Δομές Ευρετηρίου: Διάρθρωση Διάλεξης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δομές Ευρετηρίου: Διάρθρωση Διάλεξης"

Transcript

1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) Κεφάλαιο 8 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 1 Δομές Ευρετηρίου: Διάρθρωση Διάλεξης Εισαγωγή κίνητρο Ανεστραμμένα Αρχεία (Inverted files) Αρχεία Υπογραφών (Signature files) Δένδρα Καταλήξεων (Suffix trees) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 2 Ανάκτηση Πληροφορίας

2 Ευρετηριασμός Κειμένου:Εισαγωγή Σκοπός Σχεδιασμός δομών δεδομένων που επιτρέπουν την αποδοτική υλοποίηση της γλώσσας επερώτησης Απλοϊκή προσέγγιση: σειριακή αναζήτηση (online sequential search) Ικανοποιητική μόνο αν η συλλογή των κειμένων είναι μικρή Είναι η μόνη επιλογή αν η συλλογή κειμένων είναι ευμετάβλητη Σχεδιασμός δομών δεδομένων, που ονομάζονται ευρετήρια (called indices), για επιτάχυνση της αναζήτησης CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 3 Χρήση Καταλόγων/Ευρετηρίων Τα συστήματα ανάκτησης σπάνια αναζητούν την πληροφορία απευθείας στη συλλογή εγγράφων. Συνήθως, χρησιμοποιούνται κατάλογοι οι οποίοι επιταχύνουν τη διαδικασία αναζήτησης. συλλογή εγγράφων Κατάλογος αναζήτηση καταλόγου δημιουργία καταλόγου Έγγραφα Ανάκτηση Πληροφορίας

3 Ανάγκες Γλωσσών Επερώτησης (και μοντέλων ανάκτησης γενικότερα) Απλές βρες έγγραφα που περιέχουν μια λέξη t βρες πόσες φορές εμφανίζεται η λέξη t σε ένα έγγραφο βρες τις θέσεις τωνεμφανίσεωντηςλέξηςt στο έγγραφο Πιο σύνθετες λογικές (Boolean) επερωτήσεις επερωτήσεις εγγύτητας (phrase/proximity queries) ταιριάσματος προτύπου (pattern matching) κανονικές εκφράσεις (regular expressions) δομικές επερωτήσεις (structure-based queries)... Σχεδιάζουμε το ευρετήριο ανάλογα με το μοντέλο ανάκτησης και τη γλώσσα επερώτησης CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 5 Γενική (Λογική) μορφή ενός ευρετηρίου Indexing Items D o c u m e n t s k 1 k 2... k j... k t d 1 c 1,1 c 2,1... c i,1... c t,1 d 2 c 1,2 c 2,2... c i,2... c t, d i c 1,j c 2,j... c i,j... c t,j d N c 1,N c 2,N... c i,n... c t,n c ij : το κελί που αντιστοιχεί στο έγγραφο d i και στον όρο k j, το οποίο μπορεί να περιέχει: ένα w ij που να δηλώνει την παρουσία ή απουσία του k j στο d i (ή τη σπουδαιότητα του k j στο d i ) τις θέσεις στις οποίες ο όρος k j εμφανίζεται στο d i (αν πράγματι εμφανίζεται) Ερωτήματα: Τι πρέπει να έχει το κάθε c ij Πώς να υλοποιήσουμε αυτή τη λογική δομή ώστε να έχουμε καλή απόδοση; CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 6 Ανάκτηση Πληροφορίας

4 Τεχνικές Ευρετηριασμού (Indexing Techniques) Ανεστραμμένα Αρχεία (Inverted files) η πιο διαδεδομένη τεχνική Δένδρα και Πίνακες Καταλήξεων (Suffix trees and arrays) γρήγορες για phrase queries αλλά η κατασκευή και η συντήρησή τους είναι δυσκολότερη και ακριβότερη Αρχεία Υπογραφών (Signature files) Χρησιμοποιήθηκαν πολύ τη δεκαετία του 80. Σπανιότερα σήμερα αλλά σε κατανεμημένα διάφορες παραλλαγές τους. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 7 Ανεστραμμένα Αρχεία (Inverted Files) Ανάκτηση Πληροφορίας

5 Ανεστραμμένο Αρχείο Λογική Μορφή Ευρετηρίου Μορφή Ανεστραμμένου Ευρετηρίου Index terms C j,1 k 1 k 2... k t d 1 c 1,1 c 2,1 c t,1 d 2 c 1,2 c 2,2 c t, d i c 1,j c 2,j c t,j d N c 1,N c 2,N c t,n k1 k2... kt Postings lists Άρα δεν δεσμεύουμε χώρο για τα «μηδενικά κελιά» της λογικής μορφής του ευρετηρίου CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 9 Inverted Files (Ανεστραμμένα αρχεία) Ιnverted file = a word-oriented mechanism for indexing a text collection in order to speed up the searching task. An inverted file consists of: Vocabulary: is the set of all distinct words in the text Occurrences: lists containing all information necessary for each word of the vocabulary (documents where the word appears, frequency, text position, etc.) Τι είδους πληροφορία κρατάμε στις posting lists εξαρτάται από το λογικό μοντέλο και το μοντέλο ερωτήσεων CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 10 Ανάκτηση Πληροφορίας

6 Ανεστραμμένο αρχείο για ένα μόνο έγγραφο και αποθήκευση θέσεων εμφάνισης κάθε λέξης Κείμενο That house has a garden. The garden has many flowers. The flowers are beautiful Inverted File: Vocabulary beautiful flowers garden house Occurrences 70 45, 58 18, 29 6 Τι άλλο θα κάνατε (κρατούσατε) αν είχαμε πολλά έγραφα και θέλαμε να υλοποιήσουμε το Διανυσματικό Μοντέλο; CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 11 Ανεστραμμένο αρχείο για πολλά έγγραφα, και βάρυνση tf-idf To df (document frequency, που μας χρειάζεται για το IDF) αρκεί να αποθηκευτεί μια φορά To βάρος tf (term frequency) Vocabulary Index terms df D j, tf j Εδώ θα μπορούσαμε να έχουμε και τις θέσεις εμφάνισης της λέξης computer στο έγγραφο D j computer 3 D 7, 4 database 2 D 1, 3 science 4 D 2, 4 system 1 D 5, 2 Vocabulary file Postings lists CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 12 Ανάκτηση Πληροφορίας

