SYLLABUS. Algorithm Specification, Performance Analysis and Measurement. Binary Trees, Threaded Binary Trees, Heaps, Binary Search Trees.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "SYLLABUS. Algorithm Specification, Performance Analysis and Measurement. Binary Trees, Threaded Binary Trees, Heaps, Binary Search Trees."

Transcript

1 i SYLLABUS UNIT - I BASIC CONCEPTS AND ARRAYS Algorithm Specification, Performance Analysis and Measurement. Arrays : Abstract Data Types and the C++ Class, The Array as an Abstract Data Type, The Polynomial Abstract Data Type, Sparse Matrices, Representation of Arrays, The String Abstract Data Type. UNIT - II STACKS AND QUEUES Templates in C++, The Stack Abstract Data Type, The Queue Abstract Data Type, Subtyping and Inheritance in C++, A Mazing Problem, Evaluation of Expressions, Additional Exercises. UNIT - III LINKED LISTS Singly Linked Lists and Chains, Representing Chains in C++, The Template Class Chain, Circular Lists, Available Space Lists, Linked Stacks and Queues, Polynomials, Equivalence Classes, Sparse Matrices, Doubly Linked Lists, Generalized Lists. UNIT - IV TREES AND GRAPHS Trees : Introduction, Binary Trees, Binary Tree Traversal and Tree Integrators, Copying Binary Trees, Threaded Binary Trees, Heaps, Binary Search Trees. Graphs : The Graph Abstract Data Type, Elementary Graph Operations (dfs and bfs), Minimum Cost Spanning Trees (Prim s and Kruskal s Algorithms). UNIT - V SORTING, HASHING, EFFICIENT BINARY SEARCH TREES Insertion Sort, Quick Sort, How Fast Can we Sort, Merge Sort, Heap Sort, Sorting on Several Keys, List and Table Sorts, Summary of Internal Sorting, Static Hashing, AVL Trees, Red-Black Trees, Splay Trees, M-way Search Trees, B-Trees.

2 ii data structures using c++ (b.e. o.u) ii year i semester (COMMON TO CSE & IT) CONTENTS Contents UNIT - I [BASIC CONCEPTS AND ARRAYS] INTRODUCTION DATA A STRUCTURES Application of Data Structures Comparison of Data Structures ALGORITHM SPECIFICATION Introduction to Algorithm Definition of Algorithm Notation of Algorithm Properties of Algorithm Psuedo Code for Expressing Algorithms Asymptotic Notation Big-Oh Notation (Ο) Big-Oh Ratio Theorem Basic Efficiency Classes Omega Notation (Ω) Big Omega Ratio Theorem Little-Omega Notation (ω)

3 iii Theta Notation (θ) Theta Ratio Theorem Little-Oh Notation (ο) Order of Growth using Limits (Alternative Definitions for Asymptotic Notations) PERFORMANCE ANALYSIS AND MEASUREMENT Performance Analysis Space Complexity Time Complexity The Unit of Algorithm s Runun-Time The Order of Growth Best Case, Average Case and Worst Case Efficiencies Solved Problems Performance Measurement ARRAYS YS An Introduction to the C++ Class Data Abstraction and Encapsulation in C Data Abstraction Encapsulation Declaring Class Objects and Invoking Member Functions Special Class Operations Constructors and Destructors Constructors Vs Destructors Operator Overloading Rules for Overloading Operators

4 iv Contents 1.7 THE ARRAY AS AN ABSTRACT DATA A TYPE THE POLYNOMIAL ABSTRACT DATA A TYPE Polynomials Representation Polynomial Addition SPARSE MATRICES TRICES Introduction Sparse Matrix Representation Transposing a Matrix Matrix Multiplication REPRESENTATION TION OF ARRAYS YS THE STRING ABSTRACT CT DATA A TYPE String Pattern Matching : A Simple Algorithm String Pattern Matching : The Knuth Morris Pratt Algorithm KMP Failure Function The KMP Algorithm Computing The Failure Function Efficiency of the Search Algorithm UNIT - II [STACKS AND QUEUES] INTRODUCTION TO O STACKS AND QUEUES TEMPLATES TES IN C Function Template Using Templates to Represent Container Classes THE STACK ABSTRACT DATA A TYPE Formula Based Representation

