Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1"

Transcript

1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

2 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2

3 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας εγγραφής όταν δίνεται η τιμή ενός πεδίου της. Μ.Χατζόπουλος 3

4 K 1 <K 2 < <K q-1 P 1 K 1 K i-1 P i K i K q-1 P q X X X X<K 1 K i-1 <X<K i K q-1 <X Μ.Χατζόπουλος 4

5 Έστω ότι ο κόμβος χωράει 2 κλειδιά Μ.Χατζόπουλος 5

6 Εισαγωγή Μ.Χατζόπουλος 6

7 Εισαγωγή Μ.Χατζόπουλος 7

8 Όμως έτσι μπορεί να μην έχουμε καλή απόδοση ενώ θα μπορούσαμε να έχουμε Μ.Χατζόπουλος 8

9 Αν το δένδρο είναι τάξεως m σε κάθε κόμβο μπορεί να περιέχει το μέγιστο m-1 κλειδιά. Επομένως ένα δένδρο αναζήτησης ύψους h περιέχει το μέγιστο (m-1)+m(m-1)+m 2 (m-1)+ m h-1 (m-1)=(m-1)(1+m+m 2 + +m h-1 ) =m h -1 Επομένως για N κλειδιά το καλλίτερο δένδρο που μπορεί να δημιουργηθεί είναι N= m h -1 δηλαδή το πιο κοντό θα έχει ύψος h=log m (N+1) Μ.Χατζόπουλος 9

10 Όμως επειδή η χρήση είναι δυναμική δεν είναι πρακτικό με κάθε εισαγωγή και διαγραφή να γίνεται αναδιοργάνωση του δένδρου ώστε να έχω την καλλίτερη δυνατή απόδοση Θέλουμε να μπορεί να γίνεται εύκολα η εισαγωγή αλλά ταυτόχρονα το δένδρο που δημιουργείται να είναι όσο το δυνατόν ισοζυγισμένο με την έννοια οι κόμβοι φύλα να είναι στο ίδιο επίπεδο. Το να γέρνει προς μια πλευρά το δένδρο οδηγεί σε απόδοση που πλησιάζει αυτήν του ταξινομημένου αρχείου. Επίσης θέλουμε να γίνεται η καλλίτερη δυνατή χρήση του χώρου. Οι διαγραφές δημιουργούν κενά στους κόμβους που μπορεί να αφήσουν το δένδρο με σχεδόν κενούς κόμβους. Το Β-δένδρο (και οι παραλλαγές του) αντιμετωπίζει με επιτυχία αυτά τα δύο προβλήματα Μ.Χατζόπουλος 10

11 Β-δένδρο τάξεως p 1. Κάθε εσωτερικός κόμβος είναι της μορφής <P 1,<k 1,Pr 1 >,P 2,<K 2,Pr 2 >,,<k q-1,pr q-1 >,P q > q p. Τα P i είναι δείκτες δένδρου ενώ τα Pr i δείκτες δεδομένων. 2. Σε κάθε κόμβο ισχύει: K 1 <K 2 < K q Για όλα τα κλειδιά X στο υποδένδρο που δείχνει το Pi ισχύει Κ i-1 <X<K i 1<I<q, X<K i για i=1 και K i-1 <X για i=q 4. Κάθε κόμβος έχει το πολύ p δείκτες δένδρου. 5. Κάθε κόμβος εκτός της ρίζας και των φύλων έχει τουλάχιστον p/2 δείκτες δένδρου. Ο κόμβος της ρίζας έχει τουλάχιστον δύο δείκτες δένδρου εκτός αν είναι ο μοναδικός κόμβος του δένδρου. 6. Ένας κόμβος με q δείκτες δένδρου περιέχει q-1 κλειδιά. 7. Όλοι οι κόμβοι φύλα είναι στο ίδιο επίπεδο. Οι κόμβοι φύλα έχουν την ίδια δομή με τους εσωτερικούς κόμβους μόνο που οι δείκτες δένδρου έχουν τιμή null. Μ.Χατζόπουλος 11

12 Κόμβος του Β-δένδρου P 1 K 1 Pr 1 P 2 K i-1 Pr i-1 P i K i Pr i K q-1 Pr q-1 P q X Δείκτης δεδομένων Δείκτης δένδρου Δείκτης δεδομένων X δείκτης δεδομένων X K q-1 <X X<K 1 K i-1 <X<K i Μ.Χατζόπουλος 12

13 Το δένδρο τάξεως 3 που σημαίνει ότι κάθε κόμβος έχει 1 ή 2 κλειδιά και 2 ή 3 παιδιά Μ.Χατζόπουλος 13

14 Αυτό όμως δεν είναι Μ.Χατζόπουλος 14

15 Ούτε αυτό είναι Μ.Χατζόπουλος 15

16 Ούτε αυτό είναι Β Μ.Χατζόπουλος 16

17 Εισαγωγή του κλειδιού Χ στο Β-δένδρο Σαρώνουμε το Β-δένδρο μέχρι που ή θα βρούμε την τιμή Χ ήθα φθάσουμε σε ένα φύλο που θα έπρεπε να βρίσκεται η τιμή Χ. Αν ο κόμβος αυτός έχει έχει λιγότερα από p-1 κλειδιά τότε προσθέτουμε το κλειδί στον κόμβο αυτό και τελείωσε η εισαγωγή. Αν ο κόμβος έχει ήδη p κλειδιά τότε δεν μπορεί να προστεθεί στον κόμβο αυτό. Στην περίπτωση αυτή χωρίζουμε τα p κλειδιά (K 1 <K 2 <K 3 < <K q )σε δύο κόμβους όπου ο πρώτος έχει τα πρώτα q/2 ο δεύτερος τα τελευταία q/2 και το μεσαίο στοιχείο ανεβαίνει στον κόμβο γονέα σαν διαχωριστικό. Αν ο κόμβος γονέας έχει χώρο τότε τελειώσαμε. Αν δεν έχει τότε χωρίζεται με τον ίδιο τρόπο και αυτός και προχωράμε προς τη ρίζα. Στην χειρότερη περίπτωση θα διασπασθεί και η ρίζα και θα ανέβουμε ένα επίπεδο (θα ψηλώσει το δένδρο). Μ.Χατζόπουλος 17

18 Το δένδρο τάξεως 3 που σημαίνει ότι κάθε κόμβος έχει 1 ή 2 κλειδιά και 2 ή 3 παιδιά Μ.Χατζόπουλος 18

19 Εισαγωγή του Μ.Χατζόπουλος 19

20 Εισαγωγή του Μ.Χατζόπουλος 20

21 Εισαγωγή του Μ.Χατζόπουλος 21

22 Εισαγωγή του Μ.Χατζόπουλος 22

23 Εισαγωγή του Μ.Χατζόπουλος 23

24 Εισαγωγή του Μ.Χατζόπουλος 24

25 Διαγραφή ενός κλειδιού από ένα τερματικό κόμβο Εντοπίζεται ο κόμβος. Αν με την διαγραφή το πλήθος των κλειδιών του κόμβου παραμένει επιτρεπτό τότε έχουμε τελειώσει. Αν ο κόμβος πέφτει κάτω από το επιτρεπόμενο τότε ανατρέχουμε στους κόμβους άμεσα αδέλφια ώστε να βρεθεί κόμβος να δανείσει ένα στοιχείο και μεταφέρουμε το στοιχείο από τον αδελφό στο γονέα και από τον γονέα στον κόμβο που έχει πρόβλημα και τελειώνουμε. Αν δεν μπορεί να δανείσει και ο αδελφός τότε οι δύο κόμβοι είναι οριακοί και μπορούμε να τους συμπτύξουμε σε έναν. Στην περίπτωση αυτή αν ο γονέας δεν έχει λιγότερα από τα επιτρεπόμενα στοιχεία τελειώσαμε. Αν έχει λιγότερα τότε επαναλαμβάνουμε την διαδικασία προς τη ρίζα. Στην περίπτωση αυτή μπορεί να φτάσουμε μέχρι τη ρίζα και μπορεί να κοντύνει το δένδρο κατά ένα επίπεδο. Μ.Χατζόπουλος 25

26 Έστω το Β-δένδρο τάξεως 5 (δηλαδή από 2 μέχρι 4 κλειδιά σε κάθε κόμβο εκτός της ρίζας) Μ.Χατζόπουλος 26

27 Διαγραφή του Μ.Χατζόπουλος 27

28 Διαγραφή του Έχει να δανείσει ο διπλανός επομένως πάει το 60 στη θέση του 50 και το 70 αναβαίνει στον γονέα. Μ.Χατζόπουλος 28

29 Διαγραφή του Τώρα όμως αυτός έχει λιγότερα και δανείζεται από τον αδελφό του Μ.Χατζόπουλος 29

30 Διαγραφή από εσωτερικό κόμβο Στην περίπτωση αυτή πρέπει να βρεθεί το αμέσως επόμενο(ή προηγούμενο) από το στοιχείο που θέλουμε να διαγράψουμε. Το αμέσως επόμενο (ή προηγούμενο βρίσκεται πάντα σε φύλο). Στην περίπτωση αυτή το αμέσως προηγούμενο (ή επόμενο) καταλαμβάνει την θέση του προς διαγραφή στοιχείου και η διαγραφή ανάγεται στην προηγούμενη περίπτωση διαγραφής από φύλο. Μ.Χατζόπουλος 30

31 Διαγραφή του Στην περίπτωση αυτή πάει στη θέση του το αμέσως προηγούμενο δηλαδή το 150. Μ.Χατζόπουλος 31

32 Διαγραφή του Στην περίπτωση αυτή πάει στη θέση του το αμέσως προηγούμενο δηλαδή το 80 αλλά ο κόμβος που είχε το 80 θα πέσει κάτω από το επιτρεπτό και θα ακολουθηθεί ότι και στην περίπτωση διαγραφής από φύλο Μ.Χατζόπουλος 32

33 Διαγραφή του Στην περίπτωση αυτή είναι σαν να διαγράφουμε το 110 και ακολουθούμε την διαδικασία διαγραφής από φύλο Μ.Χατζόπουλος 33

34 Διαγραφή του Στην περίπτωση αυτή το 180 αναβαίνει στο 220 γονέα. Ο κόμβος με μόνο το φύλο 170 έχει πρόβλημα. Θα ενωθεί με τον αδελφό Ο κόμβος με το 220 έχει πρόβλημα και θα συνενωθεί με τον αδελφό και τη ρίζα μειώνοντας το ύψος κατά 1 Μ.Χατζόπουλος 34

35 Θα προσπαθήσουμε να βρούμε το μέγιστο ύψος ενός Β-δένδρου ύψος ενός δένδρου με τάξεως m για Ν στοιχεία. 1+2( m/2-1)+2 ( m/2-1)( m/2 ) + 2 ( m/2-1)( m/2 ) h-2 =2 ( m/2 ) h-1-1 h-1= log m/2 ((N+1)/2) Επομένως h log m/2 ((N+1)/2) Μ.Χατζόπουλος 35

36 Όμως έχουμε h log m (N+1) Άρα log m (N+1) h log m/2 ((N+1)/2) Μ.Χατζόπουλος 36

37 Μήκος κλειδιού V=9 byte Μέγεθος block B=512byte Μήκος δείκτη υποδένδρου P=6byte Μήκος δείκτη εγγραφής Pr=7byte Για την τάξη p του δένδρου πρέπει να ισχύει (p*p)+((p-1)*(pr+v)) B Δηλαδή στην περίπτωση μας (p*6)+((p-1)*(7+9)) *p 521 p=23 Μ.Χατζόπουλος 37

38 Με αυτά τα δεδομένα για ένα αρχείο με εγγραφές το ύψος του δένδρου είναι 2 ή 3. Ή ακόμη <=h<=8 Μ.Χατζόπουλος 38

39 Β+δένδρα Τα Β+δένδρα και οι παραλλαγές τους είναι η κυρίως δομή που χρησιμοποιούν τα εμπορικά συστήματα διαχείρισης βάσεων δεδομένων. Σε αντίθεση με τα Β-δένδρα όπου κάθε τιμή του πεδίου αναζήτησης μια φορά σε κάποιο επίπεδο του δένδρου στα Β+δένδρα οι δείκτες δεδομένων αποθηκεύονται μόνο στα φύλα. Επομένως οι κόμβοι φύλα διαφέρουν από τους εσωτερικούς κόμβους. Μ.Χατζόπουλος 39

40 Ορισμός Β+δένδρου (Εσωτερικοί κόμβοι) 1. Κάθε εσωτερικός κόμβος είναι της μορφής <P 1,K 1,P 2,K 2,,K q-1,p q > q p και κάθε P i είναι δείκτης δένδρου 2. Σε κάθε εσωτερικό κόμβο K 1 <K 2 < <K q Κάθε εσωτερικός κόμβος έχει το πολύ p δείκτες δένδρου. 4. Κάθε εσωτερικός κόμβος εκτός από τη ρίζα έχει το λιγότερο p/2 δείκτες δένδρου. Ο κόμβος της ρίζας έχει τουλάχιστον δυο δείκτες δένδρου. 5. Ένας εσωτερικός κόμβος με q δείκτες, q p έχει q-1 τιμές πεδίου αναζήτησης Μ.Χατζόπουλος 40

41 Ορισμός Β+δένδρου (Κόμβοι φύλα) 1. Κάθε κόμβος φύλο είναι της μορφής: <<K 1,Pr 1 >,<K 2,Pr 2 >,,<k q-1,pr q-1 >,P next > q p κάθε Pr i είναι δείκτης δεδομένων και το P next δείχνει τον επόμενο κόμβο φύλο του Β+δένδρου. 2. Σε κάθε κόμβο K 1 <K 2 < <K q-1, q p. 3. Κάθε Pri είναι δείκτης δεδομένων που δείχνει την εγγραφή της οποίας η τιμή του πεδίου του ευρετηρίου είναι K i. 4. Κάθε κόμβος φύλο έχει το λιγότερο p/2 τιμές. 5. Όλοι οι κόμβοι φύλα είναι στο ίδιο επίπεδο. Μ.Χατζόπουλος 41

42 Καταχωρήσεις ευρετηρίου Δεδομένα ή δείκτες στα δεδομένα Μ.Χατζόπουλος 42

43 Δομή εσωτερικού κόμβου P 1 K 1 K i-1 P i K i K q-1 P q δείκτης δένδρου X K 1 K i-1 <X K i K q-1 <X Μ.Χατζόπουλος 43

44 Δομή κόμβου φύλου K 1 Pr 1 K 2 Pr 2 K i Pr i K q-1 Pr q-1 P next δείκτης δεδομένων δείκτης στον επόμενο κόμβο φύλο Μ.Χατζόπουλος 44

45 Μ.Χατζόπουλος 45

46 Υπολογισμός της τάξης p του Β+δένδρου Μήκος κλειδιού V=9 byte Μέγεθος block B=512byte Μήκος δείκτη υποδένδρου P=6byte Μήκος δείκτη εγγραφής P r =7byte Για την τάξη p του δένδρου πρέπει να ισχύει (p*p)+((p-1)*v) B Δηλαδή στην περίπτωση μας (p*6)+((p-1)* *p 521 P=34 Μ.Χατζόπουλος 46

47 Ο κόμβος φύλο μπορεί να είναι άλλης τάξης Θα πρέπει να ισχύει: (p leaf *(P r +V))+P B (p leaf *(7+9)) (16p leaf ) 506 Δηλαδή p leaf =31 Μ.Χατζόπουλος 47

48 Β+δένδρο βαθμού 5 έστω ότι και ο κόμβος φύλο είναι τάξεως Μ.Χατζόπουλος 48

49 Εισαγωγή του Μ.Χατζόπουλος 49

50 Η διαγραφή από ένα Β+δένδρο είναι αρκετά πολύπλοκη γιατί έχουμε τους περιορισμούς τόσο στα φύλα όσο και στους εσωτερικούς κόμβους να μην πέσουμε κάτω από την επιτρεπόμενη χρήση του κόμβου. Μ.Χατζόπουλος 50

51 Μ.Χατζόπουλος 51

52 Διαγραφή Μ.Χατζόπουλος 52

53 Διαγραφή Μ.Χατζόπουλος 53

54 Διαγραφή Μ.Χατζόπουλος 54

55 Διαγραφή Μ.Χατζόπουλος 55

56 Τα Β-δένδρα μπορούν να χρησιμοποιηθούν και σαν δευτερεύοντα ευρετήρια (σε πεδία που δεν είναι κλειδιά). Στην περίπτωση αυτή μπορούμε να χρησιμοποιήσουμε μια τεχνική όμοια με αυτή της υπερχείλισης. Κάθε τιμή στο φύλο δείχνει σε μια λίστα με τις διευθύνσεις των εγγραφών με αυτή την τιμή. Συνήθως όμως γίνεται μια διαφορετική υλοποίηση. Τις διπλές τιμές τις αντιμετωπίζουμε σαν απλές τιμές και για την ανάκτηση μιας τιμής ξεκινάμε από την πιο αριστερή τιμή και ακολουθούμε τα φύλα και πιθανόν και τους δείκτες επόμενου. Επίσης μπορεί να χρησιμοποιηθεί συνδυασμός κλειδιού διεύθυνσης. Η λύση αυτή οδηγεί σε ευρετήρια μοναδικών τιμών. Μ.Χατζόπουλος 56

57 Προθεματικά Β-δένδρα Έχουν παρόμοια δομή με τα Β+δένδρα αλλά διαφέρει η υλοποίηση τους.η βασική ιδέα είναι ότι αν το κλειδί είναι συμβολοσειρά, τότε δεν είναι σκόπιμο να αποθηκεύεται ολόκληρο στους εσωτερικούς κόμβους του καταλόγου αλλά μόνο εκείνο το πρόθεμα του που είναι απαραίτητο για την διαδικασία αναζήτησης. Έτσι ο κατάλογος περιέχει τους διαχωριστές (separators) που είναι μεταβλητού μήκους. Το μήκος των διαχωριστών ποικίλει από ένα χαρακτήρα μέχρι το μήκος ενός κλειδιού. Μ.Χατζόπουλος 57

58 Ν ΜΑΝΟΣ ΜΑΡΙΑ ΝΑΣΟΣ ΝΙΚΟΣ Μ.Χατζόπουλος 58

59 Ομαδική Φόρτωση σε Β+-δένδρα Ο αλγόριθμος εισαγωγής που περιγράψαμε εισάγει μια-μια τις καταχωρήσεις σε ένα Β+-δένδρο. Αν έχουμε μια αρχική συλλογή χωρίς ευρετήριο μπορούμε να χρησιμοποιήσουμε αυτόν τον αλγόριθμο ο οποίος όμως δεν θα είναι αποτελεσματικός, γιατί κάθε φορά θα διασχίζουμε το δένδρο από τη ρίζα. Πολλά συστήματα έχουν ένα βοηθητικό πρόγραμμα ομαδικής φόρτωσης για την δημιουργία Β+δένδρου ευρετηρίου σε μια υπάρχουσα συλλογή εγγραφών Μ.Χατζόπουλος 59