7 Παράδειγμα ανεστραμμένου αρχείου όπου για κάθε λέξη i και έγγραφο j κρατάμε μόνο το freq ij Document Corpus Doc CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 13 Text 1 Pease porridge hot 2 Pease porridge cold 3 Pease porridge in the pot 4 Pease porridge hot, pease porridge not cold 5 Pease porridge cold, pease porridge not hot 6 Pease porridge hot in the pot Vocabulary Inverted Lists cold hot in not Inverted File pease <1,1> <2,1> <3,1> <4,2> <5,2> <6,1> porridge pot the <2,1> <4,1> <1,1> <4,1> <5,1> <6,1> <3,1> <6,1> <4,1> <5,1> <1,1> <2,1> <3,1> <4,2> <5,2> <3,1> <6,1> <3,1> <6,1> <5,1> <6,1> Another example term df document ids CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 14 Ανάκτηση Πληροφορίας

8 Block Addressing The text is divided in blocks The occurrences point to the blocks where the word appears CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 15 Block Addressing: Example That house has a garden. The garden has many flowers. The flowers are beautiful beautiful 70 Vocabulary flowers Occurrences 45, 58 garden 18, 29 house 6 Block 1 Block 2 Block 3 Block 4 That house has a garden. The garden has many flowers. The flowers are beautiful beautiful 4 Vocabulary flowers Occurrences 3 garden 2 house 1 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 16 Ανάκτηση Πληροφορίας

9 Block Addressing Advantages: the number of pointers is smaller than positions all the occurrences of a word inside a single block are collapsed to one reference (indices of only 5% overhead over the text size can be obtained with this technique. Of course this depends on the block size). In many cases instead of defining the block size, we define the number of blocks (in this way we know how many bits we need per pointer) Disadvantages: online sequential search over the qualifying blocks if exact positions are required e.g. for finding the sentence where the word occurs e.g. for evaluating a context (phrasal or proximity) query CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 17 Ανεστραμμένα Αρχεία: Απαιτήσεις Χώρου μικρές μεγάλες Index terms Cj,1 k1 k2... kt Postings lists CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 18 Ανάκτηση Πληροφορίας

10 Ανεστραμμένα Αρχεία: Απαιτήσεις Χώρου Notations n: the size of the text (of all documents in the collection) V: the size of the vocabulary For the Vocabulary: Rather small. According to Heaps law the vocabulary grows as O(n β ), where β is a constant between 0.4 and 0.6 in practice. So V ~ sqrt(n) // άρα ανάλογο της τετραγωνικής ρίζας του μεγέθους της συλλογής) For Occurrences: Much more space. Since each word appearing in the text is referenced once in that structure (i.e. we keep a pointer), the extra space is O(n) To reduce space requirements, a technique called block addressing is used how? CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 19 Size of Inverted Files as percentage of the size of the whole collection 45% of all words are stopwods Index Small collection Medium collection Large collection (1Mb) (200Mb) (2Gb) Addressing words 45% 73% 36% 64% 35% 63% Addressing 64K blocks 27% 41% 18% 32% 5% 9% Addressing 256 blocks 18% 25% 1.7% 2.4% 0.5% 0.7% Without stopwords All words Without stopwords All words Without stopwords All words Addressing words: 4 bytes per pointer (2^32 ~ giga) Addressing 64K blocks: 2 bytes per pointer Addressing 256 blocks: 1 byte per pointer CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 20 Ανάκτηση Πληροφορίας

11 Searching an inverted index CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 22 Ανάκτηση Πληροφορίας

12 (cont) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 23 Searching an inverted index General Steps: 1/ Vocabulary search: the words present in the query are searched in the vocabulary 2/ Retrieval occurrences: the lists of the occurrences of all words found are retrieved 3/ Manipulation of occurrences: The occurrences are processed to solve the query If block addressing is used we have to search the text of the blocks in order to get the exact positions and number of occurrences CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 24 Ανάκτηση Πληροφορίας

13 1/ Vocabulary search As Searching task on an inverted file always starts in the vocabulary, it is better to store the vocabulary in a separate file this file is not so big so it is possible to keep it at main memory at search time Suppose we want to search for a word of length m. The structures most used to store the vocabulary are hashing, tries or B-trees. Options: Cost of searching a sequential file: O(V) Cost of searching assuming hashing: O(m) Cost of searching assuming tries: O(m) Cost of searching assuming the file is ordered (lexicographically): O(log V) this option is cheaper in space and very competitive CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 25 Υπόβαθρο/Επανάληψη: Tries Tries multiway trees for stroring strings able to retrieve any string in time proportional to its length (independent from the number of all stored strings) Description every edge is labeled with a letter searching a string s start from root and for each character of s follow the edge that is labeled with the same letter. continue, until a leaf is found (which means that s is found) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 26 Ανάκτηση Πληροφορίας

14 Tries: Παράδειγμα This is a text. A text has many words. Words are made from letters. Vocabulary text (11) text (19) many (28) words (33) words (40) made (50) letters (60) Vocabulary (ordered) letters (60) made (50) many (28) text (11,19) words (33,40) Vocabulary trie l m a t w d n letters:60 made:50 many:28 text:11,19 words:33,40 Ερώτηση: Θα μπορούσε ένα trie να βοηθήσει τη στελέχωση κειμένου βάσει της τεχνικής Successor variety? CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 27 Παράδειγμα αυξητικής δημιουργίας ενός trie CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 28 Ανάκτηση Πληροφορίας

15 1/ Vocabulary Search (II) Remarks prefix and range queries can also be solved with binary search, tries or B-trees but not with hashing context queries are more difficult to solve with inverted indices 1. each element must be searched separately and 2. a list (in increasing positional order) is generated for each one 3. The lists of all elements are traversed in synchronization to find places where all the words appear in sequence (for a phrase) or appear close enough (for proximity). CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 29 Inverted Index: A general remark Experiments show that both the space requirements and the amount of text traversed can be close to O(n^0.85). Hence, inverted indices allow us to have sublinear search time and sublinear space requirements. This is not possible on other indices. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 30 Ανάκτηση Πληροφορίας