5 v 2.4 THE QUEUE ABSTRACT DATA A TYPE Abstract Datatype of Queue Formula Based Representation of Queue Circular Queue SUBTYPE AND INHERITANCE IN C A MAZING PROBLEM EVAL ALUATION OF EXPRESSIONS Expressions Postfix Notation Infix to Postfix ADDITIONAL EXERCISES UNIT - III [LINKED LISTS] INTRODUCTION LINKED LIST SINGLY Y LINKED LISTS AND CHAINS REPRESENTING CHAINS IN C Defining A Node in C Designing a Chain Class in C Pointer Manipulation in C Chain Manipulation Operations THE TEMPLATE CLASS CHAIN Implementing Chains With Templates Chain Iterator C++ Iterator

6 vi Contents Chain Operations Inserting at the Beginning of the List Inserting at the End of the List Inserting After the Given Element of the List Reversing a List Deleting Entire List Reusing a Class CIRCULAR LISTS AVAILABLE AILABLE SPACE LISTS LINKED STACKS AND QUEUES Stacks Queues POLYNOMIALS YNOMIALS Polynomial Representation Addition of Polynomials Circular List Representation of Polynomials EQUIVALENCE CLASSES SPARSE MATRICES TRICES DOUBLY Y LINKED LISTS GENERALIZED LISTS UNIT - IV [TREES AND GRAPHS] INTRODUCTION Terminology Representation of Trees List Representation Left Child-Right Sibling Representation Representation as a Degree Two Tree

7 vii 4.2 BINARY TREES The Abstract Data Type Differences Between Tree and Binary Tree ree Properties of Binary Trees Binary Tree Representation Array Representation Linked Representation Common Binary Tree Operations BINARY TREE TRAVERSAL AND TREE ITERATORS Introduction Inorder Traversal Preorder Traversal Postorder Traversal raversal Iterative Inorder Traversal Level Order Traversal Traversal Without a Stack Program COPYING BINARY TREES THREADED BINARY TREES Threads Inorder Traversal of a Threaded Binary Tree ree Inserting a Node Into a Threaded Binary Tree ree HEAPS Priority Queues Definition of a Max Heap Insertion Into a Max Heap Deletion From a Max Heap

8 viii Contents 4.7 BINARY SEARCH TREES Definition ADT of Trees Binary Search Tree Implementation Searching a Binary Search Tree ree Insertion Into a Binary Search Tree ree Deletion From a Binary Search Tree Joining and Splitting Binary Trees Height of a Binary Search Tree Implementation of BST THE GRAPH ABSTRACT CT DATA A TYPE Introduction Definitions Abstract Data Type for Graph Graph Terminology Properties of Graphs Graph Representations Adjacency Matrix Adjacency Lists Adjacency Multilists Weighted Edges C++ Graph Classes ELEMENTAR ARY GRAPH OPERATIONS Breadth First Search Depth First Search MINIMUM COST SPANNING TREES Kruskal s Algorithm Prim rim s Algorithm

9 ix UNIT - V [SORTING, HASHING, EFFICIENT BINARY SEARCH TREES] INTRODUCTION INSERTION SORT QUICKSORT HOW FAST CAN WE SORT? MERGE SORT HEAP SORT SORTING ON SEVERAL KEYS LIST AND TABLE SORTS TS SUMMARY OF INTERNAL SORTING INTRODUCTION TO O HASHING STATIC TIC HASHING Hash Tables Hash Functions Division Mid Square Folding Digit Analysis Converting Keys to Integers Secure Hash Functions Overflow Handling Open Addressing Linear Probing Quadratic Probing