60 Βήματα ομαδικής φόρτωσης Ταξινόμηση των εγγραφών που θα εισαχθούν με βάση το κλειδί αναζήτησης k (εφόσον είναι ζεύγος κλειδί, δείκτης ταξινόμηση δεν σημαίνει ταξινόμηση του αρχείου) Ξεκινάμε με μια κενή σελίδα σαν ρίζα και εισάγουμε ένα δείκτη στην πρώτη σελίδα των ταξινομημένων καταχωρήσεων. Η καταχώρηση είναι ελάχιστη τιμή κλειδιού στη σελίδα και δείκτης σελίδας. Συνεχίζουμε μέχρι να γεμίσει η ρίζα. Στη συνέχεια έχουμε διάσπαση της ρίζας κοκ. Μ.Χατζόπουλος 60

61 3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* Μ.Χατζόπουλος 61

62 6 10 3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* Μ.Χατζόπουλος 62

63 * 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* Μ.Χατζόπουλος 63

64 VSAM (Virtual Storage Access Method) αρχεία Αποτελούν μια υλοποίηση της IBM που μοιάζει πολύ με τα B+ δένδρα με την διαφορά ότι ο παράγοντας ελάχιστης φόρτωσης του κόμβου αφήνεται πιο ελεύθερος και μπορεί να καθορισθεί από τον χρήστη (σε αντίθεση με τα Β+δένδρα που είναι το μισό της μέγιστης χωρητικότητας). Μ.Χατζόπουλος 64

65 Δομή VSAM αρχείου Απαρτίζεται από 4 περιοχές Διαστήματα Ελέγχου (control intervals) που περιέχουν τις εγγραφές του αρχείου. Περιοχές ελέγχου (control areas) που περιέχουν πολλά διαστήματα ελέγχου Ακολουθιακές Ομάδες (sequence sets) που είναι κατάλογοι για κάθε περιοχή ελέγχου Ομάδα καταλόγων (index set) που είναι μια δενδρική δομή με το πολύ τρία επίπεδα. Οι σελίδες του κατώτερου επιπέδου δεικτοδοτούν προς το επίπεδο των ακολουθιακών ομάδων Μ.Χατζόπουλος 65

66 Ομάδα καταλόγων Ακολουθιακή ομάδα Ακολουθιακή ομάδα Διάστημα Ελέγχου Διάστημα Ελέγχου Διάστημα Ελέγχου Διάστημα Ελέγχου Διάστημα Ελέγχου Μ.Χατζόπουλος 66

67 Εγγραφή 1 Εγγραφή 2 Εγγραφή 3 Εγγραφή 4 Εγγραφή 5 Εγγραφή 6 Ελεύθερος χώρος Ελεύθερος χώρος RDF3 RDF2 RDF1 RDF:Record Definition Field Πεδίο Ορισμού εγγραφής Μ.Χατζόπουλος 67

68 Ομάδα Καταλόγων Υποθέστε ότι η περιοχή ελέγχου χωράει 4 εγγραφές Ακολουθιακή Ομάδα Διάστημα Ελέγχου Περιοχές Ελέγχου Μ.Χατζόπουλος 68

69 Εισαγωγή Ακολουθιακή Ομάδα Διάστημα Ελέγχου Περιοχές Ελέγχου Μ.Χατζόπουλος 69

70 Εισαγωγή Ακολουθιακή Ομάδα Διάστημα Ελέγχου Περιοχές Ελέγχου Μ.Χατζόπουλος 70

71 Διαγραφή Ακολουθιακή Ομάδα Διάστημα Ελέγχου Περιοχές Ελέγχου Μ.Χατζόπουλος 71

72 Τα εμπορικά συστήματα SYBASE: χρησιμοποιεί ευρετήρια συστάδες. Οι σελίδες αποτελούν διπλά συνδεδεμένη λίστα. Με τις εισαγωγές γράφονται δεδομένα στην υπερχείλιση. ORACLE, DB2, SQL Server: Η αντιμετώπιση των διπλών γίνεται με την προσθήκη της διεύθυνσης της εγγραφής. Με τον τρόπο αυτό δεν υπάρχουν διπλά. Μ.Χατζόπουλος 72

73 Εμπορικά Συστήματα και Β-δένδρα Τα DB2, Informix, SQL Server, Oracle, και SYBASE υποστηρίζουν απλά και συστάδες ευρετήρια Β+δένδρα με κάποιες διαφορές στην αντιμετώπιση των διαγραφών και των δευτερευόντων πεδίων. Στην SYBASE ανάλογα με το σχήμα συγχρονισμένης προσπέλασης που χρησιμοποιείται, η εγγραφή διαγράφεται (με πιθανή συγχώνευση σελίδων) ή απλά σημαδεύεται (με κάποιο σχήμα καθαρισμού του χώρου-garbage collection). Στην ORACLE οι διαγραφές σημαδεύονται σαν διαγραμμένες. Για ανάκληση του ελεύθερου χώρου μπορούμε on-line να χτίσουμε το ευρετήριο. Η INFORMIX σημαδεύει τις εγγραφές που έχουν διαγραφεί. Το DB2 και ο SQL Server διαγράφουν εγγραφές και συγχωνεύουν σελίδες όταν πέσουν κάτω από κάποιο όριο. Η ORACLE σε συστάδες εγγραφές από πολλές σχέσεις. Αυτό μπορεί να στηριχθεί σε Β+δένδρα. Μ.Χατζόπουλος 73

74 Ευρετήρια σε πολλαπλά κλειδιά Πολλές φορές οι ερωτήσεις αφορούν περισσότερα από ένα πεδία. Μας ενδιαφέρει η περίπτωση λογικών συζεύξεων. Δηλαδή ερωτήσεις του τύπου: (συνθήκη1) AND (συνθήκη2) Όπου η συνθήκη είναι της μορφής: Α c Όπου {=,<,>,, } και το c σταθερά Μ.Χατζόπουλος 74

