Three Essays on Canadian Housing Markets and Electricity Market
|
|
- Ζωή Ανδρεάδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Three Essays on Canadian Housing Markets and Electricity Market by Yuan Zhang A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Economics Guelph, Ontario, Canada Yuan Zhang, May, 2017
2 ABSTRACT THREE ESSAYS ON CANADIAN HOUSING MARKETS AND ELECTRICITY MARKET Yuan Zhang University of Guelph, 2017 Advisor: Professor Y. Sun, T. Stengos This thesis includes three empirical applications: spatial dynamic panel data model on Canadian housing market, impulse responses of Canadian housing market, and emission reductions of wind powered electricity in Ontario. Chapter 1 studies the spatial dependence of residential resale housing returns in 10 major Canadian Census Metropolitan areas (CMA) from 1992Q4 to 2012Q4 and makes the following methodological contributions. Firstly, in the context of a spatial dynamic panel data model we use grid search to derive the appropriate spatial weight matrix W among different possible specifications. We select the compound W with the minimum root mean squared error formed by geographical distances and the GDP levels. We further offer an interpretation of the selected W that is directly linked to the definition of the Arrow-Pratt risk aversion parameter. Secondly, contrary to common practice in the literature, we decompose our parameter estimates into direct and indirect effects and we proceed to derive and plot the impulse response functions of housing returns to external shocks. The empirical results suggest that Canadian residential housing markets exhibit statistically significant spatial dependence and spatial autocorrelation and both geographical distances and economic closeness are the dominant channels. Furthermore, in Chapter 2, we calculate impulse response functions and plot in 2-D and 3-D figures, and we find that special feature of the Canadian housing market is, as seen from the impulse response functions, that the responses to shocks do not spread widely across regions and that they fade fast over time. In Chapter 3, We use electricity output of 151 generators in seven fuel sources in year 2010, including nuclear, coal, natural gas, hydroelectric, oil/gas, wind, and wood waste/biomass, and aim to find out how wind energy affect the production of other power sources. We use three different models to estimate the marginal effects of wind powered generators on other fuel sources. The contribution of wind energy to the Ontario s mixed electricity supply system in terms of decreasing the electricity production mainly from coal, natural gas and hydroelectric generators, and reducing the air pollutant (CO2, SO2, and NOx) emissions. When wind generators produce one MW per hour, the marginal effects from other fuel sources is replaced less than one MW. Due to instability of the wind power, the backup power is needed. The backup generators are usually thermal generators that emit air pollutants, and the fuel uses are larger than they operate at a steadily power level, which is so called emission bias.
3 Therefore, this makes the net marginal effects and emission reduction less than expected.
4 t s r t ② t rst t ② r t ② s rs Pr ss r Pr ss r s s t s st ② rs r r t r r r ① r s ①tr ② r t t t r t rt t② t st ② t t r t r t ② s r Pr ss r P t t② rs t t rt t s r s ① t t s s t t s t s s t ② r ts ③ r t r r t t ② s ② t r r t r t t st t s rt
5 t ts t r t r s rs t r s t s r t tr t t t t r t r r t t ② t t t tr ① WN r s ts st t r s ts rr Pr tt r s rs ① t W s t r s r s s s r t tr t s r s s t s s t t r s r t r s s r s s t s t s t t r t s s r r ss s t r tr t t r t r r t s t
6 t s r r r r ss t s r s r r s ts s s
7 st r s st r t s r r② r t s r t r s s r s s s t r ③ ③ r r t s r s s t r r s t r ③ ③ r s r s s t s s r t r s t s t t t r t s r s s s st r t s t t r r r t r t r s r s s t s st r t s t t r t st r t s t t r t s r t r s t st r t s t t r t r ② r t ts r t② t t s
8 st s r② t t st s sts s t st t t s t tr ① st t r s ts t t tr ① t r ts r t r rs t st t r s ts t t tr ① r t s t ① t t t ts s rs t s r t r t t s st r t s s r t r s r r② t t st s t r t t s ts ② t② ss s ts ② t② st t s t s
9 t r t r t r s rs t r s t s r t tr t r t st s s st r t s r s t r r rr t t t s r t r t t s t ② tr s s r s s ① r r r t r t ② rs t r s t t r t s r t st t t s s r t r r s t s s r s q t② ts r r s s r s t rt r t st t s rt t st ② t s r r t r r s ts s t t s s r t r s t t s st rs rt rs s s ① t s r t r t r r ts t ② r r ② s r t t r s r ②s s t② s r s t r s r s st t t t t r t s r ② r ② t r t s t t s s t r s st t s t② s r s r t r t t ① r t r st s t ① t r t r s ② s t r ss t s t s r t s r ts t r r s s r r s s q t ② tr s tt t t r r s rt s r r t s s r r
10 r s t s r s r s r r t s rs ss t s s sts t t t s r ts r s r s t r r ts r s s r s t r s t t r t ss ② r rst s s t t r s r s r s t t t s P t s r t s ② rt t t rs s r rs t s r r ts s s s r t r s t s t str t s r s s ss s t r q t② tr s r s t r tr s r s r r s t q t② rs t s r s r s ② t tr r tr s r t r ① q t② t t r r ts s ② r r s r t r s t r r s t s t ② r t t r t ts t s r t t r tr st t t s t t s s ②s ② r t s r tt r s s r r t r r s t s t s r ts t t r t r t rs s r tt r s s r s r t r ② r t r st s t r ts ② t r r ② t t ② t s s r ts r ss r s r t r s s r r s ② t r s r t s r ts s r t s r s s t t s r t t s r r ts s r P t r r s r s t tr t t s r s r ③ s s rst ② t s r st s t r s t s r t t ② s t t s t r t t r t ② t s s t r t r ② r s r t s t t s t t tr ① W t r t r r t t t s t t tr ① W s
11 r ts r r s rs t r② r ② r ① t t r r t t t st t ts t t s q t r t r st r s t s r t s t st t ts t r t r t s rr t r t t t r t r s r r s r rs t t r r t s t st t s t s ② s t s r s t s t r t r r s r s s t s t s s s t t t s s t t ①t t t t s r r t s r s r ③ s s t rs t t t t t r t t r t r r r r t s t t t t t tr t t ② t r s ts t st t r s ts t rs t s s t t t r t r r s t r st t st t ts r r s r t t s ① t r s s s t t t t st s s t s r ② s t t s s r t r s t s r t t s r t s P s r r s ts t r rt rr s t r t s t t ② r t st t rt t s r t st r t r t r s s str t s t t t s r t t ② t tr r t r s s s t rst t s s s s r s rt t r s t s
12 s st s s r ts t rs s r t s r ① s s s t s r t t ②③ t t② r rt s s r s r t s r t ss t s r s r s t t ② t t r ts s r t t② r t r t ① ② t r r s t ② rt r s t s t t r r t s r s r s s sts t t s t② s s r t r ts t st ② s r t s s s st t t s r ② r s t r t r r t t ss t t r t r s ② t t r t r s t r ② t ② r s ① ts r r s s t r t r st t t r t r r st s tt t t ① s r s s r t r s r s t t② r s r s r s r ② s s s t t r t r r ss t r t s rt r s r tr t s r s t ① t rt② s ① t t② ts t r P s s t ②③ t s r t t② tr t st t st r s s st t s s t② st t s t st ② s r r t t t② s r s ts s st t t t s r t ① ts t t② st r t r s t ① t t s r s r t s t s r s t t r r s s t r rr r rr t t t t s r sts t st s t t t rs t r st t r s s r t ② r st r t r s t s r s r s r t s st s s rs t t s r