10 x Contents Rehashing Random Probing Chaining Theoretical Evaluation of Overflow Techniques AVL TREES AVL Tree Representation Rotations in AVL Trees Operations of AVL Trees Inserting Into an AVL Tree Deleting From an AVL VL Tree ree Drawbacks of AVL VL Trees rees RED BLACK TREES Definition Representation of a Red ed Black Tree ree Advantages and Uses of Red-Black Trees rees Searching a Red ed Black Tree ree Inserting into a Red ed Black Tree ree Deletion From a Red ed Black Tree ree Joining Red ed Black Tree ree Splitting a Red-Black Tree ree SPLAY Y TREES Bottom-Up Spaly Trees Top op-down Splay Trees rees M WAY SEARCH TREES Definition and Properties Searching an m-way Search Tree

11 xi 5.16 B TREES Definition and Properties Number of Elements in a B Tree Insertion Into a B Tree Deletion From a B Tree Node Structure SHORT QUESTIONS AND ANSWERS Short Questions and Answers... SQ.1 - SQ.22 EXPECTED UNIVERSITY QUESTIONS Expected University Questions with Solutions... E.23 - E.34

and algorithms CONTENTS Process for Design and Analysis of Algorithms Understanding the Problem

and algorithms CONTENTS Process for Design and Analysis of Algorithms Understanding the Problem Contents i advanced anced data structures and algorithms FOR m.tech (jntu - hyderabad) i year i semester (COMMON TO CSE, CS,, IT,, WT AND SE) CONTENTS UNIT - I [CH. H. - 1] ] [INTRODUCTION INTRODUCTION]...

Διαβάστε περισσότερα

SYLLABUS CHAPTER - 1 : INTRODUCTION TO ALGORITHMS CHAPTER - 2 : DIVIDE AND CONQUER CHAPTER - 3 : GREEDY METHOD

SYLLABUS CHAPTER - 1 : INTRODUCTION TO ALGORITHMS CHAPTER - 2 : DIVIDE AND CONQUER CHAPTER - 3 : GREEDY METHOD i SYLLABUS UNIT - I CHAPTER - 1 : INTRODUCTION TO ALGORITHMS AND ELEMENTARY DATA A STRUCTURES Order Notation, Analysis of Algorithm, Review of Elementary Data Structures, Heaps and Heap Sort, Hashing,

Διαβάστε περισσότερα

Π.Μ.. ΣΜΖΜΑΣΟ ΠΛΖΡΟΦΟΡΗΚΖ ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ. Υπνινγηζηηθή ζύγθξηζε ησλ αιγνξίζκσλ Heap Sort θαη Weak Heap Sort. Βαζηιεία Φνξκόδε Α.Μ.

Π.Μ.. ΣΜΖΜΑΣΟ ΠΛΖΡΟΦΟΡΗΚΖ ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ. Υπνινγηζηηθή ζύγθξηζε ησλ αιγνξίζκσλ Heap Sort θαη Weak Heap Sort. Βαζηιεία Φνξκόδε Α.Μ. Π.Μ.. ΣΜΖΜΑΣΟ ΠΛΖΡΟΦΟΡΗΚΖ ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ Υπνινγηζηηθή ζύγθξηζε ησλ αιγνξίζκσλ Heap Sort θαη Weak Heap Sort. Βαζηιεία Φνξκόδε Α.Μ. 43/11 Δπηβιέπσλ Καζεγεηήο: ακαξάο Νηθφιανο, Δπ. Καζεγεηήο Σκήκα Δθαξκνζκέλεο

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Depth-First Search

Αλγόριθμοι και πολυπλοκότητα Depth-First Search ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Depth-First Search Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Depth-First Search A B D E C Depth-First Search 1 Outline and Reading

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

IT & Networking DEVELOPING Essential Python 3. Κωδικός Σεμιναρίου / Code

IT & Networking DEVELOPING Essential Python 3. Κωδικός Σεμιναρίου / Code 2352 Essential Python 3 Κωδικός Σεμιναρίου / Code 2352 Essential Python 3 Σκοπός Εκπαιδευτικού Προγράμματος / Objectives Με την ολοκλήρωση του μαθήματος οι συμμετέχοντες θα: Μπορούν να εγκαταστήσουν την

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lab 1: C/C++ Pointers and time.h. Panayiotis Charalambous 1

Lab 1: C/C++ Pointers and time.h. Panayiotis Charalambous 1 Lab 1: C/C++ Pointers and time.h Panayiotis Charalambous 1 Send email to totis@cs.ucy.ac.cy Subject: EPL231-Registration Body: Surname Firstname ID Group A or B? Panayiotis Charalambous 2 Code Guidelines:

Διαβάστε περισσότερα

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...