75 Τι μπορούμε να κάνουμε Αν δεν υπάρχει ευρετήριο θα πρέπει να γίνει εξαντλητική σάρωση και έλεγχος για την εύρεση των εγγραφών που πληρούν την σύνθετη συνθήκη. Αν δεν υπάρχει ευρετήριο αλλά το αρχείο είναι ταξινομημένο ως προς κάποιο πεδίο της συνθήκης μπορεί να επιταχυνθεί η αναζήτηση. Αν υπάρχει ευρετήριο ως προς το ένα πεδίο τότε εντοπίζονται οι εγγραφές που πληρούν την μια συνθήκη και αφού μεταφερθούν στην μνήμη εξετάζεται και η άλλη συνθήκη. Μ.Χατζόπουλος 75

76 Αν υπάρχει ευρετήριο και στα δύο πεδία τότε μπορούμε να χρησιμοποιήσουμε και τα δύο ευρετήρια και η τομή τους είναι οι εγγραφές που αναζητούμε. Εναλλακτικά μπορούμε να χρησιμοποιήσουμε το ευρετήριο που θα δώσει το μικρότερο σύνολο εγγραφών και στη συνέχεια να εξετάσουμε τις εγγραφές αυτές αν πληρούν και την άλλη συνθήκη. Τέλος μπορούμε να συντηρούμε ευρετήρια σε συνδυασμό κλειδιών (σύνθετα κλειδιά). Μ.Χατζόπουλος 76

77 Δικτυωτό Αρχείο y x Μ.Χατζόπουλος 77

78 Μ.Χατζόπουλος 78

79 Λογικά έναντι φυσικών ευρετηρίων Θεωρήσαμε ευρετήρια με καταχωρήσεις του τύπου <k, Pr> ή <k, P> όπου το P ή το Pr ήταν φυσική διεύθυνση στο δίσκο. Ένα τέτοιο ευρετήριο ονομάζεται φυσικό ευρετήριο. Σε αντίθεση ένα λογικό ευρετήριο έχει καταχωρήσεις της μορφής <k, K p > όπου κάθε καταχώρηση έχει μια τιμή για το δευτερεύον πεδίο ευρετηριοποίησης συνδεδεμένη με την τιμή K p του πεδίου που χρησιμοποιείται για την πρωτεύουσα οργάνωση του αρχείου. Μ.Χατζόπουλος 79

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση, Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση, Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1 Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1 Κεφάλαιο 14 Δομές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. Navathe Ελληνική Έκδοση, Διαβλος, Επιμέλεια Μ.Χατζόπουλος Θα μιλήσουμε

Διαβάστε περισσότερα

Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων. Σεμινάριο 6: Δομές ευρετηρίων για αρχεία

Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων. Σεμινάριο 6: Δομές ευρετηρίων για αρχεία Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων Σεμινάριο 6: Δομές ευρετηρίων για αρχεία Ευάγγελος Καρκαλέτσης, Αναστασία Κριθαρά, Γεώργιος Πετάσης Εργαστήριο Τεχνολογίας Γνώσεων

Διαβάστε περισσότερα

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1 ιαφάνεια 14-1 Κεφάλαιο 14 οµές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. NavatheΕλληνικήΈκδοση, ιαβλος, Επιµέλεια Μ.Χατζόπουλος 1 Θα µιλήσουµε για Τύποι Ταξινοµηµένων Ευρετηρίων

Διαβάστε περισσότερα

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δεντρικά Ευρετήρια Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται

Διαβάστε περισσότερα

Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη

Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη Ευρετήρια 1 Αρχεία Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη µνήµη. Η µεταφορά δεδοµένων από το δίσκο στη µνήµη και από τη

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Οι πράξεις της συνένωσης. Μ.Χατζόπουλος 1

Οι πράξεις της συνένωσης. Μ.Χατζόπουλος 1 Οι πράξεις της συνένωσης Μ.Χατζόπουλος 1 ΠΡΟΜΗΘΕΥΤΗΣ (ΠΡΜ) Κ_Προμ Π_Ονομα Είδος Πόλη 22 Ανδρέου 7 Αθήνα 31 Πέτρου 8 Πάτρα 28 Δέδες 12 Λάρισα 58 Παππάς 7 Αθήνα ΠΡΟΙΟΝ (ΠΡ) Κ_Πρ Πρ_Ονομα Χρώμα Βάρος Π35

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

Υλοποίηση των Σχεσιακών Τελεστών. 6/16/2009 Μ.Χατζόπουλος 1

Υλοποίηση των Σχεσιακών Τελεστών. 6/16/2009 Μ.Χατζόπουλος 1 Υλοποίηση των Σχεσιακών Τελεστών 6/16/2009 Μ.Χατζόπουλος 1 Ένα σχεσιακό ΣΔBΔ πρέπει να συμπεριλαμβάνει αλγόριθμους για υλοποίηση των διαφορετικών τύπων των σχεσιακών πράξεων (καθώς και άλλων πράξεων) που

Διαβάστε περισσότερα

Δεντρικά Ευρετήρια. Δέντρα Αναζήτησης

Δεντρικά Ευρετήρια. Δέντρα Αναζήτησης Δεντρικά Ευρετήρια 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόµβος του περιέχει το πολύ p - 1 τιµές αναζήτησης και ρ δείκτες ως εξής P 1 K 1 P

Διαβάστε περισσότερα

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Ευρετήρια. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια. Ευρετήρια. Ευρετήρια

Ευρετήρια. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια. Ευρετήρια. Ευρετήρια Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου που καλείται

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας

Διαβάστε περισσότερα

Φροντιστήριο Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία

Φροντιστήριο Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Φροντιστήριο 17-1-2011 Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία Θεωρία Άτρακτος/αυλάκι : ομόκεντροι κύκλοι στον δίσκο Κύλινδρος:

Διαβάστε περισσότερα

Ευρετήρια. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια. Ευρετήρια. Ευρετήρια

Ευρετήρια. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια. Ευρετήρια. Ευρετήρια Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου που καλείται

Διαβάστε περισσότερα

εντρικά Ευρετήρια έντρα Αναζήτησης

εντρικά Ευρετήρια έντρα Αναζήτησης εντρικά Ευρετήρια 1 έντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές αναζήτησης και ρ δείκτεςωςεξής P 1 K 1 P j K

Διαβάστε περισσότερα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΑΔ. ΕΤΟΣ 2011-12 ΔΙΔΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής Τιμολέων Σελλής Καθηγητής Άσκηση 1

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων Ενότητα 13: B-Δέντρα/AVL-Δέντρα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Ευρετήρια. Το ευρετήριο αρχείου είναι ένα διατεταγµένο αρχείο µε σταθερού µήκους εγγραφές