16 Constructing an Inverted File Constructing an Inverted File All the vocabulary is kept in a suitable data structure storing for each word a list of its occurrences e.g. in a trie data structure Each word of the text is read and searched in the vocabulary if a trie data structure is used then this search costs O(m) where m the size of the word If it is not found, it is added to the vocabulary with an empty list of occurrences and the new position is added to the end of its list of occurrences CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 32 Ανάκτηση Πληροφορίας

17 Constructing an Inverted File (II) Once the text is exhausted the vocabulary is written to disk with the list of occurrences. Two files are created: in the first file, the list of occurrences are stored contiguously in the second file, the vocabulary is stored in lexicographical order and, for each word, a pointer to its list in the first file is also included. The overall process is O(n) time 2 nd file 1 st file Trie: O(1) per text character Since positions are appended (in the postings file) O(1) time It follows that the overall process is O(n) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 33 Example of constructing an inverted file (in our example we assume that: each word = one document, position = document identifier ) Once the complete trie structure is constructed the inverted file can be derived from it: The trie is traversed top-down and left-toright. whenever an index term is encountered, it is added to the end of the inverted file. Note that if a term is prefix of another term (such as "a" is prefix of "are") index terms can occur on internal nodes of the trie. analogously the posting file is derived. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 34 Ανάκτηση Πληροφορίας

18 Example (cont) The trie structure constructed is a possible access structure to the index file in main memory. Thus the entries of the index files occur as leaves (or internal nodes) of the trie. Each entry has a reference to the position of the postings file that is held in secondary storage. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 35 What if the Inverted Index does not fit in main memory? A technique based on partial Indexes: Use the previous algorithm until the main memory is exhausted. When no more memory is available, write to disk the partial index I i obtained up to now, and erase it from main memory Continue with the rest of the text Once the text is exhausted, a number of partial indices I i exist on disk The partial indices are merged to obtain the final index CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 36 Ανάκτηση Πληροφορίας

19 Merging two partial indices I1 and I2 Merge the sorted vocabularies and whenever the same word appears in both indices, merge both list of occurences By construction, the occurences of the smaller-numbered index are before those at the larger-numbered index, therefore the lists are just concatenated Complexity: O(n1+n2) where n1 and n2 the sizes of the indices CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 37 Example of two partial indices and their merging CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 38 Ανάκτηση Πληροφορίας

20 Merging partial indices to obtain the final I final index 7 level 3 I I level 2 I I I I I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 level 1 initial dumps CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 39 Merging all partial indices: Time Complexity Notations n: the size of the text V: the size of the vocabulary M: the amount of main memory available The total time to generate partial indices is O(n) The number of partial indices is O(n/M) To merge the O(n/M) partial indices are necessary log 2 (n/m) merging levels The total cost of this algorithm is O(n log(n/m)) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 40 Ανάκτηση Πληροφορίας

21 Maintaining the Inverted File Addition of a new doc build its index and merge it with the final index (as done with partial indexes) Delete a doc of the collection scan index and delete those occurrences that point into the deleted file (complexity: O(n) : extremely expensive!) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 41 Αποτίμηση Boolean επερωτήσεων με χρήση ανεστραμμένων αρχείων Αποτίμηση με χρήση ανεστραμμένων αρχείων Primitive keyword: Retrieve containing documents using the inverted index. OR: Recursively retrieve e 1 and e 2 and take union of results. AND: Recursively retrieve e 1 and e 2 and take intersection of results. BUT: Recursively retrieve e 1 and e 2 and take set difference of results. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 42 Ανάκτηση Πληροφορίας

22 Evaluating Phrasal and Proximity Queries with Inverted Indices Phrasal Queries Must have an inverted index that also stores positions of each keyword in a document. Retrieve documents and positions for each individual word, intersect documents, and then finally check for ordered contiguity of keyword positions. Best to start contiguity check with the least common word in the phrase. Proximity Queries Use approach similar to phrasal search to find documents in which all keywords are found in a context that satisfies the proximity constraints -- a list (in increasing positional order) is generated for each one The lists of all elements are traversed in synchronization to find places where all the words appear close enough (for proximity). During binary search for positions of remaining keywords, find closest position of k i to p and check that it is within maximum allowed distance. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 43 Inverted Index: Κατακλείδα Is probably the most adequate indexing technique Appropriate when the text collection is large and semi-static If the text collection is volatile online searching is the only option Some techniques combine online and indexed searching Είδαμε τρόπους για να μειώσουμε το μέγεθος ενός ανεστραμμένου ευρετηρίου (λέξεις αποκλεισμού, block addressing). Θα δούμε και άλλους τρόπους στο μάθημα περί συμπίεσης (συγκεκριμένα τρόπους μείωσης του χώρου που καταλαμβάνουν οι λίστες εμφανίσεων) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 44 Ανάκτηση Πληροφορίας

23 Δομές Ευρετηρίου: Διάρθρωση Διάλεξης Εισαγωγή κίνητρο Ανεστραμμένα Αρχεία (Inverted files) Αρχεία Υπογραφών (Signature files) Δένδρα Καταλήξεων (Suffix trees) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 45 Signature files (αρχεία υπογραφών) Ανάκτηση Πληροφορίας

24 Αρχεία Υπογραφών (Signature Files) Κύρια σημεία: Δομή ευρετηρίου που βασίζεται στο hashing Μικρή χωρική επιβάρυνση (10%-20% του μεγέθους των κειμένων) Xαρακτηρίζεται από απώλεια πληροφορίας: κατά τη διαδικασία της αναζήτησης σχετικών εγγράφων μπορεί να ανακτηθούν έγγραφα τα οποία δεν περιέχουν τους όρους του ερωτήματος. Αναζήτηση = σειριακή αναζήτηση στο αρχείο υπογραφών Κατάλληλη για όχι πολύ μεγάλα κείμενα CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 47 Αρχεία Υπογραφών Συγκεκριμένα 1. Χρήση hash function που αντιστοιχεί λέξεις κειμένου σε bit masks των Β bits 2. Διαμέριση τουκειμένουσεblocks των b λέξεων το καθένα 1. Bit mask of a block = Bitwise OR of the bits masks of all words in the block 2. Bit masks are then concatenated CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 48 Ανάκτηση Πληροφορίας