Διαβάστε περισσότερα

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE) EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class

Διαβάστε περισσότερα

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος Πληροφορικής Εξεταστική Επιτροπή από την Χαρά Παπαγεωργίου

Διαβάστε περισσότερα

Lab 1: C/C++ Pointers and time.h. Panayiotis Charalambous 1

Lab 1: C/C++ Pointers and time.h. Panayiotis Charalambous 1 Lab 1: C/C++ Pointers and time.h Panayiotis Charalambous 1 Send email to totis@cs.ucy.ac.cy Subject: EPL231-Registration Body: Surname Firstname ID Group A or B? Panayiotis Charalambous 2 Code Guidelines:

Διαβάστε περισσότερα

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις επίσημες θέσεις των εξεταστών. i ΠΡΟΛΟΓΟΣ ΕΥΧΑΡΙΣΤΙΕΣ Η παρούσα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΠΝΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΣ ΔΔΟΜΝΩΝ ΚΙ ΛΓΟΡΙΘΜΟΙ ΗΜΡΟΜΗΝΙ: 14/11/2018 ΔΙΓΝΩΣΤΙΚΟ ΠΝΩ Σ ΔΝΔΡΙΚΣ ΔΟΜΣ ΚΙ ΓΡΦΟΥΣ Διάρκεια: 45 λεπτά Ονοματεπώνυμο:. ρ. Ταυτότητας:. ΒΘΜΟΛΟΓΙ ΣΚΗΣΗ ΒΘΜΟΣ

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Δένδρα (Trees) Βασικές Έννοιες. Δυαδικά Δένδρα. Δυαδικά Δένδρα Αναζήτησης. AVL Δένδρα. Δένδρα: Βασικές Έννοιες Ορισμοί Λειτουργίες Υλοποιήσεις ΑΤΔ Δένδρο: μοντέλο ιεραρχικής

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035).

Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035). Βασικές Δοµές Δεδοµένων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Γραµµικές Δοµές Δεδοµένων Πίνακες Λίστες Στοίβες Ουρές Γράφοι Δέντρα Γραµµικές Δοµές Πίνακας (array) A[0] A[1] A[2] A[ ] A[n-1] Προκαθορισµένη

Διαβάστε περισσότερα

Μάθημα 22: Δυαδικά δέντρα (Binary Trees)

Μάθημα 22: Δυαδικά δέντρα (Binary Trees) Trees Page 1 Μάθημα 22: Δυαδικά δέντρα (Binary Trees) Ένα δένδρο είναι δυαδικό αν όλοι οι κόμβοι του έχουν βαθμό (degree)

Διαβάστε περισσότερα

Distances in Sierpiński Triangle Graphs

Distances in Sierpiński Triangle Graphs Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 5

Δομές Δεδομένων Ενότητα 5 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Δυαδικά Δένδρα Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι - Δυαδικά Δένδρα (binary trees) - Δυαδικά Δένδρα Αναζήτησης (binary search trees) 1 Δυαδικά Δένδρα Ορισμοί Λειτουργίες Υλοποιήσεις ΑΤΔ Εφαρμογές 2 Ορισμοί (αναδρομικός ορισμός) Ένα δένδρο t είναι ένα πεπερασμένο

Διαβάστε περισσότερα

Γλώσσες προγραµµατισµού. Ανάπτυξη Συστηµάτων Λογισµικού

Γλώσσες προγραµµατισµού. Ανάπτυξη Συστηµάτων Λογισµικού ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ http://courses.softlab.ntua.gr/softeng/ ιδάσκοντες: (nickie@softlab.ntua.gr) Βασίλης Βεσκούκης (bxb@softlab.ntua.gr) Γλώσσες Προγραµµατισµού και Ανάπτυξη Συστηµάτων Λογισµικού ΤΛ

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Προγραμματισμός. Linked Lists