Ευρετήρια. Το ευρετήριο αρχείου είναι ένα διατεταγµένο αρχείο µε σταθερού µήκους εγγραφές Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 Ευρετήρια Ένα ευρετήριο (index) είναι µια βοηθητική δοµή αρχείου που κάνει πιο αποδοτική την αναζήτηση µιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται

Διαβάστε περισσότερα

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231

Διαβάστε περισσότερα

Βάσεις εδοµένων Ευαγγελία Πιτουρά 2

Βάσεις εδοµένων Ευαγγελία Πιτουρά 2 Ευρετήρια Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 1 Ευρετήρια Ένα ευρετήριο (index) είναι µια βοηθητική δοµή αρχείου που κάνει πιο αποδοτική την αναζήτηση µιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Άσκηση 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών HY460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Διδάσκοντες: Δημήτρης

Διαβάστε περισσότερα

Μπαλτάς Αλέξανδρος 21 Απριλίου 2015

Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ B- Trees Δομές Δεδομένων Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ampaltas@ceid.upatras.gr Περιεχόμενα 1. Εισαγωγή 2. Ορισμός B- tree 3. Αναζήτηση σε B- tree 4. Ένθεση σε

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Βάσεις Δεδομένων ΙΙ Ενότητα 6

Βάσεις Δεδομένων ΙΙ Ενότητα 6 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Δεδομένων ΙΙ Ενότητα 6: Δομές Ευρετηρίων - B-tree Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Πληροφορική 2. Δομές δεδομένων και αρχείων

Πληροφορική 2. Δομές δεδομένων και αρχείων Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες

Διαβάστε περισσότερα

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Ενότητα : Κατακερματισμός Ασκήσεις και Λύσεις Άσκηση 1 Χρησιμοποιήστε τη συνάρτηση κατακερματισμού της διαίρεσης ως πρωτεύουσα συνάρτηση κατακερματισμού και τη συνάρτηση

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια.

Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια. Ευρετήρια Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Διάλεξη 24: B-Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 24: B-Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 24: B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Εισαγωγή & Ισοζυγισμένα Δένδρα - 2-3 Δένδρα, Εισαγωγή και άλλες πράξεις -Β-δένδρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές

Διαβάστε περισσότερα

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας

Διαβάστε περισσότερα

Δυναμική Διατήρηση Γραμμικής Διάταξης

Δυναμική Διατήρηση Γραμμικής Διάταξης Διατηρεί μια γραμμική διάταξη δυναμικά μεταβαλλόμενης συλλογής στοιχείων. Υποστηρίζει τις λειτουργίες: Εισαγωγή νέου στοιχείου y αμέσως μετά από το στοιχείο x. x y Διαγραφή στοιχείου y. y Έλεγχος της σειράς

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Οι σημειώσεις, αν και βασίζονται στο διδακτικό πακέτο, αποτελούν προσωπική θεώρηση της σχετικής ύλης και όχι επίσημο

Διαβάστε περισσότερα

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων.

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων. ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ Χειµερινό Εξάµηνο 2002 Αποθήκευση Εγγραφών - Ευρετήρια ρ Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Επίπεδα Αφαίρεσης Σ Β Επίπεδο Όψεων Όψη Όψη

Διαβάστε περισσότερα

A ΕΠΑ.Λ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 η ΕΝΟΤΗΤΑ: ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Εκπαιδευτικοί: ΓΑΛΑΝΟΣ ΓΕΩΡΓΙΟΣ ΜΠΟΥΣΟΥΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ

A ΕΠΑ.Λ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 η ΕΝΟΤΗΤΑ: ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Εκπαιδευτικοί: ΓΑΛΑΝΟΣ ΓΕΩΡΓΙΟΣ ΜΠΟΥΣΟΥΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ A ΕΠΑ.Λ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 η ΕΝΟΤΗΤΑ: ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Εκπαιδευτικοί: ΓΑΛΑΝΟΣ ΓΕΩΡΓΙΟΣ ΜΠΟΥΣΟΥΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ 1 Βάση Δεδομένων: Με το όρο Βάση Δεδομένων εννοούμε ένα σύνολο δεδομένων που είναι οργανωμένο

Διαβάστε περισσότερα

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D Dynamic dictionary matching problem Έχουμε ένα σύνολο πρότυπων D = { P1, P2,..., Pk } oπου D το λεξικό και ένα αυθαίρετο κειμενο T [1,n] To σύνολο των πρότυπων αλλάζει με το χρόνο (ρεαλιστική συνθήκη).

Διαβάστε περισσότερα

Ταξινόμηση. Σαλτογιάννη Αθανασία

Ταξινόμηση. Σαλτογιάννη Αθανασία Ταξινόμηση Σαλτογιάννη Αθανασία Ταξινόμηση Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Ταξινόμηση Τι εννοούμε όταν

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Αποθήκευση και Οργάνωση αρχείων. Βάσεις Δεδομένων Μάθημα 2ο Διδάσκων: Μαρία Χαλκίδη

Αποθήκευση και Οργάνωση αρχείων. Βάσεις Δεδομένων Μάθημα 2ο Διδάσκων: Μαρία Χαλκίδη Αποθήκευση και Οργάνωση αρχείων Βάσεις Δεδομένων Μάθημα 2ο Διδάσκων: Μαρία Χαλκίδη Κατηγοριοποίηση των φυσικών μέσων αποθήκευσης Ταχύτητα με την οποία προσπελαύνονται τα δεδομένα Κόστος ανά μονάδα δεδομένων

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Δομές Ευρετηρίων και Κατακερματισμός Αρχείων I Β. Μεγαλοοικονόμου Δ. Χριστοδουλάκης (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Εξωτερική Αναζήτηση και Β-δέντρα Κεφάλαιο 16. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Εξωτερική Αναζήτηση και Β-δέντρα Κεφάλαιο 16. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Εξωτερική Αναζήτηση και Β-δέντρα Κεφάλαιο 16 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ακολουθιακή πρόσβαση Β-δέντρα Υλοποίηση πίνακα συµβόλων µε Β-δέντρα Αναζήτηση Εισαγωγή Δοµές Δεδοµένων