13 s s t t t ① t ② ① t r s t r r t s t s t s r t s s t ② t P t ① r s t s r t r s s t r t s t t r t s s t ts r t st r t s r s s t t s ② t r t r r t s s t s r ② s s P t st ② r t s s r s t s s r s t s P t st t t s t r t r t t② r s r ts r t rs t t rs s s t ② r s s t t tr ① W t t r s ss r t r t t t s rs t t rs t t r r t t r st t s ② t t s r t t t s t str t r s P t r s t r t r r t r st t s t r t s t str t r s ss t r t r t ts ss t t rt r ① t r② r s r ① t s t t r ts r t ② r r t t t t ② t t r r s r t ② r r t ts s t t tr ① s t ② t s t r r ss s s s t s t r ① r ss s t t s t ts t s s ② t s t W tr ① t s ② str t s r st s s r r② r t ② t r r s t s s t ts r r t ② t s st t s r ③ r s r s st s r t s t t tr ① t ② r s t t st s t t t r W r s t s t t t② t r② r s s r
14 r ② s st s t ② ts ② rt t s k r st rs r ② t ts s t s s r r rs s W s r t t t t ①t t s ② s s t st tr rs rt t s t str t r ② st s r s r rs s ② s s t ② r s W t r r s r rs s t t t s t W rt ss s ts t t ①t r r t r s r ① r ② t r t t t s t t tr ① t r t r s t t s r s ss t r t s t r ② ②③ st r s r rs t st ② t r W t ② s t t r r t t r r s ts t t t t s r r t r r s r s r t r r t W r s t t s t W t t t ①t t s r r s rs s t r r t t W s t t r t r t t ② t t s t s r r q rt r ② t r t t s r② st t st s t s r s t r r q r t r ② r s t r s s r s r ② t rs t② r t s tr r r s st t s ② P P r
15 ② s Pr s t s r s r t s rs P t② s s r s st r ③ s t② r t st r ② ① t r s r ss r r r s s tr t r s s s t r r s ① t tr r t t r tt t r t s t r② rt t rt r r t s t r r t s s t r st r t rs r ② s t t tr② r t t t st s s r r r t t r t t r r r s t t r s t r t t r r s s r r t t st r q t② r r t t s r t r t s t t r ②s s ② s ss t② s r t r ts r s t r ts P s t r r t str t str② s t ss r t s t rst st t str t r ss t t s t s s ② st r s t P t t r t sts ss t t str t q rt r ② r s t r ts BP r r t t st s t s s s ② st str t ① s s s r ①② r st t r s r s r s t t st r s r t ② st t ss t r t r ① r t q t② st s P s s ss s s rt s r ① ① ts s r s r t s t t t q t② ts s s t st t t s rt r s s r r r ts t r t ① s sts r r r t r s t t t t st r ② ① t ss r② s ② s ② P s Pr r ② ① r t t st s t s t r r t s s r r r t t② s t s s t s t t t t② r r r t s s ② ② P s s t ② r r t s s ② t t st s r t s t s st t
16 t r s r r ① st t t s s t r t t st s r t s ② s r s t st rts t s s t t r ts r t rs s str t t t② rs ② st str t t t② r t st rts t r r t t r② s r ① st s st r rs st rs t t t r st t r t s st rts t t rt r t s ① st s s s s r ① r t t t st s s st rts r s r s ② t s s t s r t ② t r t r s t t ① st s st t t ts q rt r ② s st rts t r t r rt s r r t t ② r s s ② st t r t s r t t s r tt r s r r ss ss s t r② s t r② s t ss ss ② r t t r t ts t t ts ② t s r s t r s ② t ts s r ① P s r s s r t t s r s r s t s s st ② r s r s t s r s ① t s t r t s t r s r s r s t r s st ② t t t r t r r s s t s r t t r s ② s t r r s r t t t r t P tr s r s t ts tr s t s str t s t r t t st s s s P s r s t t s t t s r Pr ① s r ① P t r t r t t st s s s s ② r
17 ② r ②s s t r t r r r② r s t s s ② r t r t t r t r r s t t s t r t ② r t s t t r t t s t st s t t t ② r t r rt② r s t r ts r t s ② s st t t ② r r t s r ② t s s s r s t r s t ② r r ts r t ① s t r t t st s t s t s ① s r Pr ① P r t t r t ① s r t ① s s s s r ts t ts s r r s t r rs t r r t ① s s t r r r s r t r t r t ② t r t s P t r t r t s s r s t st rt t t r t t ts s ② t r t s t r r t r s r ② t ② s t ② st t r s s r s r ① t t ② t s P t ② t r t s r s r r t t st s r r r ② st t s r s t t ① t s s t② r s s ② st t r r r s s r s s s r s s t t s s s s s ② s r s ss t r t s r s t t st s ② r s tr s t q rt r ② tr s s q rt r ② t t ss t t t r t s t t t t t r s st t t ② r r s s t s t t tr ① r s s r r s s s ② t t s ss t s r t r st t ② r s t s r t t ② ② t q rt r ② t t t t q rt r ② s
18 st s t tr t r s r t r s t ② t s t r rs r r t t s s r ② rs ② t s s t t tr ① r r s t t ② t t r t r r ts r r s s t t ② r t t r t r s t s ② r r r t rs r t t r t r ss ② rs r t s s ② r rs r ts t t r r tr r r ts ①t r r ts r r ts r ts t t r t r ss P s t t tr ① s t r r P r t r r r ② rs t t r t t ss t ② s t t r t s r t r t ② s t ② t ② ① ts t Yt = γyt 1 + λwn Yt + Xt 1 β + µ + vt τn + ut ut = ρwn ut + εt, t = 1,..., T. r t s t ② t P s r r s t ② t s t t t r Yt 1 s ① t r② r t s t t r WN Yt t r s s t s r t r s r r t s st r
19 t r ① r ss s t t r r ss r q t t s t t t s ss t s t ② rr t t r s r t s rt t s Yt = (y1,t, y2,t,..., yn,t ) s N 1 t r t r s i = 1,..., N t = 1,..., T yi,t s t r s r s pi,t r s t t i ② r t r t r s t s yi,t = ln pi,t 1 r pi,t r r s ts s r t r t pi,t 1 s t s r t r s r Yt 1 s N 1 t r r r s t t r s t t r γ s t rr s t t s s r t r s t r ② ts r t r s WN s t r ③ N N st st s t t tr ① t t r t s t r ss s t rr t s WN Yt t r s t rr t t s r s t r r s s ② s t s t t r λ s t rr s t s t s t t r t t r s t s t ts t r t r s t r Xt 1 s N k t r ① t r② r s t r s r β s t k 1 rr s ts t st t s ① t r② r s t t② r s rt r r t t r q ② s r t tr s t s rt ts r ② ② st r t r Xt 1 s t t r ts s s ② r st rts Starts t Completed t t r ts BP str t sts Cost s r ① N HP I s s s r s s t rs r r t r s s inc ② t r t unem t pop µ s t N 1 t r t r t ① ts r r s t t r t r t r st s s r ttr t s vt s t t s ① t t t t r t t rs t
20 t rt r t s ② τn s t N 1 t r 1 s q t s s t t r r ss r r ss r t rr r t r t t r s t r ss s t ② t ① t s s s t t tr ① WN s s s t t r t s t rr t st r s ρ s t s t t rr t t εt s N 1 t r i.i.d rr r t r t ③ r st t r tr ① σ 2 IN r IN s N N t t② tr ① s st t ② q s ① t ① ts s t ② st t r t ① ts T s r r t t n t r s t st t r s nt s st t s② t t ② r ② str t r t t r t s s r t WN t s s s t t tr ① WN st t s t s t t r λ ρ r r② s s t t t s t ts t s r ② s r r t s t t tr ① s t st rt t ss s t st t r tr s t s r t r s r t r t ts t t r t r t t r r s r r s ② s t r s tt r t r r t st r W ② ② t s t ts r t r r st s st s t tr s t s s t t tr ① s s t s t s t r st r s tr t st t r t r t t tr s s t s s t rr rs ② t t r s ts t s t s t t s t s r t r s s t t rr t st r s s r t s
21 st s s s str t st t ts s t rs s t s r r rs st r② s r ① r st s r r t s str t s t ts s st s ❼ s t t t② rs r r ② ❼ k r st rs r ② ❼ rs st s r s t s r ❼ t ① t t r r s r s r rs s r tr t tr ① tr t t s t s r r ss r s r ts r ① t st ② t t r r t r s ss st ② t s t t tr ① r ② st s r s t s r rr t s st t st s t s r s t ts s r t s r ② st s t t② rs t tr ts rs t s ss s t s t rs t k r st rs t ② s rs rst rs s rs t r t s t t t s r t r s t t t r rst rs s t s r st ② t t r rs s ts ss t t r rs t r r st ② s t s r t ② s ts r ② r tr s ts s
22 s t st ② ss st ② t s t ② s t ② s s t rs st t t ① t st t t s rs st t s s r s s s t t wi,j s t i j t t t tr ① W t t② ② r ts t s t r i r j s t wi,i = 0 r i = 1,.., N t ① t s t W 0 t r t tr ① W q s W 0 ② t r st W 0 s t r ③ t r r s r s s t st t② r r s s Pr ② t t t st t i j ② di,j t t r st t tr ① W G,0 s r s s G,0 G,0 W G,0 = wi,j, and wi,j = d α i,j, i 6= j r α s t r r t r t t r t s rs r t G t s t r t r st s α s s ② s t q t r s t ② rs r t s s t t t s r s r t s r t r t t s t t tr ① r t α = 2 s s ② s s t r t② tt t s r t r t t q r t r s t st r t st s W s r t t s st t s st ② str t W tr ① s st t st s r st t tr ① r ② t ① t t t s