Προγραμματισμός. Linked Lists Linked Lists Διαφορές από πίνακες Εύκολη αυξομείωση στοιχείων Επακριβής χρήση μνήμης Δύσκολο random access Περισσότερες απαιτήσεις μνήμης Abstraction Πίνακες: + και - + Γρήγορη προσπέλαση. -- Πολύπλοκη

Διαβάστε περισσότερα

JDSL Java Data Structures Library

JDSL Java Data Structures Library ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ JDSL Java Data Structures Library Δομές Δεδομένων Μπαλτάς Αλέξανδρος 24 Μαρτίου 2015 ampaltas@ceid.upatras.gr Εισαγωγή Η JDSL είναι μια βιβλιοθήκη ομών εδομένων σε

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο την απόκτηση του διπλώματος «Οργάνωση και Διοίκηση Βιομηχανικών Συστημάτων με εξειδίκευση στα Συστήματα Εφοδιασμού

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Υλοποίηση Δυαδικού Σωρού σε γλώσσα Java. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Υλοποίηση Δυαδικού Σωρού σε γλώσσα Java. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Υλοποίηση Δυαδικού Σωρού σε γλώσσα Java Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σωρός Μεγίστου ως ΑΤΔ Ένας σωρός μεγίστου (max heap) είναι ένας ΑΤΔ που

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Εισαγωγή σε δενδρικές δομές δεδομένων, -

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search)

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search) Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 2: Αναζήτηση (Search) Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων

Διαβάστε περισσότερα

Formula for Success a Mathematics Resource

Formula for Success a Mathematics Resource A C A D E M I C S K I L L S C E N T R E ( A S C ) Formula for Success a Mathematics Resource P e t e r b o r o u g h O s h a w a Contents Section 1: Formulas and Quick Reference Guide 1. Formulas From

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών. Δημήτρης Πλεξουσάκης. Physical DB Design

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών. Δημήτρης Πλεξουσάκης. Physical DB Design Data Structures for Primary Indices Structures that determine the location of the records of a file A primary index is based on a key; the location of a record is determined by its key value. Most common

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

Προγραμματισμός. Linked Lists

Προγραμματισμός. Linked Lists Linked Lists Διαφορές από πίνακες Εύκολη αυξομείωση στοιχείων Επακριβής χρήση μνήμης Δύσκολο random access Περισσότερες απαιτήσεις μνήμης Abstraction Πίνακες: + και - + Γρήγορη προσπέλαση. -- Πολύπλοκη

Διαβάστε περισσότερα

Χρήση συστημάτων πληροφορικής στην οδική υποδομή

Χρήση συστημάτων πληροφορικής στην οδική υποδομή ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Χρήση συστημάτων πληροφορικής στην οδική υποδομή Χωρική Μοντελοποίηση Βύρωνας Νάκος Καθηγήτης ΕΜΠ bnakos@central.ntua.gr Άδεια χρήσης

Διαβάστε περισσότερα

Προγραµµατισµός. Linked Lists

Προγραµµατισµός. Linked Lists Linked Lists ιαφορές από πίνακες Εύκολη αυξοµείωση στοιχείων Επακριβής χρήση µνήµης ύσκολο random access Περισσότερες απαιτήσεις µνήµης Abstraction Πίνακες: + και - + Γρήγορη προσπέλαση. -- Πολύπλοκη η

Διαβάστε περισσότερα

Cuckoo Hashing. Αλγόριθμοι και Πολυπλοκότητα. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Cuckoo Hashing. Αλγόριθμοι και Πολυπλοκότητα. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Cuckoo Hashing Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο β Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη συλλογή αντικειμένων που αναγνωρίζονται με «κλειδί» (π.χ.

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Graphs

Αλγόριθμοι και πολυπλοκότητα Graphs ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Graphs Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Graphs ORD 843 SFO 802 743 337 233 LAX DFW Graphs Outline and Reading Graphs ( 6.)