Διαβάστε περισσότερα

ÈÛ ÁˆÁ ÛÙÈ μ ÛÂÈ Â ÔÌ ÓˆÓ

ÈÛ ÁˆÁ ÛÙÈ μ ÛÂÈ Â ÔÌ ÓˆÓ ΕΝΟΤΗΤΑ 1.1 ÈÛ ÁˆÁ ÛÙÈ μ ÛÂÈ Â ÔÌ ÓˆÓ ΔΙΔΑΚΤΙΚΟI ΣΤOΧΟΙ Στο τέλος της ενότητας αυτής πρέπει να μπορείτε: να επεξηγείτε τις έννοιες «βάση δεδομένων» και «σύστημα διαχείρισης βάσεων δεδομένων» να αναλύετε

Διαβάστε περισσότερα

Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο

Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Οργάνωση Αρχείων 1 Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία:

Διαβάστε περισσότερα

Κεφάλαιο 5. Δημιουργία φορμών για τη βάση δεδομένων DVDclub

Κεφάλαιο 5. Δημιουργία φορμών για τη βάση δεδομένων DVDclub Κεφάλαιο 5. Δημιουργία φορμών για τη βάση δεδομένων DVDclub Σύνοψη Σ αυτό το κεφάλαιο θα περιγράψουμε τη δημιουργία φορμών, προκειμένου να εισάγουμε δεδομένα και να εμφανίζουμε στοιχεία από τους πίνακες

Διαβάστε περισσότερα

Άσκηση 1 (15 μονάδες) (Επεκτατός Κατακερματισμός)

Άσκηση 1 (15 μονάδες) (Επεκτατός Κατακερματισμός) ΗΥ460 Τελική Εξέηαζη 29 Ιανουαπίου 2013 Σελίδα 1 από 8 Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Δημήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Επαναληπτική

Διαβάστε περισσότερα

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Επεξεργασία πινάκων

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Επεξεργασία πινάκων Ενότητα 4 Επεξεργασία πινάκων 36 37 4.1 Προσθήκη πεδίων Για να εισάγετε ένα πεδίο σε ένα πίνακα που υπάρχει ήδη στη βάση δεδομένων σας, βάζετε τον κέρσορα του ποντικιού στο πεδίο πάνω από το οποίο θέλετε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν

Διαβάστε περισσότερα

Οργάνωση Αρχείων. Βάσεις Δεδομένων : Οργάνωση Αρχείων 1. Blobs

Οργάνωση Αρχείων. Βάσεις Δεδομένων : Οργάνωση Αρχείων 1. Blobs Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Οργάνωση Αρχείων Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση

Διαβάστε περισσότερα

Οργάνωση Αρχείων. Διάγραμμα Σχεσιακού σχήματος. Ευρετήρια. Ταξινομημένα ευρετήρια B + δένδρα Ευρετήρια κατακερματισμού

Οργάνωση Αρχείων. Διάγραμμα Σχεσιακού σχήματος. Ευρετήρια. Ταξινομημένα ευρετήρια B + δένδρα Ευρετήρια κατακερματισμού Οργάνωση Αρχείων & Ευρετήρια Οργάνωση Αρχείων Αρχεία σωρού Διατεταγμένα αρχεία Αρχεία κατακερματισμού Ευρετήρια Ταξινομημένα ευρετήρια B + δένδρα Ευρετήρια κατακερματισμού Βασική πηγή διαφανειών: Silberschatz

Διαβάστε περισσότερα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα

Διαβάστε περισσότερα

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα?

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα? Κόκκινα-Μαύρα ένδρα (Red-Black Trees) Ένα κόκκινο-µαύρο δένδρο είναι ένα δυαδικό δένδρο αναζήτησης στο οποίο οι κόµβοι µπορούν να χαρακτηρίζονται από ένα εκ των δύο χρωµάτων: µαύρο-κόκκινο. Το χρώµα της

Διαβάστε περισσότερα

Ανάκτηση πληροφορίας

Ανάκτηση πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανάκτηση πληροφορίας Ενότητα 6: Ο Αντεστραμμένος Κατάλογος Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Συμβολοσειρές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Συμβολοσειρές Συμβολοσειρές και προβλήματα που αφορούν συμβολοσειρές εμφανίζονται τόσο συχνά που

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων ΠΕΡΙΕΧΟΜΕΝΑ Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων Εισαγωγή Η χρήση των μεταβλητών με δείκτες στην άλγεβρα είναι ένας ιδιαίτερα

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων Εισαγωγή στην επιστήμη των υπολογιστών Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων 1 ομή εδομένων Μια δομή δεδομένων (data structure) χρησιμοποιεί μια συλλογή από σχετικές μεταξύ τους μεταβλητές, οι οποίες

Διαβάστε περισσότερα

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση Διαφάνεια 16-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση Διαφάνεια 16-1 Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση Διαφάνεια 16-1 Κεφάλαιο 20 Φυσικός Σχεδιασμός Βάσεων Δεδομένων και Ρύθμιση Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Εργαστήριο 1. Ηλεκτρονικοί Υπολογιστές ΙI. Ακαδημαϊκό Έτος Διαφάνεια 1. Κάπαρης Αναστάσιος

Βάσεις Δεδομένων. Εργαστήριο 1. Ηλεκτρονικοί Υπολογιστές ΙI. Ακαδημαϊκό Έτος Διαφάνεια 1. Κάπαρης Αναστάσιος Βάσεις Δεδομένων Εργαστήριο 1 Διαφάνεια 1 Πώς να δημιουργήσω ένα νέο πίνακα στην ACCESS, όταν έχω την αντίστοιχη οντότητα; Ας υποθέσουμε ότι έχουμε την οντότητα φοιτητής, με ιδιότητες (γνωρίσματα), όπως

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) : Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος και Γέφυρα του (με αφετηρία τον ) : Ακμή που περιέχεται σε κάθε μονοπάτι από το στο s a b c d e f g h i j k l Μας δίνεται ένα δίκτυο (κατευθυνόμενο

Διαβάστε περισσότερα

Week. 6: Java Collections

Week. 6: Java Collections Week 6: Java Collections Συλλογές δεδοµένων [collections] Εβδοµάδα 6: Συλλογές δεδοµένων στην Java Οι συλλογές [collections] (αναφέρονται και ως «υποδοχείς δεδοµένων» [containers]) είναι κλάσεις που χρησιµοποιούνται

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Οργάνωση Αρχείων. Ευρετήρια. Ταξινοµηµένα ευρετήρια B + -δένδρα Ευρετήρια κατακερµατισµού. Αρχεία σωρού ιατεταγµένα αρχεία Αρχεία κατακερµατισµού