23 G,0 W G,0 = wi,j, G,0 = exp( αdi,j ), i 6= j and wi,j r t r α s s t t r s t t tr ① s s st s r s r t rs t t r ② s t str t t t r rs P r t t ② t s t t t r t② i t t② j s t ② t rs t t r r α = 1 t r st r ③ t s t rs t t t r t r t r α t r t t ①t r str t t t s t rs t t t t r t s r t② t r s rst t s r s s emp,0, W emp,0 = wi,j emp,0 and wi,j = empi empj α, i 6= j empi empj t s t r t t ② t s t t r s rs t s r s t r s t s r ② t t r t s t s t tr ① r ts t s ss t t ② t s t t r s s t W mig s r t t r t r t t t t s r migi,j s s s t rs t r t r r ts t r i j ② r r r t r migi,j = 1/number of migrants between CM A i and j r r r t r r ts t s r t migi,j t r ② t rs t s tr t str t t tr ① s t t ① t t r t s s s r t t t r s s s ② s t rs st t t t str t t t
24 mig,0 migi,j t s r migi,j s t r t t t s wi,j t r r s t r t r i j t r t s t r s r t t r r ③ t s r s s W mig,0 = wmig,0, mig,0 α = migi,j, i 6= j and wi,j t r t tr ① s r rs t i j s r s s mov,0 W mov,0 = wi,j, mov,0 = movi movj α, i 6= j and wi,j s t tr ① s s t t r rs rs r t t r t r ss ② rs r t s s ② r r ts t t r r tr r r ts ①t r r ts r r ts r ts r t r ss rt t tr ① s s P s s r s s GDP,0 W GDP,0 = wi,j, GDP,0 = GDPi GDPj α, i 6= j and wi,j s t tr ① s s t t r t s r t② r P s t t r s r r s t t tr ① s t s WN s t tr ① WN0 ② t r t r ③ t r r t s s t t ③ r s r mov i,j r t r ss ② rs r t s s ② r r r ss r t ② t t r r migi,j ② ts t r t i j s ② t s t t t r t r r ts ①t r r ts s t r s r r t t t ② r t rt t s s t t t s t r s t i j r r t tt r ① t s t s r t r s
25 0 w12 w13 w21 0 w23 WN = 0 w31 w32 wn 1 wn 2 wn 3... w1n... w2n... w3n... 0 rst r t r s t s t t t t rst tr t r t r tr t r s t r r s t r ts t r tr t r s t t s r t r t rst tr t r r ① t t w12 t s t s r t s r t r t rst r w21 r r s ts t t t rst r t s r t t t t s t t tr ① WN s t s② tr t st r ③ t t s t t t t r i s r j ② t t s s t t r j r i s t t t ts WN r s t s t r s t t str t s t t tr ① s t r t t W = aw G + (1 a)w E, a [0, 1] r W G s t r t tr ① str t ② t r t r t rs st t t r t t ① t t t W E s t t t t s s r W emp, W mig W mov W GDP s q t s t r t r a s t t t r s t s s t r t t s
26 s t rr s ② r s t s t s ② st t r t rs r t s t t tr ① ② r s r t t st r r t WN ② st t t t t tr ① r ② t r st s r t s WN = g (di,j, zi,j, θ) r θ = (αg, αe, a) αg s t r r t r r t αe s t r r t r t r st di,j s t ② t r r s s r t② zi,j s t ② s t r r t r αg r r t tr ① t r r t r αe r t s t tr ① t t r t r a s t s ② r t θ st t ② t t s t t θ t t ③ s t s t st t θ ② ② r s r r t s t t s t t tr ① W r t r r t t s s tr r② t r t t t r t r t s r ss s t t tr ① r s ts t s r t sts r ③ r r s rst t r t s r t r s r s ① t r ss s t
27 s P s r s t st s P s r r t r s r ss s t t t s t ts r s P s t sts s rt t t ② ① ts s t t t t s t t st t t s t t rr t rr r t r s s st t s s t r t ② t s t st r t t r ts r t ① ts s t s s t t s t s s t s t r s ts r st t r s ts t rs st t r str t ② s r ts r r s rs t r② st t r s ts q t s r st t ② q s ① t ① ts s t rst st t t P t r t s t s t s t t tr ① q t s t t rst sts t r s ts r tr t ② t t t s t t r t s s r t t t s s r r t t r s t st t s t s t rr r t r s t t r s t t st t r s ts r W s t r r st s s t s t r ss s t s ts r t s t rs t t t t r ts r t ② t t ① t t st s st r s r s ts W s t r t t ② t s t r r ts t t t r rs r P s q t s t s s t ② r r t s t s t
28 t st t s λ ρ r t s t t s t t rt s W emp s t s t t s r t② t t ② t s tt r ① s t t s t tr s t r t s t r ts r s t t r s ts t t t t rs t st t rr s t tr ① s ② WN = a W G + (1 a) W E r② a r t r② αg αe t t s t s ② st s r r a = 0.1, αg = 0.55, αe = s t r s t st t r t tr ① s WN = 0.1W G + 0.9W GDP t t t t st t s r s r t r r r st s t r r t ② s t rs st t t r q t s t s t tr ① λ W r s t s t tr ①ρ W r s t s r ss t s r s r s t s②st s st t r② t s rt t t t t t tr s s s t s r t② ② ss t ① s r t ① t② ss t ② t r s P r s s ss st t t t s t tr ① r ② s t ② t t tr s s t t r s r t s r ② t s r s s s t tr s s t rs ② t t ② s t W r ② r st s t r P s s t t ① s s r t rs P s r t s t t s s t ss t② t t ② t s s r t ① t② r r r rr t t t t tr ① s t r r s r t ② ss t② r t r r s r
29 s r ss t t ② ① t r② r t t r ts s r t t t t ② t t r r s s r t t r s ss t r t ② ① t t ② r t rs t t r t ② s r r t s t s r ts s t s ② t t r r s t t t ① st t s t t r t s t t t ② s rr r s r t t r r s r r r r t r r s r q t s Yt = (IN λwn ) 1 γyt 1 + (IN λwn ) 1 Xt 1 β + (IN λwn ) 1 (µ + vt τn + ut ) ut = (IN ρwn ) 1 εt. t Sk (W ) t N N rt r t tr ① ① t Y t r s t t t kt ① t r② r X r 1 t r N t t t s ss r t t t t 1 t ② Qt 1 r q t Sk (W ) = E (Yt Qt 1 ) = (IN λwn ) 1 βk T Xt 1,k r IN s t N N t t② tr ① k s t kt ① t r② r ts i j t t s t ② [Sk (W )]i,j P t r t t r t t s r t kt r r s E(yi,t Qt 1 ) xj,t 1,k = [Sk (W )]i,j
30 r i 6= j E(yi,t Qt 1 ) xi,t 1,k = [Sk (W )] i,i r s t ② t ③ r t t kt ① t r② r r j t t s r t r s t r r s [Sk (W )]i,j 6= 0 s r t s r s t t s r t r s r i r ① t r② xi,k t r r s t ts Sk (W ) r r s t t t r t ts ts r r s t t r t ts r t t s r r t t s [Sk (W )] i,i r t ts tr ① Sk (W ) = (IN λw ) 1 βk r t ts t r i s t it r Sk (W ) ① t r t t [Sk (W )] i,i r t k t ① t r② r s r t t s rs s kt ① t r② r t r r s r i r t t r r i s s r ② t it Sk (W ) ① t t t [Sk (W )] i,i s r r t ts s r s s t kt ① t r② r r i t r r s t t r t t t s t r s r t ts r r ② q r t s t s r s r r s t r t t r r t t ts ② t s t t t r r t t r r t r st t s t λ t r s t s t s r t r s t r s s t r r s t s t s t r s t t r r t t t r t rs s r r r t s s t r t r λ s t t rr t r t r ρ r st t t t ② r s t st t s λ s t s t r t t
31 r t ts r t s t s s r t t s t s t t rr t s t r r st t s r t② r P s st t t t r t s s st t st ② s t t t s t s s t r st r st t s s t t r rt t t t r t r s s r t t② ② t r st t s t t r t t t r s r t ts r t t ① t r② r s rst s t r t ts r r s t t r t r t r②t s r s t s r ① t t r t r t r r s s ② t r t t r s s r t r r s ② t r s q t r s t t r t r t t r r s t s r t r r r ② t r t r r s s ② t r r s s r t r s r ② r rr s t t s r r t t r s ss t t r s t r t r t s t r t t r t t t r r r s 1.28 st r t t r t t s t t r r r t r r s t t r r s ss t t s t r t r t s t r t s st t s r t s ② s r s s t t t r st rts Starts t Completed r st t st ② s t t t s r s t ② t r s r s t s t t r st rts t r t rs ① t r r t t r s s r t r s t r r t t t r r r s
32 r ② t r s r s t s t t r t t r②t s t r r t t r s ② t r r t t t r r r s ② ② t r t s ② s r s t t t r t s ② r t t ② st ② t s r s s t t ② s r r t s ② s r Starts Completed t s st t st ② s t r t s t t s r t r r t s Pr ① N HP I s s st t st ② s t t t s t s s r s s s rt r tr t r r ② t s t r s t ② t s r t s r t ① t t t s t ② rr t s s r s s s t t s st t t s s t r r t r s r s t ② r t t r r t t t st t s P s s r t t r t t s t② t r s r s s r t r r t r t t t r s s r t r r ts r s ② r st r t t r s s r t r r s s t r t s st r t t rs r t r r t t s t r s r s s r t r s r t r r s ② r Yt 1 s st t st ② s t t s t q t t r t r t r s ② r r s ② r②t s st t t r r t t r s s r t r t s ② r t r r t t r s ② t r s r t t st r t r r s ts t t t s r s r st ② t r r s t r t r s r t ①t r s r s ② ttr t t t r q ② s tr s t s s ② rs