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Quantifying the Financial Benefits of Chemical Inventory Management Using CISPro

Quantifying the Financial Benefits of Chemical Inventory Management Using CISPro of Chemical Inventory Management Using CISPro by Darryl Braaksma Sr. Business and Financial Consultant, ChemSW, Inc. of Chemical Inventory Management Using CISPro Table of Contents Introduction 3 About

Διαβάστε περισσότερα

Standard Template Library (STL) C++ library

Standard Template Library (STL) C++ library Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Standard Template Library (STL) C++ library Δομές Δεδομένων Μάριος Κενδέα kendea@ceid.upatras.gr Εισαγωγή Η Standard Βιβλιοθήκη προτύπων

Διαβάστε περισσότερα

Week 7: Java Collection Classes

Week 7: Java Collection Classes Week 7: Java Collection Classes Υλοποιήσεις Εβδοµάδα 7: Κλάσεις συλλογών δεδοµένων στην Java Τύποι συλλογών δεδοµένων Τεχνικές υλοποίησης linked Σχεδίαση-Ανάπτυξη Εφαρµογών Πληροφορικής Αντώνιος Συµβώνης,

Διαβάστε περισσότερα

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων

Διαβάστε περισσότερα

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 016 - I. ΜΗΛΗΣ AΛΓΟΡΙΘΜΟΙ ΓΡΑΦΩΝ ΙΙΙ Minimum Spanning Trees ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 016 - Ι. ΜΗΛΗΣ 14 - GRAPHS III - MSTs 1 Trees Ένας γράφος T = (V,

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors (Large Can Type)

Aluminum Electrolytic Capacitors (Large Can Type) Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction

Διαβάστε περισσότερα

ΓΛΩΣΣΑΡΙ Ακολουθία Fibonacci Άκυκλο γράφημα Αλγόριθμος Αλγόριθμος Dijkstra Αλγόριθμος Kruskal Αλγόριθμος Prim Αλγόριθμος Strassen Αλγόριθμος

ΓΛΩΣΣΑΡΙ Ακολουθία Fibonacci Άκυκλο γράφημα Αλγόριθμος Αλγόριθμος Dijkstra Αλγόριθμος Kruskal Αλγόριθμος Prim Αλγόριθμος Strassen Αλγόριθμος ΓΛΩΣΣΑΡΙ Ακολουθία Fibonacci (Fibonacci sequence): Μία ακολουθία από ακεραίους αριθμούς όπου ο κάθε ακέραιος είναι το άθροισμα των δύο προηγούμενων. Οι δύο πρώτοι όροι της ακολουθίας είναι το 0 και το

Διαβάστε περισσότερα

Στοίβες - Ουρές. Στοίβα (stack) Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής

Στοίβες - Ουρές. Στοίβα (stack) Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής Στοίβες - Ουρές Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής οµές εδοµένων 1 Στοίβα (stack) οµή τύπουlifo: Last In - First Out (τελευταία εισαγωγή πρώτη εξαγωγή) Περιορισµένος

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ

Διαβάστε περισσότερα

Δομές Δεδομένων Standard Template Library (STL) 23/3/2017 ΜΠΟΜΠΟΤΑΣ ΑΓΟΡΑΚΗΣ

Δομές Δεδομένων Standard Template Library (STL) 23/3/2017 ΜΠΟΜΠΟΤΑΣ ΑΓΟΡΑΚΗΣ Δομές Δεδομένων Standard Template Library (STL) 23/3/2017 ΜΠΟΜΠΟΤΑΣ ΑΓΟΡΑΚΗΣ mpompotas@ceid.upatras.gr Εισαγωγή - STL Η Standard Βιβλιοθήκη προτύπων (STL) είναι μια βιβλιοθήκη λογισμικού για την C++ Δημιουργήθηκε

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου

Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim Αικατερίνη Κούκιου Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΟΝΤΟΚΕΝΤΡΙΚΟΣ ΠΡΟΓΡ/ΣΜΟΣ C++

ΟΝΤΟΚΕΝΤΡΙΚΟΣ ΠΡΟΓΡ/ΣΜΟΣ C++ Πέρασμα μεταβλητών, Templates, Συσχετίσεις μεταξύ κλάσεων ΟΝΤΟΚΕΝΤΡΙΚΟΣ ΠΡΟΓΡ/ΣΜΟΣ C++ Μ. Ρήγκου (rigou@ceid.upatras.gr) Τι θα συζητήσουμε σήμερα Πέρασμα με τιμή και με αναφορά Template functions και classes