25 Αρχεία Υπογραφών: Παράδειγμα b = 3 ( 3 words per block) B = 6 (bit masks of 6 bits) Text Block 1 Block 2 Block 3 Block 4 This is a text. A text has many words. Words are made from letters. Text Signature Signature Function h(text)= h(many)= h(words)= h(made)= h(letters)= Γιατί Bitwise-OR? CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 49 Αρχεία Υπογραφών: Αναζήτηση Έστω ότι αναζητούμε μια λέξη w: 1/ W := h(w) (we hash the word to a bit mask W) 2/ Compare W with all bit masks Bi of all text blocks If (W & Bi = W), the text block i is candidate (may contain the word w) 3/ For all candidate text blocks, perform an online traversal to verify that the word w is actually there CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 50 Ανάκτηση Πληροφορίας

26 False drops (false hits) False drop (false hit, false positive): All bits of the W are set in Bi but the word w is not there w=«words», h(«words»)= Text Block 1 Block 2 Block 3 Block 4 This is a text. A text has many words. Words are made from letters. Text Signature Signature Function h(text)= h(many)= h(words)= h(made)= h(letters)= CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 51 Υπογραφές (σύγκρουση) Ακόμα και να δεν υπάρχει υπέρθεση (ORing) υπάρχει περίπτωση δύο διαφορετικοί όροι να έχουν την ίδια υπογραφή. Το φαινόμενο αυτό καλείται σύγκρουση (collision) και η εμφάνισή του επηρεάζεται από το μέγεθος της υπογραφής και από τη συνάρτηση κατακερματισμού που χρησιμοποιείται. Όσο αυξάνει ο αριθμός των συγκρούσεων αυξάνει και ο αριθμός των false alarms (drops). Ανάκτηση Πληροφορίας

27 Διαμόρφωση (Configuration) υπογραφών Σχεδιαστικοί στόχοι: Μείωσε την πιθανότητα εμφάνισης false drops Κράτησε το μέγεθος του αρχείου υπογραφών μικρό δεν έχουμε κανένα false drop αν b=1 και Β=log 2 (V) Παράμετροι: Β (το μέγεθος των bit mask) L (L<B) to πλήθος των bit που είναι 1 (σε κάθε h(w)) The (space)-(false drop probability) tradeoff: 10% space overhead => 2% false drop probability 20% space overhead => 0.046% false drop probability CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 53 Εξαγωγή Υπογραφής μήκος υπογραφής Β αριθμός άσσων L όρος t Κατασκευή Υπογραφής Υπογραφή συνάρτηση κατακερματισμού h(t) Ανάκτηση Πληροφορίας

28 Αρχεία Υπογραφών: Άλλες Παρατηρήσεις Μέγεθος αρχείου υπογραφών: bit masks of each block plus one pointer for each block (pointing to the corresponding position at the original text) Συντήρηση αρχείου υπογραφών: Η προσθήκη/διαγραφή αρχείων αντιμετωπίζεται εύκολα προσθέτονται/διαγράφονται τα αντίστοιχα bit masks CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 55 Signature files: Phrase and Proximity Queries Good for phrase searches and reasonable proximity queries this is because all the words must be present in a block in order for that block to hold the phrase or the proximity query. Hence the OR of all the query masks is searched Remark: no other patterns (e.g. range queries) can be searched in this scheme CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 56 Ανάκτηση Πληροφορίας

29 Phrase/Proximity Queries and Block Boudaries q=<information retrieval> Text blocks Information retrieval (πρόβλημα! Μπορούμε όμως να το λύσουμε με επικαλυπτόμενα blocks) Overlapping blocks For j-proximity queries Information retrieval j-1 common words CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 57 Οργάνωση Υπογραφών Ανάκτηση Πληροφορίας

30 Σειριακή Οργάνωση Υπογραφών Η πιο απλή μορφή καταλόγου βασίζεται στη σειριακή παράθεση των υπογραφών σε ένα αρχείο που καλείται σειριακό αρχείο υπογραφών (sequential signature file - SSF). Το αρχείο υπογραφών είναι στην ουσία ένας πίνακας L x F με L γραμμές (πλήθος blocks - λογικών τμημάτων) και F στήλες (πλήθος δυαδικών ψηφίων ανά υπογραφή). Σε κάθε υπογραφή αντιστοιχεί και ένα δείκτης (pointer) που δείχνει στην αρχή του λογικού τμήματος του εγγράφου. Σειριακή Οργάνωση Υπογραφών Ανάκτηση Πληροφορίας

31 Οργάνωση Υπογραφών Με βάση τον τρόπο λειτουργίας του καταλόγου SSF προκύπτει ότι για την αναζήτηση ενός και μόνο όρου θα πρέπει να εξεταστούν όλες οι υπογραφές των λογικών τμημάτων. Eναλλακτικές μορφές οργάνωσης του αρχείου υπογραφών. Κάθετος Διαμερισμός: BSSF Tεμαχισμός (slicing) του πίνακα υπογραφών (1988): BSSF (bit-sliced signature file). Κάθετος διαμερισμός του πίνακα υπογραφών: η αποθήκευση του πίνακα γίνεται κατά στήλες (και όχι κατά γραμμές όπως στη μέθοδο SSF). Δηλαδή, ανά bit της υπογραφής Ο πίνακας υπογραφών του αντιστρέφεται, και αποκτά διαστάσεις F x L (F γραμμές και L στήλες): Η κάθε γραμμή του αντεστραμμένου πίνακα καλείται τεμάχιο (slice) και αποτελείται από τα δυαδικά ψηφία που βρίσκονται στην ίδια θέση σε όλες τις υπογραφές των λογικών τμημάτων. Για να μπορεί η δομή να υποστηρίξει εισαγωγές και διαγραφές αποδοτικά, ηκάθε γραμμή του αντεστραμμένου πίνακα αποθηκεύεται σε ξεχωριστό αρχείο. Ανάκτηση Πληροφορίας

32 Κάθετος Διαμερισμός: BSSF Κάθετος Διαμερισμός: BSSF Η αναζήτηση ενός όρου στη δομή BSSF: Υπολογισμός της υπογραφής του όρου. H υπογραφή του όρου θα περιέχει άσσους σε ακριβώς m δυαδικά ψηφία. ( σε αντίθεση με τη δομή SSF) Εξέταση m τεμαχίων (γραμμών του αντεστραμμένου πίνακα) αυτών που είναι 1 στην υπογραφή Τα δυαδικά ψηφία των m γραμμών συνδυάζονται με τη χρήση υπέρθεσης (λογικό AND) και προκύπτει ένα διάνυσμα L θέσεων. Λαμβάνονται υπόψη οι θέσεις των άσσων στο διάνυσμα αυτό και προσπελαύονται οι αντίστοιχοι δείκτες του αρχείου δεικτών για να οδηγηθούμε τελικά στα λογικά τμήματα των εγγράφων. Ανάκτηση Πληροφορίας