33 st ② r t r s tr s t r t st t t t r t t s r s t st t st ② s t t t s s r s r s st r t s s st r t r rts t s r t r ① t r s r r t r s t r ② r t r s ② r s t t s r s s t s r ② rs s t ② t r t s r s t r s r s t s t t s r s t r t st r q r r t s t t s s s r r s t rt r s s t t s r t r s t s t r t s t r t t r rr Pr tt r s rs ① t W t s st r② t s ss ss t r t r s s ② r r t t s r r s r t ① t ss t s t s r t r s r s r r s t r t s t ts r r t t t t tr ① r st r ③ t r st s G D(di,j ) = d α i,j t st t s s αe G(gi,j ) = gi,j, and gi,j = GDPi GDPj
34 r i 6= j αg, αe > 0 ② r s r t st t t s t t tr ① q t r t r st ts ts r ts r t t s t s r t② P s t s ts r t r t ① t s t r t s t rr Pr tt s t r s rs A1 (di,j ) A2 (gi,j ) s s r s s t t② t r s r t r s r ts t s r ts t r A1 (di,j ) A2 (gi,j ) r s s t t t r t r s r ts t t rr Pr tt s r s t r s rs ss t t s A1 (di,j ) = 1 D (di,j ) = (1 + αg ) D (di,j ) di,j A2 (gi,j ) = D (gi,j ) 1 = (1 + αe ) D (gi,j ) gi,j r st di,j t st gi,j s t ② rr t t A1 A2 r s t ② t r r st di,j t s r A1 (di,j ) s t r r t ss r t② t s r A2 (gi,j ) t s t r r t r st ss r t② t s r s s t t② t r s r t r s rs ts t r r s t r s r r s s t t r t r s r ts r r ② r s r r s t t s r P s s r t r r t rs αg αe t r t r t r s s t t t r t r s r ts ② r s r rs s t ② s α s t t r r t α = 2 r r t r t② s r s αg αe t t t ② r s r rr t st t s α G = 0.55
35 α E = 0.35 t t ③ t s t st t s r t r t ② s [0.1, 4] t r t tt s s t t② t r t r s r ts s s t s st rs t t s r st s t s rt r ② ss s r P s r s s r ② r ② s r ts r s ② s r s r r t r ts t s s r r tr s tt t t t r r ② s ② r s rs sts s r s s r t s r ts t t r t r ② r t r t ② ② t s r r t r ts t ② r ss ② t t t t s t s s s r t t st rs ② s r s rs t s t ① t st ts s r st s ① r s ② D = exp( αdi,j ) r t ss t A(di,j ) = D1 (di,j ) D1 (di,j ) = α st t s s sts t t st s r t r t t t s s t t② r t r s r ts t s r ts s t t t s t s rt ② r r s ts s r t r s t t s rt r r t t s t t tr ① r rs r t r st r s t t t ① t st t t t r t t s t s t r st ② t s r t r s r s s tr t r s r t t s t s t s t t rr t ① st t s r ts st t ② s t ② t s r s r t r t r r t s t t
36 tr ① W r t ss s t s t r t s t W s t ③ s r t sq r rr r W r ② r st s t P s s s t t r r s t s t s r t r s r s t s r t s r t s r t② P s r s ss rt r r t r r t t t s t W t t s r t ② t t t t rr Pr tt r s rs r t r r t t r r t t t t r t r s r r t r st t s t r t r t ts t r s t s r s t r t r t t s r s s t s s r t r s t ①t r s s
37 t r t r s r s s s r t tr t s st ② s t s t r r s ts t r t s t ① sts t s t ts t t t rt r ① r r t t s t ts s r s s t s r s s r t r t r t t s s r s ② s s t s ② s t s r t r t r t r st ② t s t ② t s s t t t s r s s s t r t r ss t s st t t s s r t r s t t st t s r t r s s t r t s t t r s t s s ② t s tr s r t s r t rt r t r r t t t r st t r s ts st ② t s r s s t s t t r st s s t rr t t r r st s r t r s t s r s s t s t s ① q rt rs s s r s ss s r t ② t t s s t s t s ss s t rst s s t s s t s r t r s t t s ss s t s s s t s s t t r t s r s s t tr s t t t r t r r s s t s ② t s t q t r ② s t t t tt r rst t t s s s r t r s r t r ss
38 s s r Yt = γyt 1 + λwn Yt + Xt 1 β + µ + vt τn + (IN ρwn ) 1 εt s ② t t t t IN λwn = A IN ρwn = B rr Yt = A 1 γyt 1 + A 1 Xt 1 β + A 1 (µ + vt τn ) + A 1 B 1 εt st t s r s s t t s t r εt t η t t t s IRF0 = A 1 B 1 η Yt+1 = A 1 γyt + A 1 Xt β + A 1 (µ + vt+1 τn ) + A 1 B 1 εt+1 t + 1 s st t t q t t t Yt+1 =γ 2 A 2 Yt 1 + γa 2 Xt 1 β + A 1 Xt β + γa 2 + A 1 µ + γa 2 vt τn + A 1 vt+1 τn + γa 2 B 1 εt + A 1 B 1 εt+1 ss t s t t Xs vs εt s t ss t t t r r r s t X s εs vs r s t r r r ② s r t r s s s r t r t s s t s s ε t s str ss t t s s r t r s s s s t r s t s r t t t
39 t t r s ts Yt+1 = γ 2 A 2 Yt 1 + γa 2 + A 1 (Xt 1 β + µ + vt τn )+γa 2 B 1 εt +A 1 B 1 εt+1 rr s s r s s t r t+1 s IRF1 = γa 2 B 1 η t t s r r Yt+2 =γ 3 A 3 Yt 1 + γ 2 A 3 + γa 2 + A 1 (Xt 1 β + µ + vt τn ) + γ 2 A 3 B 1 εt + γa 2 B 1 εt+1 + A 1 B 1 εt+2 Yt+3 =γ 4 A 4 Yt 1 + γ 3 A 4 + γ 2 A 3 + γa 2 + A 1 (Xt 1 β + µ + vt τn ) γ 3 A 4 B 1 εt + γ 2 A 3 B 1 εt+1 + γa 2 B 1 εt+2 + A 1 B 1 εt+3
40 Yt+h =γ h+1 A (h+1) Yt 1 + γ h A (h+1) + γ h 1 A h + + γa 2 + A 1 (Xt 1 β + µ) + γ h A (h+1) B 1 εt + γ h 1 A h B 1 εt γa 2 B 1 εt+h 1 + A 1 B 1 εt+h rr s s r s s t s r IRF2 = γ 2 A 3 B 1 η IRF3 = γ 3 A 4 B 1 η IRFh = γ h A (h+1) B 1 η r h = 0, 1, 2,...T. r r t str t t t r r s r s s t t t st r rr rs r t IRFh t t s s t t t st r rr r t t r t t tr s r t t r s t t t r t r t ② t ② t s② t t r t tr s r r t r s V ar(irfh ) = IRFh IRFh IRFh,, γ λ ρ Σ 1 IRFh IRFh IRFh,, γ λ ρ
41 r Σ s t s② t t r r tr ① t st t rs γ λ ρ t str t t t r ˆ h) ˆ h ± 1.96 se(irf CI = IRF ˆ h s t st t IRFh t r t s IRFh r t IRF r r t str t t t r t t t st r rr rs r t st t s IRFh t ② t t t r t s IRFh t r s t t r t r (γ, λ, ρ) r r h = 0 t h = 6 r r s t r t h = 0 s s t t ② η t IRF0 (γ, λ, ρ) = (IN λwn ) 1 (IN ρwn ) 1 η =A 1 B 1 η r t IRF0 t r s t t (γ, λ, ρ) s
42 IRF0 =0; γ i d [vec (A 1 )] IRF0 h 1 T = B η IN λ dλ i h h i d {vec [(A 1 )]} d vec IN λ WN T = B 1 η IN dvec (A) dλ ih i h T T = B 1 η IN A 1 A 1 [ vec (WN )] i h T = A 1 B 1 η A 1 vec (WN ) ; d [vec (B 1 )] IRF0 = ht A 1 ρ dρ d [vec (B 1 )] d [vec (IN ρ WN )] = η T A 1 dvec (B) dρ i h T = η T A 1 B 1 B 1 vec (WN ) h i T = B 1 η A 1 B 1 vec (WN ) r r rs t t r r r t WN tr s r s r t + h WN vec (WN ) s t t r ③ t tr ① t t r r h 1 IRFh (γ, λ, ρ) =γ (IN λwn ) (h+1) (IN ρw ) 1 η =γa (h+1) B 1 η r h 1 t r t IRFh t r s t t (γ, λ, ρ) s
43 IRFh =hγ h 1 A (h+1) B 1 η; γ h+1 X (h+2 j) 1 IRFh h A =γ B η A j vec (WN ) ; λ j=1 h i T IRF1 =γ h B 1 η A (h+1) B 1 vec (WN ). ρ s r s s t s s t t r s r t r s st t t s r s s t ts t s s t s s r t r s r t r st t r s s s r r② r t s ② r t t s r s s t ts s t s t r r t r② s r t r s t s t s r s r t t r s r t t t s r s s t s t r s s s t t s r t ts s r r ss t r ③ st r ③ s t s ② t st r ③ s r r r ② t s ss t r s ss r t s r r t ② t r ③ s t r ② t r t r t t r t t r r t t t t r s t s t tt r s t r s s t s t r s r t r s t r s s r s r t r s ② t t q rt r s t s s t st t ② r s s t r s r t r s st t ② t s t st t t t r s s r t r s t q rt r s s r② s
44 r t r s r s t st t t rs s s t ② s t t t r s t r q rt r t r s s t s t r② s r t r s ② st t ② t r s s r t r s r s st t ② t ② s t ts t r q rt r s r t r s t r s t st r s s t t s s st r t s r t s r t r t s r t r s r s ② st t ② ② t rst q rt r t r s s r t r s r s st t ② ① t r r② t tr s r t r s r s t st t rs s s s t ② s t t t r q rt r r t s s ② st t s t t s r t r t ② q ② t r t r s ts s r r t t st t t t s t s ① t s s s r r ss st s t t s t t t s r r t t s r s t t r t r t ② s t t r ③ st r ③ t r r s s r t r t s ②s st r r t r r ss s t r s t t s s r r ② t s ss r t s r ts t r t s s s t t t t s s t r r t r r s ② t t s r t t r s ss r t s r s r t t t r ③ t ① s tt r ③ t ① s s t t r ③ r q rt r ③ r t q rt r s ① t r s s t ② s r ss t s st r t t ② s r ss t st s s s t s r r s s r s t s r st tr② ② t t r t r t t t s r s t t rt② s t s r t ② t r r t rs r t r ② r