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Bayesian modeling of inseparable space-time variation in disease risk

Bayesian modeling of inseparable space-time variation in disease risk Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ηµιουργία και χειρισµός LIFO λιστών µεταβλητού µήκους µε στοιχεία ακεραίους αριθµούς. Γενίκευση για χειρισµό λιστών πραγµατικών

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47

Διαβάστε περισσότερα

Biodiesel quality and EN 14214:2012

Biodiesel quality and EN 14214:2012 3η Ενότητα: «Αγορά Βιοκαυσίμων στην Ελλάδα: Τάσεις και Προοπτικές» Biodiesel quality and EN 14214:2012 Dr. Hendrik Stein Pilot Plant Manager, ASG Analytik Content Introduction Development of the Biodiesel

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Fundamentals of Signals, Systems and Filtering

Fundamentals of Signals, Systems and Filtering Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #11

ιαφάνειες παρουσίασης #11 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes SUPPORTING INFORMATION Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes Eric J. Uzelac, Casey B. McCausland, and Seth C. Rasmussen*

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΛΓΟΡΙΘΜΟΙ Δ Ι ΑΛΕΞΗ / 02/2016 ΔΙΔΑΣΚΩΝ ΚΩΣΤΑΣ ΚΟΛΟΜΒΑΤΣΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΛΓΟΡΙΘΜΟΙ Δ Ι ΑΛΕΞΗ / 02/2016 ΔΙΔΑΣΚΩΝ ΚΩΣΤΑΣ ΚΟΛΟΜΒΑΤΣΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΛΓΟΡΙΘΜΟΙ Δ Ι ΑΛΕΞΗ 1 2 3 / 02/2016 ΔΙΔΑΣΚΩΝ ΚΩΣΤΑΣ ΚΟΛΟΜΒΑΤΣΟΣ ΔΙΑΔΙΚΑΣΤΙΚΑ Διαδικαστικά του Μαθήματος (1/2) Διδασκαλία

Διαβάστε περισσότερα

Contents Introduction to Filter Concepts All-Pole Approximations

Contents Introduction to Filter Concepts All-Pole Approximations Contents 1 Introduction to Filter Concepts... 1 1.1 Gain and Attenuation Functions..... 1 1.2 Ideal Transmission... 4 1.2.1 Ideal Filters... 5 1.3 Real Electronic Filters... 6 1.3.1 Realizable Lowpass

Διαβάστε περισσότερα

Fundamentals of Probability: A First Course. Anirban DasGupta

Fundamentals of Probability: A First Course. Anirban DasGupta Fundamentals of Probability: A First Course Anirban DasGupta Contents 1 Introducing Probability 5 1.1 ExperimentsandSampleSpaces... 6 1.2 Set Theory Notation and Axioms of Probability........... 7 1.3

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΙΟΙΚΗΣΗ ΤΗΣ ΥΓΕΙΑΣ ΤΕΙ ΠΕΙΡΑΙΑ ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ

Διαβάστε περισσότερα

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 M7 Δομές δεδομένων: Πίνακες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ

Διαβάστε περισσότερα

AVL-trees C++ implementation

AVL-trees C++ implementation Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ AVL-trees C++ implementation Δομές Δεδομένων Μάριος Κενδέα 31 Μαρτίου 2015 kendea@ceid.upatras.gr Εισαγωγή (1/3) Δυαδικά Δένδρα Αναζήτησης:

Διαβάστε περισσότερα

Προγραμματισμός. Linked Lists

Προγραμματισμός. Linked Lists Linked Lists Διαφορές από πίνακες Εύκολη αυξομείωση στοιχείων Επακριβής χρήση μνήμης Δύσκολο random access Περισσότερες απαιτήσεις μνήμης Abstraction Πίνακες: + και - + Γρήγορη προσπέλαση. -- Πολύπλοκη

Διαβάστε περισσότερα

Wavelet based matrix compression for boundary integral equations on complex geometries

Wavelet based matrix compression for boundary integral equations on complex geometries 1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ

Διαβάστε περισσότερα