33 Κάθετος Διαμερισμός: BSSF Κάθετος Διαμερισμός: BSSF Για την εισαγωγή ενός νέου εγγράφου, αρχικά προσδιορίζονται τα νέα λογικά τμήματα και οι αντίστοιχες υπογραφές. για κάθε νέο λογικό τμήμα πραγματοποιείται τεμαχισμός της υπογραφής του και κάθε ένα από τα F διαφορετικά αρχεία λαμβάνει και ένα δυαδικό ψηφίο της υπογραφής που αποθηκεύεται στο τέλος. Ανάκτηση Πληροφορίας

34 Κάθετος Διαμερισμός: BSSF Η μέθοδος BSSF είναι πιο αποδοτική από την SSF ως προς τη λειτουργία της αναζήτησης. Ωστόσο, υπάρχει επιπλέον χώρος για βελτίωση που οφείλεται σε δύο κυρίως λόγους: Η αναζήτηση ενός όρου επιβάλλει την προσπέλαση m τεμαχίων, όπου m είναι ο αριθμός των άσσων στην υπογραφή του όρου. Αν m=1 τότε θα μπορούσε να αυξηθεί η απόδοση της μεθόδου. Η εισαγωγή ενός νέου λογικού τμήματος απαιτεί ένα μεγάλο αριθμό προσπελάσεων που ρυθμίζεται από τον αριθμό των δυαδικών ψηφίων της υπογραφής του λογικού τμήματος F. Αν η τιμή της παραμέτρου F είναι μεγάλη (π.χ. 1000) τότε αυξάνεται σημαντικά το κόστος εισαγωγής. Σύνοψη Οι κατάλογοι υπογραφών αποτελούν μία διαφορετική προσέγγιση για την οργάνωση μίας συλλογής εγγράφων. Το βασικό χαρακτηριστικό των καταλόγων αυτών είναι ότι στηρίζονται στη δημιουργία υπογραφών από τους όρους των εγγράφων. Μία υπογραφή είναι μία ακολουθία δυαδικών ψηφίων (bits) τα οποία περιέχουν άσσους σε συγκεκριμένες θέσεις που καθορίζονται από τη συνάρτηση κατακερματισμού που χρησιμοποιείται. Ανάκτηση Πληροφορίας

35 Σύνοψη Σύμφωνα με πειραματικές μελέτες σχετικά με την επίδοση των καταλόγων υπογραφών σε σχέση με τους ανεστραμμένους καταλόγους, έχει επαληθευτεί ότι οι κατάλογοι που στηρίζονται στην αντιστροφή έχουν γενικά καλύτερες επιδόσεις από τους καταλόγους που στηρίζονται σε υπογραφές. Ωστόσο, οι κατάλογοι υπογραφών έχουν μερικές πολύ καλές ιδιότητες (π.χ., ευκολία στον παραλληλισμό) Δομή ενός ΣΑΠ Έγγραφο Ερωτήματος Νέα Έγγραφα Ερώτημα Χρήστης Ανάδραση Προεπεξεργασία Εγγράφου Ερωτήματος Προεπεξεργασία Εγγράφου Επαναπροσδιορισμός Ερωτήματος Αναζήτηση Σχετικών Εγγράφων Ενημέρωση Καταλόγου Βαθμολόγηση Εγγράφων Παραγωγή και Μορφοποίηση Αποτελεσμάτων Κατάλογος Έγγραφα Ανάκτηση Πληροφορίας

36 Δομές Ευρετηρίου: Διάρθρωση Διάλεξης Εισαγωγή κίνητρο Ανεστραμμένα Αρχεία (Inverted files) Αρχεία Υπογραφών (Signature files) Δένδρα Καταλήξεων (Suffix trees) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 71 Δένδρα και Πίνακες Καταλήξεων (Suffix Trees and Suffix Arrays) Ανάκτηση Πληροφορίας

37 Δένδρα και Πίνακες Καταλήξεων (Suffix Trees and Arrays ) Κίνητρο Γρήγορη αποτίμηση των phrase queries H έννοια της λέξης (στην οποία βασίζονται τα inverted files) δεν υπάρχει σε άλλες εφαρμογές (π.χ. στις γενετικές βάσεις δεδομένων), άρα υπάρχει ανάγκη για διαφορετικές δομές δεδομένων. Μια αλυσίδα DNA είναι μια ακολουθία από διατεταγμένα ζευγάρια βάσεων. Υπάρχουν 4 βάσεις: η αδενίνη (Α), η γουανίνη(g), ηκυτοσίνη(c) και η θυμίνη (T). Κάθε ζευγάρι βάσεων του DNA αποτελείται από διαφορετικές βάσεις. Συγκεκριμένα, η αδενίνη (A) μπορεί να συνδέεται μόνο με τη θυμίνη (T), ενώ η γουανίνη (G) μπορεί να συνδέεται μόνο με την κυτοσίνη (C). Ένα παράδειγμα αποσπάσματος αλυσίδας DNA ακολουθεί: AGGCTACCCT TA T C C G A T G G G A A T CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 73 Δένδρα Καταλήξεων (Suffix Trees) Δένδρο Καταλήξεων: Το δένδρο καταλήξεων ενός κειμένου είναι ένα trie πάνω σε όλες τις καταλήξεις του κειμένου. Οι δείκτες προς το κείμενο αποθηκεύονται στα φύλλα του δένδρου. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 74 Ανάκτηση Πληροφορίας

38 Suffix Trie για τη λέξη cacao (θεωρώντας κάθε θέση ως σημείο ευρετηρίου) Καταλήξεις: o ao cao acao cacao Trie Καταλήξεων o c a a c c o o a a o Κανονικά ταξινομημένα o CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 75 Suffix Trie για τη λέξη cacao (θεωρώντας κάθε θέση ως σημείο ευρετηρίου) Καταλήξεις: o ao cao acao cacao caca o cac a ca c c a o ε c cao a o a c o o ac a aca o ao acao cacao CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 76 Ανάκτηση Πληροφορίας