45 t r r st r s t s s r t t t s t s t r st t t s r t② t r s r P s t t s t r t r s st t t st t st ② s t t s r s s t s s t ss r ss r s t s t ② t r q rt r ③ r s t t st t t s t s s r s t t s t t r s s t s t t t r r s s r t r t st r s r r t s t t r r s r r t r t r s s t r r r t s r② t r t r s r t tt tr ① r t t s r s s t s t s t t t r r r t r t r s r t r s r ① s t s t s t r r s t s r t r s ② st r t t r r ② r s t ② t s s ② st t s t r t t t s r s t r s t r s st r t s t r t t r r s r t r r s ② r s t ② t r s s r t r s r s st t ② ① s r t r s t t st ② t r ② t r s st r t s t r t r② t t s r s s r t r s r s t r s s r t r s r s st t ② tt s t st ② t s s t r s t t s s t st q rt r s t s r t r r t r s st r t s t t r r r t tt tr
46 ① t s r s s r t r s r s st t ② t r s s r t r s r s st t ② t r s t st r s s t t s s ts s r t r s r s ② t t t t s r s s s t s t t t s r s t t t s r s s s t s s t t s s r r t t s s t r s s s s s s t t s s t s t ② s t ② r t ts t t r r t s r s s s r r t t r s t s t s t t s t s s ② st t t t s s s t rs st q rt r t s r t t rs t r q rt r t s s ② st t ts r s t t r s t r ③ ③ r r ss s t ts t r t s r s r ss t t s r r r s r ② t st r t s r s r t t t ① s tt ① s s t t r ③ r q rt r ③ r t q rt r s ① s r s s t s t s t t r t s t st t r s ts t st t t t r t r t s s t r st r t st t s t
47 s s t t t r t s t ② t r t t ts r s t s r t r s s r s t r st t s r s s t s t t t r t s s st r t s t t t r t r t t r t ② s t tt r s t s r s s t s rst t t t s r s s t s t s t t ① t r② r s Xt 1 r Yt =γa 1 Yt 1 + A 1 Xt 1 β + A 1 (µ + vt τn ) + A 1 ut Yt+1 =γ 2 A 2 Yt 1 + γa 2 Xt 1 β + A 1 Xt β + γa 2 + A 1 µ+ + γa 2 vt τn + A 1 vt+1 τn + γa 2 ut + A 1 ut+1 Yt+2 =γ 3 A 3 Yt 1 + γ 2 A 3 Xt 1 β + γa 2 Xt β + A 1 Xt+1 β + γ 2 A 3 + γa 2 + A 1 µ + γ 2 A 3 vt τn + γa 2 vt+1 τn + A 1 vt+2 τn + γ 2 A 3 ut + γa 2 ut+1 + A 1 ut+2 Yt+h =γ h+1 A (h+1) Yt 1 + γ h A (h+1) Xt 1 β + γ h 1 A h Xt β + + γa 2 Xt+h 2 β + A 1 Xt+h 1 β + γ h A (h+1) + γ h 1 A h γa 2 + A 1 µ + γ h A (h+1) vt τn + γ h 1 A h vt+1 τn + + γa 2 vt+h 1 τn + A 1 vt+h τn + γ h A (h+1) ut + γ h 1 A h ut γa 2 ut+h 1 + A 1 ut+h r IN λwn = A t N 1 t r ψ t t s t r t t t t 1 βp s t t r t t t r t t rr s s r s s t s r t st r t t r t s st st
48 IRF0 =A 1 ψβp IRF1 =γa 2 ψβp IRF2 =γ 2 A 3 ψβp IRFh =γ h A (h+1) ψβp q t s t r s s q rt r t t s s r rr t s s r s s t r ③ ③ r s ② t t t q t t str t t t r r s t r t s t t r q r t str t t rr r s r t t r t s t t r q r ② q t t str t t t r t s r s s t s t t r t s t r s t t r t rs s γ λ βp r A = IN λwn βp s t r t r r t t t r t ψ s N 1 t r t s t s t t t r t t r ③ ③ r h = 0 IRF0 = A 1 ψβp t r t IRF0 t r s t t (γ, λ, βp ) s
49 IRF0 =0; γ i d [vec (A 1 )] IRF0 h = (ψβp )T IN λ dλ i d {vec [(A 1 )]} d [vec (I λw )] h N N = (ψβp )T IN dvec (A) dλ ih i h T = (ψβp )T IN A 1 A 1 [ vec (WN )] i h T 1 1 vec (WN ) ; = A ψβp A IRF0 =A 1 ψ. βp r t + h r h 1 IRFh = γ h A (h+1) ψb r h 1 t r t IRFh t r s t t (γ, λ, βp ) s IRFh =hγ h 1 A (h+1) ψβp ; γ h+1 X (h+2 j) IRFh A =γ h ψβp A j vec (WN ) ; λ j=1 IRF1 =γ h A (h+1) ψ. βp r s ②s t s s r t r s t st r t s t t t r t r r② r t ② r s s t t s t t r t s r r r ts r s s ② st t ② t s s s t st rt r q rt r s r t r s r s
50 st t ② t r st s t r ③ ③ r r② r s s t st ② t r s st r t s t r② t r t r② q rt r ② s r t r s r s ② t r s s r t r s r s st t ② t r s s s t st t r s t s s t s r t t r t t s r t r s r t ts r s ② st t ② t ② s t q rt r r st s s r t r r s st t ② t r ③ ③ r ① s t t st t r s q rt r ② s r t r s r t t s t t r t s t s r t s r t ② r t t t t s s s r r ② t r st r t s r t r ③ t ① s r r s r t t t r s ss r t s r tt ① s s t ② r ③ r q rt r t q rt r s ① s r t t t ② t s r s s s r ss s s st r t t t ② r s t r t s t t r s t r s s t s t r t r t t r r t r t r s ② r s t ② s r t r s r r s st t ② r t r q rt r ② s r t r s r s ② r q rt r ② s r t r s r s ② t r s s r t r s r s st t ② r s s t t s s s t t st t r s r s s t t s t s t r t r② t t s r s s r t r s r s st t ② t t r s s r t r r s st t ② s s t ② s t t t t rs st t t rst q rt r tt q rt r ② s r t r s r s t st ② st r r s ②s t s r s s s
51 t t s t s t t t r r t r r t tt tr ① r t r s r t r s r s st t ② t s t q rt r t ② s st t ② t t t r st s t r ③ ③ r t s ② t q rt r ② s r t r s r t t st ② t s s t r s ② t r t r s t r t s r r r t s r t s r t r s s r r ss r s t r ③ ③ r t ts t r r s t t s r s s s t s r s r tt r r ③ s ② s t ts s s t r s t s r t r s r r t r t r s r rs t r tr s s s s r t st r r ss t s r ts t t r r s s t ② ② P s r t r ②s s t s t t r s s r s t t ② t t s t s t s r s s r t t r r s r ② r s r s r ss t tr② t t s t s r t r q st s t t r r t r s s s t t s r ② st t s s r s r t s r ss s r t s t s s r s r ss s t st t t ② rs s r s s s s r t r s r s t s r ts s r ts s s t r ② ttr t t t s②st rt r t s s②st s ② s r s t s st s②st t r t s rt r t r r t r t st r t r s s rt r t s t t s r ① t ① rt ③ t r r t
52 s r rt s s r r t ② rs t ① t r r rt s s r r t t ② t r r rt s s r s r t r str t t② r t r r tr s s s s r t s r t t ss r t s s s s s ② s t t t ②③ t s t r s t r s s r t r r ss r s r t t s t r st t t s s r t r s t t st t s r t r s s t r t s t t t s s s ② st r s rt t r ③ t s r ② r ss s s s s t r r t s r t r t r tr s t s r r r t r r s r t r ① t r str t t t s t ss s t t tr ① W t t ts ts t t s s t r st r r t r s t r s t r r t t r r t r s r r ①t t rr t P r tr t s r tr tt t t t r t s t t t g(w ) r r r s t t t s t t t t t st t ss s t t r rt ① r t t t② t t tr ①
53 t r s r r ss s t r tr t t r s t r ss t r r ② t r r t r r s t r ② ② r r t t ss s r r ② r r ② ② t t t r s ts tr t② s ② ① t r r s st s ② t r r r s s s r ② r r ② r s t r tr t t t r s t t tr t② s ② r t r r t rs r s t t s r ② s t r t ② s st r r ② t r s tr t② r t r r s ① r r r t s r t t t tr t② ②s t r t r r r tr t② t t t r t r s t t tr t② t t ② t r s tr t② s r r tr t② r t r r s ① r r ② r t t r s ts ② t r s r ② r t s r ② s t r t ② s st r r ② r t t t r str② r ② t r st t t② r r t st t t t ② s ① tt s P s P r r ② ss t r st t②
54 t r s t t r t r s t t r ② r t s t s t r s r t tr t② t tr t② t t r t r r r ② s t str t s st ② r t ② t s t r s ② r t tr t② t s str t r s s t r s r r t t tr t② r ts t s r s t r t s t r s t t s t② ② str r t ts t ② t s s str r t r t s r s r s ts t t t t r s t ②s r st r tr t② t t ② s ② t s t r t st t st ② s r tr t② s s r s rt ② r r ② r tr st t s s t s t② s r t rs r tr t② t st t r r t s r r t rs r ss t r② t r t ts t s st t t r r r t s r r t rs t r r t rs r t r s s r ② r tr st t s r r t q ② st r r t rs r t t t r t t r s s st ss r r t rs r r r r s s s r t ts s r r t rs r s r ① 2 s r ① 2 tr ① s X t r s st r t rs r s 2 X t t r r ts t t tr t② s ② s②st t② ② r s r ts t t st r r t st r s ② t ss r ts t t r s st ② rt② tr t② r ② t s t ② q t r s tr t② r t t r ② tr t② s t s s t st r t r t st rt r t t r s s t r t t r s s t ① t s s
55 t r r t t tr t② s ② s②st s t t t s ② t t t t r tr t② t t s t t ② t ① st t s st t t t r t s t r ② t r r ② t s r s t ① r t t r t ts tr r ② t t r s tr t② s ② r ② ②③ r ② tr t② t t t r t r s r t rs ② r t r t r r ② s r ts s r t r t r ② r s r s t r t ts r s s t r s r s r t s r t t ss s r s t st r s r r ② t st st t② r tr t② r t t r t t r t r s rts r r ② r ① s t ① st t r t r r ② s rts s t s ts s s 2 ss r t s r t s r t tr t② r r t s r ss ② r t t s s t t t t r r r t rt ss r ② s s s s r ② st t t r t st ② t ts r ② r t r s r s s r t s r t t r t s ② t rs á ③ r t t r t r r r t r s t t tr t r ② t s r s t tr t② r s②st s r s t ② t t r rs t t t ss r ② t r t r s s s r r t t
56 ss s r t r t s t rst t t ② t r t s st t t s r r s tr t ② r r t q t ② r t ts s r q ② t r t t t r ① s tr t② r t r t s ② s r t t s t rt r q ② tr t② t t t r r t r t s ③ r s t r t r② t s t r r s s tt ts t s t s ③ r t r r ② r t ② r s t r r r tr t② r t r r ss r t r r r s s r r t t tr t② t t t r ③ r s r t tr t② r t rs t r r r s t s t t s t s ③ r t r r t r t t tr t② t t r t r s t② r ② r r s s t ① s r r ss rs r s t r t t ts t② s t r ② t ③ r t r r r st t t t s r s t rst tt t t r r ② t ③ r t r r ss t t r q ② r tr t② t t t s r t tr t q s t s t r ② tr t② t t r r t rs s t r ② tr t② t t r t r s r ② s r r r s t s t t ③ r t r r r t t r ② s r r r ss r t ① st t r t r r r s t s r ① t t ttr t t r s r rs r t r st st ② t ts r ② ss r t s r r q ② r tr t② t t t t r s tr t② r t s s t t str t t
57 s ss r t ② r r r s ts s t t t t r r t r s ② ② rt t r s t t ss r t s t t t r r t s s rt s t r t r t ss s r ② s r r r ss r ① r t s t r t t r ② r t t r r ss r s ① t r tr t r② t t r s r s r t t t t r r t rs t s t ② st t r tr t② t t s t s r t t t r t tr t② r s r tr t② ② r t t r r r ss r r t t r t tr t② r s t r s r tr t② ② r t t r r r ss r r t r t t t r r r ss r st t s t s st t t ts r t r st t s t s st t t ts t r s t s t r t s t t s r ② tr t② t t t tr t② r t rs t t r ② tr t② t r ② r r tr r t t t r t r s r t st t s r t s r t rs t rs t t r r s t r ② tr t② t t t s t s r
58 r r r t rs r r t rs r t rs t r s r t rs ② r r t rs s r t rs st ss r t rs t r ② r r r t rs r t r r t tr t② r t r r ② r r ② r t t t tr t② s ② t r r s t ② s s t st t t r t r s s st ss r r t rs r r r r t t② s r t ts r s r t rs r s r ① 2 s r ① 2 tr ① s X t r s st r t rs r s 2 ① t tr t② r t r t r s s st ss r ② t r t t tr t② s ② t r r s t ② r r r t s s t t r r ② s t r t s r t r r ② r r r t r ② r t t r s t r t t r r s t t t t s t r tr t② s ② r t② s tr t② s rt t r s t tr s ss r s r t t t tr s ss r s t r s t r t t t r rt tr t② ① rt tr t② tr t② s ① rt t r r s st t s t s t t r t r s t t tr t② s s t t ① rt tr t② 2 th r r ss t r s r ② t r st r ts t r s ② s s t r t t r r ② r r r t r t r t r ②s r r t t
59 tr t② t r r r ② t r t r t r r t t t s t tr t② r t rs r s ② t s t t r r s r s ② r r t rs r s ② t s r rs r s r s r t r s str r t st t s r s ② t s r r s r s s t t s t② t rs t s r t r② r t r s t r t r s t t t r t s t s r ts r st t st t r t t r t r t r t t r st t tr t② r t rs t st t s s t t rs s t s r s t t t r r t r s t r t r t r tt r r ① t t tr t r t r t t s t s s r s t r t r t r r t rs s t t r t r r s s s s t s t s t t② t r t s r t s t s r② st t st s t r ② r t tr t② t ts r t② r ② t r t r r ② tr t② s t t tr t② t t r t r t s r ② s r s s r r t s ①t t st r rts t r t tr t② t t r r t② s r t t r t rs ② t r t r s t t tr t② t t t t t s r r r t rs t st t t② r t st st t② r ② r t r t rs t s st t t② st t② r t t r r ② tr t② t ts r t r r ② r t r s r t rs r s tr t② ② t s t t r t r r s s s s r t t② t r s t t r t r t t r t t r s t r t t r s t t q t r t r t rs t r s t ① t r r ss t t t t r t r t s r r ss r
60 r s r t t r t s r r s r s r tr t② s t st ② s t t ①t ② r ②s t r ② s ②s s t t t s t r str ② r s t t r t t r ② s t s t t r t s rt ① s r s s r s t t t r r r ② ① ts r t st ② t t t t t ts r ② r t r s r ② ① t s r ② tt r s t t t r ② s r r t rs r t st t t t t tr t② s r r s str r s t st t t t t s t ts r t s t tr t r t t r s tr t② r t t t t r t r t② s r ss s s r t s r t t s q st r s t ②③ r t t r r t t s rst t s t t tr t② t t t r r② r t r s t t r tt t t ① r t r t t r t r tr t② t ts t t ts r t r r r t t r r ② s r s r t t r r t r ② tr t② t ts ② r ② s r s t t r ② t ts r r ② s r s r t st t t tt t r r ② r s rs tr t② tr t② Pr s
61 t t r s t t st t r t ② t r t r tr t② t ts t t t ts r t r r ② s r r t ② t rst s r r r r ss r ② s t t r t r t s s t s r r ② tr t② t ts r r t rs s t t ③ r s r t t r r t ③ r t t s r t r s ② r tr s st r t rs r s t ② t r s r t t s r s r t tr t② t ts r t r t s r ② s r ② s s ① s r ① t t r s t s t s s t t r ts r ② t r t ②s rst st t t r ts r r t r s r t t r t t r ts ② r ② s r r t tr t② t ts ② r ② s r t st t t r ts r ② t r t r t rs r ② t s t② r r r r ss s r r r ss t 2 + αi Xt + γi Zt + ηi Oi,t + εi,t Yi,t = β1,i W indt + β2,i W ind2t + ρi dt + δ1,i Ti,t + δ2,i Ti,t
62 r i = 1, 2,..., 133 t = 1, 2,..., 8760 εi,t s t rr r t r t ③ r t r t r Yi,t s r ② t t r t it r t r t t t r W indt s t r ② tr t② t t r r t rs W ind2t s t sq r t r W indt r dt s t r ② tr t② r t t r r s Ti,t Ti,t2 r t r ② t r t r t sq r t r t t r t r r s t ② r t t r t r s t s r Xi,t s tr r s t t r r r t rs rs t t s t ② r W indt 1 W indt 2 W indt 24 W ind2t 1 W ind2t 2 W ind2t 24 dt 1 dt 1 dt 24 Ti,t 1 Ti,t 2 Ti,t 24 r s Xi,t r s t tr r ② str s r s ① t t s s ss t t t r s s s t rs r r t ts r t r Zt s ② r s r ②s rs r Oi,t s r t ② r t ③ r t th r t r s t r t t rs r r t r t s t t t t r t rs r t s r t r t r ss r t rs r q t t t r ts r t th r t r s r t t t t s s E (Yi,t W indt, Γi,t ) = β1,i + 2β2,i W indt W indt 2 = dt, Ti,t, Ti,t, Xt, Zt s r t s r r ss rs q t M Ei,t = r Γi,t ① t W indt W ind2t r t t r ts r r t rs r r t s r ② s r s t t t t tr t② t t s r t② t t t t r s t t t r ② r t t t
63 r t q t ② r t s st t t s r ② s st t ② t r st sq r s r t st t t r ts ② r t r t rs β1,i β2,i ② t r st t s r s r ② s t t r t r t ts t s t② str t r r r s r t s t s t r t r ② tr t② t t t t s ② ③ r s t r t r s t s r t s t s r r r rt r t r t r q t ③ r r s s tt r ② t s t s t t r r t s r r t s t s r ② st t t s r ① t t t t s t t t t t t r s t ② ③ r r ③ t s t r t s s s 2 + αi Xt + γi Zt + εi,t Yi,t =β1,i W indt + β2,i W ind2t + ρi dt + δ1,i Ti,t + δ2,i Ti,t Yi,t = max Yi,t, 0 r i = 1, 2,..., 133 s t = 1, 2,..., 8760 r t r s r t s t s t t r t ② r s t ts t s r ③ r t r ss ② q t
64 r t t r t r s ① t t t t t t s ② E (Yi,t β1,i W indt + β2,i W ind2t + λti Γi,t W indt, Γi,t ) =Φ β1,i W indt + β2,i W ind2t + λti Γi,t σi β1,i W indt + β2,i W ind2t + λti Γi,t σi +ϕ σi r λi = [ρi, δ1,i, δ2,i, αi, γi ]T Φ ( ) ψ ( ) r t t str t t r t② s t② t st r r r r t r t r t it r t r s t t t t t s ② E (Yi,t W indt, Γi,t ) W indt β1,i W indt + β2,i W ind2t + λ i Γi,t =Φ (β1,i + 2β2,i W indt ) σi M Ei,t = r q t t q t s t t t r t r r t t s r t r t t t r t r r r ss s t s t t str t s ②s ss t r q t rst t r ts r t t r rs r s t r t r ③ r t t r tr t② t t s r s t s ① st t t r t r t r s t t rst r r t t r ts ② t② rst r t t t ts ② t② r r r ss t r t r ② t ts r
65 t s ① r ② s r s t t t r ② r t ts ② t s s ① s r t r r t t t t s ①t s t t ① s r r ss rs s s tt r s ② t rt t s t s p, d, q Ö P, D, Q S r t s s r t S t s rt t r t t s s t② p P r t r r r t r r ss rt t d D t r t s t t t t s r q Q r t r r r r rt t r s S = 24 r ② t s t s t r s s r r s s di S i Φi B S φi (B) D θi (B) ui,t + β1,i W indt + β2,i W ind2t S Yi,t =Θ B 2 + ρi dt + δ1,i Ti,t + δ2,i Ti,t + α i X t + γ i Zt 2 r i = 1, 2, 3, 4, 5, 6 t = 1, 2,..., 8760 r ui,t s t s 0, σi,u r dt Xit Zt W indt W ind2t r t s s t T i,t q s t r t r t r ② r t rs r ② s r t r Yi,t s r ② t t r t r t th t② t t B s t r t r d D S st r s s s s r r t r t t t di Di r t r r t i t Φi ( ) φi ( ), Θi ( ) θi ( ) r ② t s r r P p Q q r s t ② r q t t t r ts r s s M Ei,t = E (Yi,t W indt, Γi,t ) = β1,i + 2β2,i W indt W indt
66 r i = 1, 2, 3, 4, 5, 6 r Γi,t t s st r r s Yi t rr t st s dt, Xi,t, Zt, W ind2t, T i,t r r ② t t t s t s r s t t r r t st t r t t s r s s s s t r ts s r s s t r t t sts t t st r s ② ② r r r s ② r t t st s t r t st s s t r ts t t r r q s ② t r ② t ①t t t st t ② t r q ② s s r t s t t ② ② r tr t ① ts s s t r t r q r s rst r t tr t② t t t r t r r ② s r s r s s ② st t r② st t t s ② ③ t t s sq r s tr ② r r p d q P D Q r t r ② ③ t ② s r t r t r r s tr s s s s r rs ② t ① s s t r t r t rs q t ② t r st t s s r st t r ts r t r t r r t r t② s t r r s t r r r r t s s t r t t sts r t s s ① s t ② t s t r r t s rst st s t r st t r② s s t② rst r ② r tr t t t t st t r② st t r② s q s r s r t s t r t s p d q P D Q t r t s t s s t t t rr s p d q P D Q
67 r r s ts r rts r st t r ts r tr t② r t ② t② s t r s r r t r t r t r s ② r st ss r t rs t r t r s r r r t rs t r t t s s r r s ts t s t ② r r ts s t s r s ① t t t r s t t t t r r s t t r t s t s ts rst s ① t tr t s t r r t rs r tr t② s t s ② s r t ① t t r② r ② t ts r t t t t s s s rt ② s t s ts r t t r s t st t s r r t r s r r s t t r s t t s ① t t t t t t s t r t t② s s r r t t s ts ② s s s r r s t ② t t r s s r t t t s t s t st r ① t t t t r t s s s t ② ttr t t t ss r ② rt r t t r rt s tr t② q s st t r s tr t② t t r r r t rs r r ts r s r r r r s s r t t t r s s st t t r t r s r t r r ② s s s ① t tr t s t s ② r r t rs s r r ② t t t t ① t s s ts ② r r t s
68 s r s ② r st t t t s ts r r r t rs r st t t t s ts r t r s r r t rs r t r r r s ts s rt t t s ts ss s r r s r ② q t ② ss r t s r ① 2 s r ① tr ① s X r s t r st t s r ② r tr r t rs r t s t r t② s r t rs t t ② r t ts s s r ① 2 s r ① 2 tr ① s X s ③ r s r r rt ss s ts r t t r r t rs r s t s t r tr t② t t s ts t s t r r ss r t s ② t r t rs t ss s r t r s s st r t rs t r ss r t s r t r s s r r t rs r s 2 r r t rs t ss r t s r s s r s t ② r t rs r s X t r s s st r t rs t ① ss r t s r s s s s r s t ② r s t t ss s ts r② s r ② r s t r t t r s s t ② s r r ss s ts t t r r r r ss r ① s ts r st t t s r r s t t s r t r t t r st t r s s s ② s t t t s ts t r s r s r t s s ts ① r s t ② s t t s s r s t ② t s ss s ts r r t t s s r r r t s
69 s r ss s ts r r s r t s t ss r t s r t r r ss r t s t ss s t rs ② r r r s r t t t ss r t s t t ss s t r t r t r t s tr t② r t rs r t st t ② r t st ② r ① t② r t rs r t t rt t② ② r s ss r t s s r s r r r r q r s t r r t r r t s r s s s t r s r r t t ② s ss r s r ① t③ st t st ② r ss r t s ② s r r ② ss s r t s r s t r s s②st r ② t t s r s t ② ss ② ② rs r t st s②st t ② ① t r t s t tr t s r ② ① t r t s t rst s②st r s s ss s ② t s t ① t r t s t r r t t t r t② Pr ss rs ss s r s ② s s ts st rt s t t s s s r s s t r t t t ① s t ② r ss s t t t s r t t ② r t ② s s s t r t s r r r t r t r ② r tr t② r r t r st r tr t② t r s rs r r q r s rs t t t r s
70 tr ss r t r t s r ② t r r t r s t st t r t ts tr t② r t r r t r ② s r s ② r t r t r ts t r t ②s r t r r r r ss s t s ② r t t r rst ② t r t r r r② r t r t r t t r ts ② r ② s r r t s ② r t t r rst ② r t tr t② t t ② r ② s r t t t rr s r ts s t t s r s t s t ② r t t t ss s t ts t t r r ts t rt r r tr t st ② r t ss r t s r r q ② tr t② t t t
71 r② t t st s r s t ① s r t r s Yt st rts Starts ts t Completed s t P r ts BP s str t ① U W I s r ① N HP I t ① Rent P t r t pop ② t t unem s inc r st s km r t t ② t emp rs s tr r ts ② rs r P $1, 000 s rs 1, 000 rs s t r ① t r② r s s s t rs r s s s t t tr ① r s ② P r r t s s r ② r t r st s r t r s t t s r s r t ① s t s ① t tr r t t r tt t r t s t r② rt t rt r r t s t r r t s
72 r ss s t s t t ② ts H1 H0 H1 2 > 0 σµ ρ 6= 0 2 > 0 σµ s r rr t rr r t r s ss H1 εt s r rr t rr r t r s H0 ρ 6= 0 ① ts H1 ss r ts s t t rr t s ts H0 H1 2 =0 H 0 ρ = σµ r ss s t H0 s t r t ② t s s st st t st s e e e e 16 p R s t r s t st s s t r rr t ② r ① st t s s ① ts t t s r rr t εi,t ② t s s t t st tr t s t t s t t tr ① str t s rt r ss s t t ② s t P r ②r r t s t r t t st r s t s s t tr t ② s t s t st t s P s r s t st r rs t t t st P s r r s P s t st s s r s P r t s t st t t st r s t s t s t st r s t s s s t t st r s P s t st t ②s ① t P s r s t st r r ss s t s sts sts s t
73 Completed BP σ (0.0375) (0.0097) (0.5668) (0.0029) (0.0238) (0.1280) (0.0038) (0.0034) (0.0033) (0.0339) (0.1728) = empi empj (0.0371) (0.0093) (0.5780) (0.0029) (0.0249) (0.1311) (0.0037) (0.0033) (0.0031) (0.0322) (0.1915) (0.1791) α = 0.28 emp,0 wi,j α (0.0375) (0.0097) (0.5814) (0.0028) ( ) (0.1310) (0.0038) (0.0036) (0.0033) (0.0331) (0.1734) (0.1611) α = 0.28 = movi movj (0.0379) (0.0099) (0.6192) (0.0031) ( ) (0.1352) (0.0039) (0.0037) (0.0033) (0.0354) (0.0641) (0.0393) α = 0.02 mov,0 wi,j = mig,0 wi,j α migi,j α = GDPi GDPj α (0.0383) (0.0098) (0.6060) (0.0030) (0.0253) (0.1349) (0.0039) (0.0036) (0.0034) (0.0352) (0.0333) (0.0276) α = 0.1 GDP,0 wi,j t t t s t t tr ① t r s r st t s t ② t t r t s t t tr ① st t t t r t r r t r α, t α ③ s s r rt t s s t s t t st t s st t st ② s t t s t r s t ② rst s t st t r s t r t ② (0.0379) (0.0421) inc (0.0097) (0.5725) (0.6507) (0.0028) (0.0032) (0.0029) unem pop Rent (0.0234) N HP I (0.0273) (0.1286) (0.1454) (0.0038) (0.0035) UW I (0.0043) (0.0038) (0.0033) (0.0038) Starts (0.0339) (0.1466) Yt 1 (0.0380) ρ (0.1565) (0.1397) α = = exp( αdi,j ) α = 0.35 t t W λ G,0 wi,j = G,0 wi,j d α i,j st t t s t tr ①
74 st t r s ts t t tr ① t r ts r t r rs t λ 0.4W G + 0.6W emp 0.5W G + 0.5W mov 0.2W G + 0.8W mov 0.1W G + 0.9W GDP αg = 0.35 αe = 0.4 αg = 0.45 αe = 0.15 αg = 0.55 αe = 0.25 αg = 0.55 αe = (0.1644) ρ Yt 1 Starts Completed BP UW I N HP I Rent pop unem inc σ (0.1697) (0.0334) (0.1528) (0.1550) (0.1596) (0.1586) (0.0334) (0.0333) (0.1735) (0.1831) (0.0335) (0.0032) (0.0033) (0.0032) (0.0031) (0.0033) (0.0037) (0.1299) (0.0037) (0.0033) (0.0038) (0.0040) (0.1273) (0.1286) (0.0031) (0.0036) (0.1295) (0.0241) ( ) (0.0237) (0.0251) (0.0029) (0.5707) (0.0094) (0.0028) (0.0028) (0.5668) (0.5704) (0.0096) (0.0093) (0.0029) (0.5721) (0.0092) (0.0371) (0.0373) (0.0375) (0.0372) t s t t st t s st t st ② s t t s t r s t ② s r s r t t st r r t W st t t t t t tr ① r ② t r st s r t s WN = g (di,j, zi,j, θ) r θ = (αg, αe, a) r t tr ① s t ② s s r t② s t ② s t r r t r αg r t tr ① t r r t r αe t s t t t r t r a s t s ② st t s ③ t
75 st t r s ts t t tr ① r t s t ① t t t ts s rs t s λ 0.8W G + 0.2W emp 0.9W + 0.1W mig 0.5W G + 0.5W mov 0.4W G + 0.6W GDP αg = 0.6 αe = 0.11 αg = 0.5 αe = 0.05 αg = 0.5 αe = 0.35 αg = 0.15 αe = (0.1600) ρ Yt 1 Starts Completed BP UW I N HP I Rent pop unem inc σ (0.1770) (0.0337) (0.1624) (0.1542) (0.1785) (0.1590) (0.0336) (0.0332) (0.1721) (0.1807) (0.0336) (0.0033) (0.0033) (0.0032) (0.0031) (0.0038) (0.0038) (0.0034) (0.1273) (0.0023) (0.0033) (0.0037) (0.1268) (0.1281) (0.0033) (0.0037) (0.1297) (0.0237) (0.0236) (0.0236) (0.0253) (0.0028) (0.5637) (0.0096) (0.0028) (0.0028) (0.5615) (0.5662) (0.0096) (0.0093) (0.0029) (0.5721) (0.0092) (0.0374) (0.0372) (0.0372) (0.0371) t s t t st t s st t st ② s t t s t s r s t ② s r s r t t st r r t W st t t t t t tr ① r ② t r st s r t s WN = g (di,j, zi,j, θ) r θ = (αg, αe, a) r t tr ① s t ② s s r t② zi,j s t ② s t r r t r αg t r t t r r t r αe t t t t r t r a s t s ② st t s ③ t
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks
QBER DISCUSSION PAPER No. 8/2013 On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks Karl Finger, Daniel Fricke and Thomas Lux ss rt t s ss rt t 1 r t
ON THE MEASUREMENT OF
ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου
Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
Χρηματοοικονομική Ανάπτυξη, Θεσμοί και
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ, ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Τομέας Ανάπτυξης και Προγραμματισμού Χρηματοοικονομική Ανάπτυξη, Θεσμοί και Οικονομική
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
i ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΑΡΑΓΩΓΗΣ ΜΕΤΑΦΟΡΑΣ ΔΙΑΝΟΜΗΣ ΚΑΙ ΧΡΗΣΙΜΟΠΟΙΗΣΕΩΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ
ACI sécurité informatique KAA (Key Authentification Ambient)
ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
10.7 Performance of Second-Order System (Unit Step Response)
Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES
1 ο Συνέδριο Χωρικής Ανάλυσης: Πρακτικά, Αθήνα, 013, Σ. Καλογήρου (Επ.) ISBN: 978-960-86818-6-6 ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ Μαριάνθη Στάμου 1*, Άγγελος Μιμής και
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure
IMES DISCUSSION PAPER SERIES
IMES DISCUSSION PAPER SERIES Will a Growth Miracle Reduce Debt in Japan? Selahattin mrohorolu and Nao Sudo Discussion Paper No. 2011-E-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 2-1-1
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΗΛΕΚΤΡΟΚΙΝΗΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΤΗΣ VEHICLE TO GRID (V2G) ΛΕΙΤΟΥΡΓΙΑΣ Μεταπτυχιακή
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΑΝΘΡΩΠΙΣΤΙΚΩΝ & ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΚΑΙΟΥ «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης» Διπλωματική
Μεταπτυχιακή διατριβή Η ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΕΠΙΔΡΑΣΗ ΑΠΟ ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΤΙΜΩΝ ΤΟΥ ΠΕΤΡΕΛΑΙΟΥ ΣΕ ΧΩΡΕΣ ΠΟΥ ΕΙΣΑΓΟΥΝ ΚΑΙ ΕΞΑΓΟΥΝ ΠΕΤΡΕΛΑΙΟ
Μεταπτυχιακή διατριβή Η ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΕΠΙΔΡΑΣΗ ΑΠΟ ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΤΙΜΩΝ ΤΟΥ ΠΕΤΡΕΛΑΙΟΥ ΣΕ ΧΩΡΕΣ ΠΟΥ ΕΙΣΑΓΟΥΝ ΚΑΙ ΕΞΑΓΟΥΝ ΠΕΤΡΕΛΑΙΟ Αδαμαντία Γεωργιάδου Λεμεσός, Μάιος 2017 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Aboa Centre for Economics. Discussion paper No. 122 Turku 2018
Joonas Ollonqvist Accounting for the role of tax-benefit changes in shaping income inequality: A new method, with application to income inequality in Finland Aboa Centre for Economics Discussion paper
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
Additional Results for the Pareto/NBD Model
Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΩΣ Η ΚΑΤΑΝΑΛΩΣΗ ΦΡΟΥΤΩΝ ΚΑΙ ΛΑΧΑΝΙΚΩΝ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ Όνομα φοιτήτριας ΚΑΛΑΠΟΔΑ ΜΑΡΚΕΛΛΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
t ts P ALEPlot t t P rt P ts r P ts t r P ts
t ts P ALEPlot 2 2 2 t t P rt P ts r P ts t r P ts t t r 1 t2 1 s r s r s r 1 1 tr s r t r s s rt t r s 2 s t t r r r t s s r t r t 2 t t r r t t2 t s s t t t s t t st 2 t t r t r t r s s t t r t s r t
EU energy policy Strategies for renewable energy sources in Cyprus
EU energy policy Strategies for renewable energy sources in Cyprus Dr. Andreas Poullikkas Electricity Authority of Cyprus 0 Contents Future energy systems Strategies for RES Towards 2020 Post 2020 - Towards
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΟΡΓΑΝΙΣΜΩΝ Κατ/νση Τοπικής Αυτοδιοίκησης ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Μοντέλα στρατηγικής διοίκησης και
ΠΟΙΟΤΗΤΑ ΑΤΜΟΣΦΑΙΡΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΠΟΙΟΤΗΤΑ ΑΤΜΟΣΦΑΙΡΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κωνσταντινή Σαµαρά - Κωνσταντίνου Εργαστήριο Ελέγχου Ρύπανσης Περιβάλλοντος, Τµήµα Χηµείας, ΑΠΘ ΠΕΡΙΛΗΨΗ Παρότι υπήρξε σηµαντική βελτίωση της ποιότητας του αέρα στις
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «Σχεδιασμός, Διοίκηση και Πολιτική του Τουρισμού» ΜΑΡΚΕΤΙΝΓΚ ΑΘΛΗΤΙΚΩΝ ΤΟΥΡΙΣΤΙΚΩΝ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΜΖΜΑ
Measurement-driven mobile data traffic modeling in a large metropolitan area
Measurement-driven mobile data traffic modeling in a large metropolitan area Eduardo Mucelli Rezende Oliveira, Aline Carneiro Viana, Kolar Purushothama Naveen, Carlos Sarraute To cite this version: Eduardo
Αναερόβια Φυσική Κατάσταση
Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής
ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΦΩΤΟΒΟΛΤΑΙΚΟΥ ΠΑΡΚΟΥ ΜΕ ΟΙΚΙΣΚΟΥΣ ΓΙΑ ΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΜΕΣΗΣ ΤΑΣΗΣ STUDY PHOTOVOLTAIC PARK WITH SUBSTATIONS
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Forêts aléatoires : aspects théoriques, sélection de variables et applications
Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: ΜΟΥΣΙΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ ΑΡΜΟΔΙΟΙ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ: ΦΡΑΓΚΟΥ ΕΥΑΓΓΕΛΙΑ, ΝΤΟΥΡΟΣ ΙΩΑΝΝΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΝΕΡΓΕΙΑΚΟΣ ΤΟΜΕΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ & ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟΤΙΜΗΣΗ ΕΚΠΟΜΠΩΝ ΣΩΜΑΤΙΔΙΑΚΩΝ ΡΥΠΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ξενόγλωσση Τεχνική Ορολογία Ενότητα: Principles of an Internal Combustion Engine Παναγιώτης Τσατσαρός Τμήμα Μηχανολόγων Μηχανικών
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ ΔΙΑΤΡΙΒΗ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΔΗΜΗΤΡΙΟΥ Ν. ΠΙΤΕΡΟΥ
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ
Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ Κνηζακπφπνπινο Υ. Παλαγηψηεο Δπηβιέπσλ: Νηθφιανο Υαηδεαξγπξίνπ Καζεγεηήο Δ.Μ.Π Αζήλα, Μάξηηνο 2010
þÿ ³¹µ¹½ º±¹ ±ÃÆ»µ¹± ÃÄ ÇÎÁ
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2014 þÿ ³¹µ¹½ º±¹ ±ÃÆ»µ¹± ÃÄ ÇÎÁ þÿµá³±ã ±Â Äɽ ½ à º ¼µ ɽ : Georgiou,
Μεταπτυχιακή διατριβή
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Μεταπτυχιακή διατριβή ΣΥΣΧΕΤΙΣΜΟΙ ΠΡΑΓΜΑΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΥΦΙΣΤΑΜΕΝΩΝ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΝΑΛΟΓΑ ΜΕ ΤΗ ΤΟΠΟΘΕΣΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΑΤΡΙΒΗ ΤΟΥ ΕΥΘΥΜΙΟΥ ΘΕΜΕΛΗ ΤΙΤΛΟΣ Ανάλυση
.5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation rate.3
Μέτρηση αντικτύπου του έργου Αποτελέσματα Ερευνών. Deloitte 26 Οκτωβρίου 2016 Λευκωσία
Αποτελέσματα Ερευνών Deloitte 26 Οκτωβρίου 2016 Λευκωσία Γιατί είναι σημαντικό; Αντίκτυπος του έργου στην κοινωνία Βιώσιμη ανάπτυξη Ποιότητα ζωής Θετική αλλαγή στην καταναλωτική συμπεριφορά Μεθοδολογία
Module 5. February 14, h 0min
Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and