Οργάνωση Αρχείων. Ευρετήρια. Ταξινοµηµένα ευρετήρια B + -δένδρα Ευρετήρια κατακερµατισµού. Αρχεία σωρού ιατεταγµένα αρχεία Αρχεία κατακερµατισµού Οργάνωση Αρχείων & Ευρετήρια Οργάνωση Αρχείων Αρχεία σωρού ιατεταγµένα αρχεία Αρχεία κατακερµατισµού Ευρετήρια Ταξινοµηµένα ευρετήρια B + -δένδρα Ευρετήρια κατακερµατισµού Βασική πηγή διαφανειών: Silberschatz

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος εδοµένα οµές δεδοµένων και αλγόριθµοι Τα δεδοµένα είναι ακατέργαστα γεγονότα. Η συλλογή των ακατέργαστων δεδοµένων και ο συσχετισµός τους δίνει ως αποτέλεσµα την πληροφορία. Η µέτρηση, η κωδικοποίηση,

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Βάσεις δεδομένων (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Ευρετήρια Σκανδάλες PL/SQL Δείκτες/Δρομείς 2 Αποθήκευση δεδομένων Πρωτεύουσα αποθήκευση Κύρια μνήμη (main memory) ή κρυφή μνήμη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Τα δεδομένα (data) είναι η αφαιρετική αναπαράσταση της πραγματικότητας και συνεπώς μία απλοποιημένη όψη της. Η συλλογή των ακατέργαστων δεδομένων και ο συσχετισμός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Άσκηση 2 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών HY460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Δημήτρης Πλεξουσάκης

Διαβάστε περισσότερα

Βάσεις δεδομένων (Access)

Βάσεις δεδομένων (Access) Βάσεις δεδομένων (Access) Όταν εκκινούμε την Access εμφανίζεται το παρακάτω παράθυρο: Για να φτιάξουμε μια νέα ΒΔ κάνουμε κλικ στην επιλογή «Κενή βάση δεδομένων» στο Παράθυρο Εργασιών. Θα εμφανιστεί το

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 16 Δένδρα (Trees) 1 / 42 Δένδρα (Trees) Ένα δένδρο είναι ένα συνδεδεμένο γράφημα χωρίς κύκλους Για κάθε

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 17 Σωροί (Heaps) έκδοση 10 1 / 19 Heap Σωρός Ο σωρός είναι μια μερικά ταξινομημένη δομή δεδομένων που υποστηρίζει

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Σχεδίαση Βάσεων Δεδομένων

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Σχεδίαση Βάσεων Δεδομένων Ενότητα 3 Σχεδίαση Βάσεων Δεδομένων 17 18 3.1 Εισαγωγή Μία βάση δεδομένων αποτελείται από δεδομένα για διάφορα θέματα τα οποία όμως σχετίζονται μεταξύ τους και είναι καταχωρημένα με συγκεκριμένο τρόπο.

Διαβάστε περισσότερα

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing)

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear

Διαβάστε περισσότερα

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609 Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα Παπαπαύλου Χρήστος ΑΜ: 6609 Αναπαράσταση μοντέλου Το 3D μοντέλο το αποθηκεύουμε στην μνήμη με τις εξής δομές δεδομένων: Λίστα κορυφών Λίστα τριγώνων

Διαβάστε περισσότερα

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών

Διαβάστε περισσότερα

Ερευνητικό Αποθετήριο ΤΕΙ Ηπείρου. Οδηγίες κατάθεσης δημοσίευσης στο σύστημα Ερευνητικού Αποθετηρίου CRIS

Ερευνητικό Αποθετήριο ΤΕΙ Ηπείρου. Οδηγίες κατάθεσης δημοσίευσης στο σύστημα Ερευνητικού Αποθετηρίου CRIS Ερευνητικό Αποθετήριο ΤΕΙ Ηπείρου Οδηγίες κατάθεσης δημοσίευσης στο σύστημα Ερευνητικού Αποθετηρίου CRIS 2014 1. Είσοδος στο σύστημα 1. Ανοίγουμε ένα γνωστό φυλλομετρητή (browser) όπως Mozilla Firefox,

Διαβάστε περισσότερα

7.7 Πρωτόκολλο ARP. 1. Το πρωτόκολλο ARP μετατρέπει τις διευθύνσεις IP στις αντίστοιχες φυσικές. Σ Λ

7.7 Πρωτόκολλο ARP. 1. Το πρωτόκολλο ARP μετατρέπει τις διευθύνσεις IP στις αντίστοιχες φυσικές. Σ Λ 7.7 Πρωτόκολλο ARP & Ερωτήσεις 1. Ποιος ο ρόλος του Πρωτοκόλλου Μετατροπής Διεύθυνσης (ARP); 2. Τι είναι ο πίνακας ARP, τι πληροφορία περιλαμβάνει και με ποιο τρόπο ενημερώνεται και ποιος ο χρόνος ζωής

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο. Πίνακες. Επικοινωνία:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο. Πίνακες. Επικοινωνία: Πίνακες Επικοινωνία: spzygouris@gmail.com Να δοθεί ο ορισμός του όρου «δεδομένα». Δεδομένα αποτελούν οποιαδήποτε στοιχεία μπορούν να εξαχθούν από τη διατύπωση του προβλήματος και η επιλογή τους εξαρτάται

Διαβάστε περισσότερα

Atlantis Orders on android

Atlantis Orders on android Atlantis Orders on android 1 Πίνακας περιεχομένων Σύντομη περιγραφή... 3 Αναλυτικότερα για τις παραγγελίες... 3 Περί συγχρονισμού... 4 Η πρώτη χρήση της συσκευής... 5 Διαχείριση παραγγελιών... 6 Η πρώτη

Διαβάστε περισσότερα

Λειτουργικά Συστήματα Ι. Καθηγήτρια Παπαδάκη Αναστασία

Λειτουργικά Συστήματα Ι. Καθηγήτρια Παπαδάκη Αναστασία Λειτουργικά Συστήματα Ι Καθηγήτρια Παπαδάκη Αναστασία 2013 1 - 2 - Κεφάλαιο 2 ο Δευτερεύουσα μνήμη Οι εύκαμπτοι μαγνητικοί δίσκοι (floppy disks) ή δισκέτες Οι σκληροί μαγνητικοί δίσκοι (hard disks) Οι

Διαβάστε περισσότερα