39 Δένδρα και Πίνακες Καταλήξεων (Suffix Trees and Arrays ) Γενική ιδέα Βλέπουμε όλο το κείμενο ως μία μακριά συμβολοσειρά (long string) Θεωρούμε κάθε θέση του κειμένου ως κατάληξη κειμένου (text suffix) Δύο καταλήξεις που ξεκινούν από διαφορετικές θέσεις είναι λεξικογραφικά διαφορετικές άρα κάθε κατάληξη προσδιορίζεται μοναδικά από τη θέση της αρχής της Επιλογές Ευρετηριάζουμε όλες τις θέσεις του κειμένου Ευρετηριάζουμε κάποιες θέσεις του κειμένου (π.χ. μόνο τις αρχές λέξεων) Άρα εδώ έχουμε την έννοια του σημείου ευρετηρίου (index point) Τα σημεία που δεν είναι σημεία ευρετηρίου δεν είναι παραδόσιμα (deliverable) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 77 Παράδειγμα καταλήξεων (θεωρώντας ως σημεία ευρετηρίου (index points) τις αρχές των λέξεων) This is a text. A text has many words. Words are made from letters. letters. made from letters. Words are made from letters. words. Words are made from letters. many words. Words are made from letters. text has many words. Words are made from letters. text. A text has many words. Words are made from letters. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 78 Ανάκτηση Πληροφορίας

40 Δένδρα Καταλήξεων (Suffix Trees) Δένδρο Καταλήξεων: Το δένδρο καταλήξεων ενός κειμένου είναι ένα trie πάνω σε όλες τις καταλήξεις του κειμένου. Οι δείκτες προς το κείμενο αποθηκεύονται στα φύλλα του δένδρου. Για μείωση του χώρου, το trie συμπυκνώνεται ως ένα Patricia tree Patricia = Practical Algorithm To Retrieve Information Coded in Alphanumerical CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 79 Παράδειγμα καταλήξεων και του αντίστοιχου Suffix Trie This is a text. A text has many words. Words are made from letters. letters. made from letters. Words are made from letters. words. Words are made from letters. many words. Words are made from letters. text has many words. Words are made from letters. text. A text has many words. Words are made from letters. Suffix Trie l d a m n t e x t. 11 w o r d s CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 80 Ανάκτηση Πληροφορίας

41 Suffix tree = Suffix trie compacted into a Patricia tree This involves compressing unary paths, ι.e. paths where each node has just one child. If unary paths are not present, the tree has O(n) nodes instead of the worstcase O(n 2 ) of the trie. Suffix Trie Suffix Tree l d a m n t e x t. 11 w o r d s l 3 m d n 28 1 t w CS463 - Information Retrieval Systems Yannis Tzitzikas, Τι είναιu. αυτοί of Crete οι αριθμοί; 81 Πίνακες Καταλήξεων (Suffix arrays) Ανάκτηση Πληροφορίας

42 Πίνακες Καταλήξεων (Suffix arrays) (Space efficient implementation of suffix trees) Suffix trees have a space overhead of 120%-240% over the text size (assuming that index points = word beginnings) assuming node size of 12 or 24 bytes Now we will present a data structure with space requirements like those of the inverted file (~40% overhead over the text size) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 83 Πίνακες Καταλήξεων (Suffix arrays) (Space efficient implementation of suffix trees) Πίνακας Καταλήξεων: Πίνακας με δείκτες προς όλες τις «καταλήξεις» σε λεξικογραφική σειρά Για να τον δημιουργήσουμε αρκεί μια depth-fist-search διάσχιση του suffix tree This is a text. A text has many words. Words are made from letters l 3 m d n 28 1 t 19 w Suffix Tree 33 Suffix Array l m m t t w w CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 84 Ανάκτηση Πληροφορίας

43 Πίνακες Καταλήξεων This is a text. A text has many words. Words are made from letters. Suffix Tree l 3 m d n 28 1 t w Suffix Array l m m t t w w Οφέλη: Μείωση χώρου κρατάμε 1 δείκτη ανά κατάληξη (7 καταλήξεις, πίνακας 7 κελιών) (space overhead ~ that of inverted files) Δυνατότητα binary search CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 85 Πίνακες Καταλήξεων(III) This is a text. A text has many words. Words are made from letters. Suffix Tree l 3 m d n 28 1 t w Suffix Array l m m t t w w Αναζήτηση βάσει Suffix Array Γιαναδούμεανυπάρχειμιακατάληξηστο κείμενο κάνουμε δυαδική αναζήτηση (binary search) στο περιεχόμενο των δεικτών CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 86 Ανάκτηση Πληροφορίας

44 Πίνακες Καταλήξεων(IV) Αναζήτηση βάσει Suffix Array Για να δούμε αν υπάρχει μια κατάληξη στο κείμενο κάνουμε δυαδική αναζήτηση (binary search) στο περιεχόμενο των δεικτών Μπορεί να οδηγήσει σε πολλά disk accesses Therefore if vocabulary is big (and the suffix array does not fit in main memory), supra indices are employed they store the first l characters for each of every b entries of the suffix array Supra-Index lett text word l=4, b=3 Suffix Array l m m t t w w CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 87 Πίνακες Καταλήξεων (με supra-index) έναντι Ανεστραμμένων Αρχείων For word-indexing suffix array, it has been suggested that a new sample could be taken each time the first word of the suffix changes, and to store the word instead of l characters This is exactly as having a vocabulary of the text plus pointers to the array The only important difference between this structure and an inverted index is that the occurrences of each word in an inverted index are stored by text position, while in a suffix array they are stored lexicographically by the text following the word. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 88 Ανάκτηση Πληροφορίας

45 Δένδρα και Πίνακες Καταλήξεων Κόστος Αποτίμησης Επερωτήσεων Κόστος αναζήτησης μιας συμβολοσειράς μήκους m χαρακτήρων O(m) στην περίπτωση των δένδρων καταλήξεων (suffix tree) O(log n) στην περίπτωση των πινάκων καταλήξεων (suffix array) θυμηθείτε οτι κάθε σημείο του κειμένου προσδιορίζει μια κατάληξη Αποτίμηση phrase queries Η φράση αναζητείται σαν να ήταν μια συμβολοσειρά Αποτίμηση proximity queries proximity queries have to be resolved element wise CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 89 Ανάκτηση Πληροφορίας

Δομές Ευρετηρίου: Διάρθρωση Διάλεξης

Δομές Ευρετηρίου: Διάρθρωση Διάλεξης Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2006 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Ευρετηριασμός, Αποθήκευση και Οργάνωση Αρχείων Κειμένων (Indexing,

Διαβάστε περισσότερα

Δομές Ευρετηρίου: Διάρθρωση Διάλεξης

Δομές Ευρετηρίου: Διάρθρωση Διάλεξης Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and

Διαβάστε περισσότερα

Δομές Ευρετηρίου: Διάρθρωση Διάλεξης

Δομές Ευρετηρίου: Διάρθρωση Διάλεξης Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and

Διαβάστε περισσότερα

Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι

Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι Κεφάλαιο 8 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 Ανάκτηση Πληροφορίας 2009-2010 1 Δομές

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #10 εικτοδότηση και Αναζήτηση Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #11 Suffix Arrays Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης Το παρόν

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων. Διδάσκων: Μαρία Χαλκίδη

Ευρετήρια. Βάσεις Δεδομένων. Διδάσκων: Μαρία Χαλκίδη Ευρετήρια Βάσεις Δεδομένων Διδάσκων: Μαρία Χαλκίδη Βασικές έννοιες Οι μηχανισμοί δεικτοδότησης χρησιμοποιούνται για να επιταχύνουν την προσπέλαση σε επιθυμητά δεδομένα. π.χ., author catalog in library

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2007 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας ιάλεξη : 14a

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Φροντιστήριο 3

Ανάκτηση Πληροφορίας. Φροντιστήριο 3 Ανάκτηση Πληροφορίας Φροντιστήριο 3 Τσιράκης Νίκος Νοέμβριος 2007 2 Περιεχόμενα Ανεστραμμένα Αρχεία Εισαγωγή Δημιουργία Συμπίεση Πιθανοτικά Μοντέλα 3 Ανεστραμμένα Αρχεία 4 Εισαγωγή Με ποιους τρόπους μπορούμε

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας ιάλεξη : 14a

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Ανάκτηση πληροφορίας

Ανάκτηση πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανάκτηση πληροφορίας Ενότητα 7: Κατάλογοι Υπογραφών Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 5: Tutorial on External Sorting Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών TUTORIAL ON EXTERNAL SORTING

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Διάρθρωση. Στατιστικά Κειμένου Text Statistics. Συχνότητα Εμφάνισης Λέξεων Ο Νόμος του Zipf Ο Νόμος του Heaps. Ανάκτηση Πληροφορίας 2008-2009 1

Διάρθρωση. Στατιστικά Κειμένου Text Statistics. Συχνότητα Εμφάνισης Λέξεων Ο Νόμος του Zipf Ο Νόμος του Heaps. Ανάκτηση Πληροφορίας 2008-2009 1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 Στατιστικά Κειμένου Text Statistics CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2008 1 Διάρθρωση Συχνότητα Εμφάνισης

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Συμβολοσειρές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Συμβολοσειρές Συμβολοσειρές και προβλήματα που αφορούν συμβολοσειρές εμφανίζονται τόσο συχνά που

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών. Δημήτρης Πλεξουσάκης. Physical DB Design

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών. Δημήτρης Πλεξουσάκης. Physical DB Design Data Structures for Primary Indices Structures that determine the location of the records of a file A primary index is based on a key; the location of a record is determined by its key value. Most common

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Συντακτικές λειτουργίες

Συντακτικές λειτουργίες 2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

Αντισταθμιστική ανάλυση

Αντισταθμιστική ανάλυση Αντισταθμιστική ανάλυση Θεωρήστε έναν αλγόριθμο Α που χρησιμοποιεί μια δομή δεδομένων Δ : Κατά τη διάρκεια εκτέλεσης του Α η Δ πραγματοποιεί μία ακολουθία από πράξεις. Παράδειγμα: Θυμηθείτε το πρόβλημα

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

(C) 2010 Pearson Education, Inc. All rights reserved.

(C) 2010 Pearson Education, Inc. All rights reserved. Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.

Διαβάστε περισσότερα

Φροντιστήριο 4. Άσκηση 1. Λύση. Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών Εαρινό Εξάµηνο

Φροντιστήριο 4. Άσκηση 1. Λύση. Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών Εαρινό Εξάµηνο Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2007-2008 Εαρινό Εξάµηνο Άσκηση 1 Φροντιστήριο 4 Θεωρείστε ένα έγγραφο με περιεχόμενο «αυτό είναι ένα κείμενο και

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 18η: Φυσική Σχεδίαση Βάσεων Δεδομένων Τμήμα Επιστήμης Υπολογιστών Data Structures for Primary Indices Structures that determine

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΥ463 Συστήµατα Ανάκτησης Πληροφοριών Εργασία: Ανεστραµµένο Ευρετήριο Εισαγωγή Σκοπός της εργασίας είναι η δηµιουργία ενός ανεστραµµένου ευρετηρίου για τη µηχανή αναζήτησης Μίτος, το

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Ανάκληση Πληροφορίας. Information Retrieval. Διδάσκων Δημήτριος Κατσαρός

Ανάκληση Πληροφορίας. Information Retrieval. Διδάσκων Δημήτριος Κατσαρός Ανάκληση Πληροφορίας Information Retrieval Διδάσκων Δημήτριος Κατσαρός Διάλεξη 5η: 26/02/2014 1 Phrase queries 2 Phrase queries Want to answer queries such as stanford university as a phrase Thus the sentence

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 3

Αλγόριθμοι Ταξινόμησης Μέρος 3 Αλγόριθμοι Ταξινόμησης Μέρος 3 Μανόλης Κουμπαράκης 1 Ταξινόμηση με Ουρά Προτεραιότητας Θα παρουσιάσουμε τώρα δύο αλγόριθμους ταξινόμησης που χρησιμοποιούν μια ουρά προτεραιότητας για την υλοποίηση τους.

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ

Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Γιάννης Τζίτζικας CS463 - Information Retrieval Systems Yannis Tzitzikas,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ

ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ Κείμενα Ν. Μ. Σγούρος (sgouros@unipi.gr) Επεξεργασία Κειμένων Αναζήτηση Ακολουθιακή Αναζήτηση, Δομές Trie Συμπίεση Huffmann Coding, Run-Length Encoding, Burrows- Wheeler Κρυπτογράφηση

Διαβάστε περισσότερα

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Συνάρτηση round() Περιγραφή Η συνάρτηση ROUND στρογγυλοποιεί έναν αριθμό στον δεδομένο

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost

Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης & Τεχνολογίας Τηλεπικοινωνιών Ευάγγελος Α. Κοσμάτος Basic OSPF Configuration Υλοποίηση Δικτυακών Υποδομών

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

εικτοδότηση και Αναζήτηση (Indexing & Searching) Εισαγωγή Εισαγωγή

εικτοδότηση και Αναζήτηση (Indexing & Searching) Εισαγωγή Εισαγωγή εικτοδότηση και Αναζήτηση (Indexing & Searching) 1 Εισαγωγή Με ποιους τρόπους µπορούµενααναζητήσουµε πληροφορία από µία συλλογή κειµένων; Ο πιο απλός και εύκολα υλοποιήσιµος τρόπος είναι να ψάξουµε σειριακάόλατακείµενα

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Oracle SQL Developer An Oracle Database stores and organizes information. Oracle SQL Developer is a tool for accessing and maintaining the data

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ανάκτηση Πληροφορίας Αποτίμηση Αποτελεσματικότητας Μέτρα Απόδοσης Precision = # σχετικών κειμένων που επιστρέφονται # κειμένων που επιστρέφονται Recall = # σχετικών κειμένων που επιστρέφονται # συνολικών

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 216 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 216 - Ι. ΜΗΛΗΣ 9 DP II 1 Dynamic Programming ΓΕΝΙΚΗ ΙΔΕΑ 1. Ορισμός υπο-προβλήματος/ων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #04 Εισαγωγή στα Μοντέλα Ανάκτησης Πληροφορίας Boolean Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

DISTRIBUTED CACHE TABLE: EFFICIENT QUERY-DRIVEN PROCESSING OF MULTI-TERM QUERIES IN P2P NETWORKS

DISTRIBUTED CACHE TABLE: EFFICIENT QUERY-DRIVEN PROCESSING OF MULTI-TERM QUERIES IN P2P NETWORKS DISTRIBUTED CACHE TABLE: EFFICIENT QUERY-DRIVEN PROCESSING OF MULTI-TERM QUERIES IN P2P NETWORKS Paper By: Gleb Skobeltsyn, Karl Aberer Presented by: Βασίλης Φωτόπουλος Agenda 1. Ορισμός του προβλήματος

Διαβάστε περισσότερα

Parallel and Distributed IR

Parallel and Distributed IR Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη η και Κατανεμημένη η ΑΠ Γιάννης

Διαβάστε περισσότερα

Εργασία Μαθήματος Αξία: 40% του τελικού σας βαθμού Ανάθεση: Παράδοση:

Εργασία Μαθήματος Αξία: 40% του τελικού σας βαθμού Ανάθεση: Παράδοση: Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 2009-2010 Φθινοπωρινό Εξάμηνο Εργασία Μαθήματος Αξία: 40% του τελικού σας βαθμού Ανάθεση: Παράδοση: Σκοπός αυτής της

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Πτυχιακή Εργασία Φοιτητής: ΜIΧΑΗΛ ΖΑΓΟΡΙΑΝΑΚΟΣ ΑΜ: 38133 Επιβλέπων Καθηγητής Καθηγητής Ε.

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας (Information Retrieval IR) ιδακτικό βοήθηµα 2. Πανεπιστήµιο Θεσσαλίας Πολυτεχνική Σχολή Τµήµα Μηχ. Η/Υ, Τηλ/νιών & ικτύων

Ανάκτηση Πληροφορίας (Information Retrieval IR) ιδακτικό βοήθηµα 2. Πανεπιστήµιο Θεσσαλίας Πολυτεχνική Σχολή Τµήµα Μηχ. Η/Υ, Τηλ/νιών & ικτύων Ανάκτηση Πληροφορίας (Information Retrieval IR) Πανεπιστήµιο Θεσσαλίας Πολυτεχνική Σχολή Τµήµα Μηχ. Η/Υ, Τηλ/νιών & ικτύων Ακαδηµαϊκό Έτος 2005-2006 ιδακτικό βοήθηµα 1 Καλύπτει το 60% του 510 σελίδες 1η

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας (Information Retrieval IR)

Ανάκτηση Πληροφορίας (Information Retrieval IR) Ανάκτηση Πληροφορίας (Information Retrieval IR) Πανεπιστήµιο Θεσσαλίας Πολυτεχνική Σχολή Τµήµα Μηχ. Η/Υ, Τηλ/νιών & ικτύων Ακαδηµαϊκό Έτος 2005-2006 ιδακτικό βοήθηµα 1 Καλύπτει το 60% του αντικειµένου

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 2008

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 2008 Πρόβλημα 1: Ανάστροφος Αραιού Πίνακα (20 Μονάδες) Πίνακας m επί n διαστάσεων είναι μια ορθογώνια διάταξη με m γραμμές και n στήλες. Για παράδειγμα, ο πίνακας είναι διαστάσεων 4 επί 3 και αποτελείται από

Διαβάστε περισσότερα

Θεωρία Πληροφορίας και Κωδίκων

Θεωρία Πληροφορίας και Κωδίκων Θεωρία Πληροφορίας και Κωδίκων Δρ. Νικόλαος Κολοκοτρώνης Λέκτορας Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης και Τεχνολογίας Υπολογιστών Τέρμα Οδού Καραϊσκάκη, 22100 Τρίπολη E mail: nkolok@uop.gr Web: http://www.uop.gr/~nkolok/

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Διάλεξη 7η: 21/03/2016 1 Ch. 4 Κατασκευή του ευρετηρίου Πώς κατασκευάζουμε το ευρετήριο; Ποιες στρατηγικές μπορούμε ν ακολουθήσουμε

Διαβάστε περισσότερα

Συστήματα Ανάκτησης Πληροφοριών ΗΥ-463

Συστήματα Ανάκτησης Πληροφοριών ΗΥ-463 ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ COMPUTER SCIENCE DEPARTMENT UNIVERSITY OF CRETE Συστήματα Ανάκτησης Πληροφοριών ΗΥ-463 4 η Σειρά Ασκήσεων Ψαράκη Μαρία-Γεωργία ΜΕΤ 556 psaraki@csd.uoc.gr Εαρινό Εξάμηνο 2008-2009

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα