διαβάστε περισσότερα

Λειτουργικά Συστήματα. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα

Λειτουργικά Συστήματα. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Λειτουργικά Συστήματα Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Στέργιος Παλαμάς, Υλικό Μαθήματος «Λειτουργικά Συστήματα», 2015-2016 Κεφάλαιο 2: Σύστημα Αρχείων Τα προγράμματα που εκτελούνται

Διαβάστε περισσότερα

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δεντρικά Ευρετήρια Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Φροντιστήριο Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία

Φροντιστήριο Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Φροντιστήριο 17-1-2011 Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία Θεωρία Άτρακτος/αυλάκι : ομόκεντροι κύκλοι στον δίσκο Κύλινδρος:

Διαβάστε περισσότερα

Φροντιστήριο Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία

Φροντιστήριο Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Φροντιστήριο 14-1-2010 Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία Θεωρία Άτρακτος/αυλάκι : ομόκεντροι κύκλοι στον δίσκο Κύλινδρος:

Διαβάστε περισσότερα

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Περιγραφή του προβλήματος Ευρετηριοποίηση μεγάλων συλλογών εγγράφων

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας

Διαβάστε περισσότερα

Ανάκτηση Δεδομένων (Information Retrieval)

Ανάκτηση Δεδομένων (Information Retrieval) Ανάκτηση Δεδομένων (Information Retrieval) Παύλος Εφραιμίδης Βάσεις Δεδομένων Ανάκτηση Δεδομένων 1 Information Retrieval (1) Βάσεις Δεδομένων: Περιέχουν δομημένη πληροφορία: Πίνακες Ανάκτηση Πληροφορίας

Διαβάστε περισσότερα

Λειτουργικά Συστήματα (ΙΙ) (διαχείριση αρχείων)

Λειτουργικά Συστήματα (ΙΙ) (διαχείριση αρχείων) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Λειτουργικά Συστήματα (ΙΙ) (διαχείριση αρχείων) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Λειτουργικό Σύστημα:

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας Εισαγωγή

Ανάκτηση Πληροφορίας Εισαγωγή Ανάκτηση Πληροφορίας Εισαγωγή Απόστολος Παπαδόπουλος Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Ακαδημαϊκό Έτος 2007-2008 Αντικείμενο IR Η Ανάκτηση Πληροφορίας (ΑΠ)

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Οι πράξεις της συνένωσης. Μ.Χατζόπουλος 1

Οι πράξεις της συνένωσης. Μ.Χατζόπουλος 1 Οι πράξεις της συνένωσης Μ.Χατζόπουλος 1 ΠΡΟΜΗΘΕΥΤΗΣ (ΠΡΜ) Κ_Προμ Π_Ονομα Είδος Πόλη 22 Ανδρέου 7 Αθήνα 31 Πέτρου 8 Πάτρα 28 Δέδες 12 Λάρισα 58 Παππάς 7 Αθήνα ΠΡΟΙΟΝ (ΠΡ) Κ_Πρ Πρ_Ονομα Χρώμα Βάρος Π35

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Λειτουργικό Σύστημα: διαχείριση πόρων. Διαχείριση αρχείων. Τι είναι ένα αρχείο ; Λειτουργικά Συστήματα (ΙΙ) (διαχείριση αρχείων)

Λειτουργικό Σύστημα: διαχείριση πόρων. Διαχείριση αρχείων. Τι είναι ένα αρχείο ; Λειτουργικά Συστήματα (ΙΙ) (διαχείριση αρχείων) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Λειτουργικό Σύστημα: διαχείριση πόρων Εισαγωγή Λειτουργικά Συστήματα (ΙΙ) (διαχείριση αρχείων) Επικοινωνία με χρήστη

Διαβάστε περισσότερα

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών

Διαβάστε περισσότερα

Ανάκτηση πληροφορίας

Ανάκτηση πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανάκτηση πληροφορίας Ενότητα 7: Κατάλογοι Υπογραφών Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

A ΕΠΑ.Λ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 η ΕΝΟΤΗΤΑ: ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Εκπαιδευτικοί: ΓΑΛΑΝΟΣ ΓΕΩΡΓΙΟΣ ΜΠΟΥΣΟΥΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ

A ΕΠΑ.Λ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 η ΕΝΟΤΗΤΑ: ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Εκπαιδευτικοί: ΓΑΛΑΝΟΣ ΓΕΩΡΓΙΟΣ ΜΠΟΥΣΟΥΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ A ΕΠΑ.Λ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 η ΕΝΟΤΗΤΑ: ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Εκπαιδευτικοί: ΓΑΛΑΝΟΣ ΓΕΩΡΓΙΟΣ ΜΠΟΥΣΟΥΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ 1 Βάση Δεδομένων: Με το όρο Βάση Δεδομένων εννοούμε ένα σύνολο δεδομένων που είναι οργανωμένο

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 5: Κατασκευή Ευρετηρίου. Στατιστικά Συλλογής. 1 Κεφ. 3 Τι είδαμε στο προηγούμενο μάθημα Ανάκτηση

Διαβάστε περισσότερα

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1 ιαφάνεια 14-1 Κεφάλαιο 14 οµές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. NavatheΕλληνικήΈκδοση, ιαβλος, Επιµέλεια Μ.Χατζόπουλος 1 Θα µιλήσουµε για Τύποι Ταξινοµηµένων Ευρετηρίων

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 6 : Δομές αρχείων. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 6 : Δομές αρχείων. Δρ. Γκόγκος Χρήστος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική II Ενότητα 6 : Δομές αρχείων Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Λειτουργικά Συστήματα. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα

Λειτουργικά Συστήματα. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Λειτουργικά Συστήματα Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Στέργιος Παλαμάς, Υλικό Μαθήματος «Λειτουργικά Συστήματα», 2015-2016 Εργαστηριακή Άσκηση 2: Σύστημα Αρχείων Τα προγράμματα

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Συμβολοσειρές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Συμβολοσειρές Συμβολοσειρές και προβλήματα που αφορούν συμβολοσειρές εμφανίζονται τόσο συχνά που

Διαβάστε περισσότερα

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας 1. Πως δομούνται οι ιεραρχικές μνήμες; Αναφέρετε τα διάφορα επίπεδά τους από τον επεξεργαστή μέχρι τη δευτερεύουσα

Διαβάστε περισσότερα

Λειτουργικά Συστήματα Ι. Καθηγήτρια Παπαδάκη Αναστασία

Λειτουργικά Συστήματα Ι. Καθηγήτρια Παπαδάκη Αναστασία Λειτουργικά Συστήματα Ι Καθηγήτρια Παπαδάκη Αναστασία 2013 1 - 2 - Κεφάλαιο 2 ο Δευτερεύουσα μνήμη Οι εύκαμπτοι μαγνητικοί δίσκοι (floppy disks) ή δισκέτες Οι σκληροί μαγνητικοί δίσκοι (hard disks) Οι

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Εισαγωγή. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Εισαγωγή. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Εισαγωγή Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Άσκηση 1 (15 μονάδες) (Επεκτατός Κατακερματισμός)

Άσκηση 1 (15 μονάδες) (Επεκτατός Κατακερματισμός) ΗΥ460 Τελική Εξέηαζη 29 Ιανουαπίου 2013 Σελίδα 1 από 8 Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Δημήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Επαναληπτική

Διαβάστε περισσότερα

Κεφάλαιο 13. Αποθήκευση σε ίσκους, Βασικές οµέςαρχείων, και Κατακερµατισµός. ιαφάνεια 13-1

Κεφάλαιο 13. Αποθήκευση σε ίσκους, Βασικές οµέςαρχείων, και Κατακερµατισµός. ιαφάνεια 13-1 ιαφάνεια 13-1 Κεφάλαιο 13 Αποθήκευση σε ίσκους, Βασικές οµέςαρχείων, και Κατακερµατισµός ίαβλος, Επιµ.Μ.Χατζόπουλος 1 Γιατί θα µιλήσουµε Μονάδες Αποθήκευσης ίσκων Αρχεία Εγγραφών Πράξεις σε αρχεία Αρχεία

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος εδοµένα οµές δεδοµένων και αλγόριθµοι Τα δεδοµένα είναι ακατέργαστα γεγονότα. Η συλλογή των ακατέργαστων δεδοµένων και ο συσχετισµός τους δίνει ως αποτέλεσµα την πληροφορία. Η µέτρηση, η κωδικοποίηση,

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: GoNToggle: ΕΞΥΠΝΗ ΜΗΧΑΝΗ ΑΝΑΖΗΤΗΣΗΣ ΜΕ ΧΡΗΣΗ ΟΝΤΟΛΟΓΙΩΝ ΠΕΡΙΟΧΗ ΕΡΕΥΝΑΣ: ΣΥΓΓΡΑΦΕΑΣ:

ΤΙΤΛΟΣ ΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: GoNToggle: ΕΞΥΠΝΗ ΜΗΧΑΝΗ ΑΝΑΖΗΤΗΣΗΣ ΜΕ ΧΡΗΣΗ ΟΝΤΟΛΟΓΙΩΝ ΠΕΡΙΟΧΗ ΕΡΕΥΝΑΣ: ΣΥΓΓΡΑΦΕΑΣ: ΤΙΤΛΟΣ ΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: GoNToggle: ΕΞΥΠΝΗ ΜΗΧΑΝΗ ΑΝΑΖΗΤΗΣΗΣ ΜΕ ΧΡΗΣΗ ΟΝΤΟΛΟΓΙΩΝ ΠΕΡΙΟΧΗ ΕΡΕΥΝΑΣ: Υπολογιστικά Συστήµατα & Τεχνολογίες Πληροφορικής ΣΥΓΓΡΑΦΕΑΣ: Γιώργος Γιαννόπουλος, διδακτορικός φοιτητής

Διαβάστε περισσότερα

επιφάνεια πυριτίου Αναφορά στο Εκπαιδευτικό Υλικό : 5. Αναφορά στο Εργαστήριο :

επιφάνεια πυριτίου Αναφορά στο Εκπαιδευτικό Υλικό : 5. Αναφορά στο Εργαστήριο : 2. Α/Α Διάλεξης : 1 1. Τίτλος : Εισαγωγή στην Ψηφιακή Τεχνολογία 2. Μαθησιακοί Στόχοι : Λογικές Πύλες και η υλοποίησή τους με τρανζίστορ. Κατασκευή ολοκληρωμένων κυκλωμάτων. 3. Θέματα που καλύπτει : Λογικές

Διαβάστε περισσότερα

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Άσκηση 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών HY460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Διδάσκοντες: Δημήτρης

Διαβάστε περισσότερα

Οργάνωση Αρχείων. Διάγραμμα Σχεσιακού σχήματος. Ευρετήρια. Ταξινομημένα ευρετήρια B + δένδρα Ευρετήρια κατακερματισμού

Οργάνωση Αρχείων. Διάγραμμα Σχεσιακού σχήματος. Ευρετήρια. Ταξινομημένα ευρετήρια B + δένδρα Ευρετήρια κατακερματισμού Οργάνωση Αρχείων & Ευρετήρια Οργάνωση Αρχείων Αρχεία σωρού Διατεταγμένα αρχεία Αρχεία κατακερματισμού Ευρετήρια Ταξινομημένα ευρετήρια B + δένδρα Ευρετήρια κατακερματισμού Βασική πηγή διαφανειών: Silberschatz

Διαβάστε περισσότερα

Γλωσσικη τεχνολογια. Προεπεξεργασία Κειμένου

Γλωσσικη τεχνολογια. Προεπεξεργασία Κειμένου Γλωσσικη τεχνολογια Προεπεξεργασία Κειμένου Στόχος Επεξεργασίας Γραπτό κείμενο: Τρόπος επικοινωνίας Φέρει σημασιολογικό περιεχόμενο Αναζητούμε τρόπο να: Μετρήσουμε το πληροφοριακό περιεχόμενο Ποσοτικοποιήσουμε

Διαβάστε περισσότερα

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Λύσεις Παλιών Θεµάτων Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Θέµα Φεβρουάριος 2003 1) Έστω ένας υπερκύβος n-διαστάσεων. i. Να βρεθεί ο αριθµός των διαφορετικών τρόπων

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #03 Βασικές έννοιες Ανάκτησης Πληροφορίας Δομή ενός συστήματος IR Αναζήτηση με keywords ευφυής

Διαβάστε περισσότερα

DISTRIBUTED CACHE TABLE: EFFICIENT QUERY-DRIVEN PROCESSING OF MULTI-TERM QUERIES IN P2P NETWORKS

DISTRIBUTED CACHE TABLE: EFFICIENT QUERY-DRIVEN PROCESSING OF MULTI-TERM QUERIES IN P2P NETWORKS DISTRIBUTED CACHE TABLE: EFFICIENT QUERY-DRIVEN PROCESSING OF MULTI-TERM QUERIES IN P2P NETWORKS Paper By: Gleb Skobeltsyn, Karl Aberer Presented by: Βασίλης Φωτόπουλος Agenda 1. Ορισμός του προβλήματος

Διαβάστε περισσότερα

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Επεξεργασία πινάκων

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Επεξεργασία πινάκων Ενότητα 4 Επεξεργασία πινάκων 36 37 4.1 Προσθήκη πεδίων Για να εισάγετε ένα πεδίο σε ένα πίνακα που υπάρχει ήδη στη βάση δεδομένων σας, βάζετε τον κέρσορα του ποντικιού στο πεδίο πάνω από το οποίο θέλετε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο. Πίνακες. Επικοινωνία:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο. Πίνακες. Επικοινωνία: Πίνακες Επικοινωνία: spzygouris@gmail.com Να δοθεί ο ορισμός του όρου «δεδομένα». Δεδομένα αποτελούν οποιαδήποτε στοιχεία μπορούν να εξαχθούν από τη διατύπωση του προβλήματος και η επιλογή τους εξαρτάται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ ΣΗΜΕΡΑ Ιστορική αναδρομή Υπολογιστικές μηχανές

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ ΣΗΜΕΡΑ Ιστορική αναδρομή Υπολογιστικές μηχανές ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ 1... 11 ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ... 11 ΣΗΜΕΡΑ... 11 1.1 Ιστορική αναδρομή... 13 1.1.1 Υπολογιστικές μηχανές στην αρχαιότητα... 13 1.1.2 17ο έως τον 19ο... 14 1.1.3

Διαβάστε περισσότερα

ΣΥΣΚΕΥΕΣ ΑΠΟΘΗΚΕΥΣΗΣ (ΜΝΗΜΗ)

ΣΥΣΚΕΥΕΣ ΑΠΟΘΗΚΕΥΣΗΣ (ΜΝΗΜΗ) ΣΥΣΚΕΥΕΣ ΑΠΟΘΗΚΕΥΣΗΣ (ΜΝΗΜΗ) Συσκευές αποθήκευσης Ένας υπολογιστής προκειµένου να αποθηκεύσει δεδοµένα χρησιµοποιεί δύο τρόπους αποθήκευσης: Την Κύρια Μνήµη Τις συσκευές µόνιµης αποθήκευσης (δευτερεύουσα

Διαβάστε περισσότερα

Αποθήκευση και Οργάνωση αρχείων. Βάσεις Δεδομένων Μάθημα 2ο Διδάσκων: Μαρία Χαλκίδη

Αποθήκευση και Οργάνωση αρχείων. Βάσεις Δεδομένων Μάθημα 2ο Διδάσκων: Μαρία Χαλκίδη Αποθήκευση και Οργάνωση αρχείων Βάσεις Δεδομένων Μάθημα 2ο Διδάσκων: Μαρία Χαλκίδη Κατηγοριοποίηση των φυσικών μέσων αποθήκευσης Ταχύτητα με την οποία προσπελαύνονται τα δεδομένα Κόστος ανά μονάδα δεδομένων

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μάθημα 8: Διαχείριση Μνήμης

Μάθημα 8: Διαχείριση Μνήμης Μάθημα 8: Διαχείριση Μνήμης 8.1 Κύρια και δευτερεύουσα μνήμη Κάθε μονάδα ενός υπολογιστή που χρησιμεύει για τη μόνιμη ή προσωρινή αποθήκευση δεδομένων ανήκει στην μνήμη (memory) του υπολογιστή. Οι μνήμες

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η.

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 6: Αρχεία Δομές Αρχείων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Με την ολοκλήρωση της ενότητας ο φοιτητής/τρια

Διαβάστε περισσότερα

Αντισταθμιστική ανάλυση

Αντισταθμιστική ανάλυση Αντισταθμιστική ανάλυση Θεωρήστε έναν αλγόριθμο Α που χρησιμοποιεί μια δομή δεδομένων Δ : Κατά τη διάρκεια εκτέλεσης του Α η Δ πραγματοποιεί μία ακολουθία από πράξεις. Παράδειγμα: Θυμηθείτε το πρόβλημα

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Οι σημειώσεις, αν και βασίζονται στο διδακτικό πακέτο, αποτελούν προσωπική θεώρηση της σχετικής ύλης και όχι επίσημο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D Dynamic dictionary matching problem Έχουμε ένα σύνολο πρότυπων D = { P1, P2,..., Pk } oπου D το λεξικό και ένα αυθαίρετο κειμενο T [1,n] To σύνολο των πρότυπων αλλάζει με το χρόνο (ρεαλιστική συνθήκη).

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

Εισαγωγή στα Λειτουργικά

Εισαγωγή στα Λειτουργικά Εισαγωγή στα Λειτουργικά Συστήματα Ενότητα 9: Αρχεία ΙΙ Γεώργιος Φ. Φραγκούλης Τμήμα Ηλεκτρολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Δομές Ευρετηρίων και Κατακερματισμός Αρχείων II Β. Μεγαλοοικονόμου Δ. Χριστοδουλάκης (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

Δυναμική Διατήρηση Γραμμικής Διάταξης

Δυναμική Διατήρηση Γραμμικής Διάταξης Διατηρεί μια γραμμική διάταξη δυναμικά μεταβαλλόμενης συλλογής στοιχείων. Υποστηρίζει τις λειτουργίες: Εισαγωγή νέου στοιχείου y αμέσως μετά από το στοιχείο x. x y Διαγραφή στοιχείου y. y Έλεγχος της σειράς

Διαβάστε περισσότερα

Συνόψεις για Δεδομένα XML με Ετερογενές Περιεχόμενο

Συνόψεις για Δεδομένα XML με Ετερογενές Περιεχόμενο are needed to see this picture. Συνόψεις για Δεδομένα XML με Ετερογενές Περιεχόμενο Άλκης Πολυζώτης UC Santa Cruz Μίνως Γαροφαλάκης Intel Research, Berkeley Ανακεφαλαίωση QuickTime and a Ησυνόψιση είναι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 4 ο ΟΡΓΑΝΩΣΗ ΤΗΣ ΜΝΗΜΗΣ ΠΕΡΙΦΕΡΕΙΑΚΗ ΜΝΗΜΗ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 4 ο ΟΡΓΑΝΩΣΗ ΤΗΣ ΜΝΗΜΗΣ ΠΕΡΙΦΕΡΕΙΑΚΗ ΜΝΗΜΗ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 4 ο ΟΡΓΑΝΩΣΗ ΤΗΣ ΜΝΗΜΗΣ ΠΕΡΙΦΕΡΕΙΑΚΗ ΜΝΗΜΗ ΧΕΙΜΩΝΑΣ 2009 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Γενική οργάνωση του υπολογιστή Ο καταχωρητής δεδομένων της μνήμης (memory data register

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό

Διαβάστε περισσότερα

Week. 6: Java Collections

Week. 6: Java Collections Week 6: Java Collections Συλλογές δεδοµένων [collections] Εβδοµάδα 6: Συλλογές δεδοµένων στην Java Οι συλλογές [collections] (αναφέρονται και ως «υποδοχείς δεδοµένων» [containers]) είναι κλάσεις που χρησιµοποιούνται

Διαβάστε περισσότερα

Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο

Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Οργάνωση Αρχείων 1 Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΤΕΙ Κρήτης, Παράρτηµα Χανίων

ΤΕΙ Κρήτης, Παράρτηµα Χανίων ΠΣΕ, Τµήµα Τηλεπικοινωνιών & ικτύων Η/Υ Εργαστήριο ιαδίκτυα & Ενδοδίκτυα Η/Υ ( ηµιουργία συστήµατος µε ροint-tο-ροint σύνδεση) ρ Θεοδώρου Παύλος Χανιά 2003 Περιεχόµενα 1 ΕΙΣΑΓΩΓΗ...2 2 ΤΟ ΚΑΝΑΛΙ PΟINT-TΟ-PΟINT...2

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Τα δεδομένα (data) είναι η αφαιρετική αναπαράσταση της πραγματικότητας και συνεπώς μία απλοποιημένη όψη της. Η συλλογή των ακατέργαστων δεδομένων και ο συσχετισμός

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 7: Αφαίρεση δεδόμενων Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εισαγωγή στα Λειτουργικά Συστήματα

Εισαγωγή στα Λειτουργικά Συστήματα Εισαγωγή στα Λειτουργικά Συστήματα Ενότητα 9: Αρχεία ΙΙ Γεώργιος Φ. Φραγκούλης Τμήμα Ηλεκτρολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα