ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω"

Transcript

1 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω ω ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω ω ω ω 2 3 ω 3 ω ω 3 + ω ω 3 + ω 2 ω 3 2 ω 4 ω ω ω ω + 1 ω ω + 2 ω ω + 3 ω ω + ω ω ω + ω + 1 ω ω + ω2 ω ω + ω 2 ω ω + ω 2 + ω ω ω + ω 2 2 ω ω 2 ω ω ω ω ω ω 2 + ω ω ω 2 + ω 2 ω ω 3 ω ω ω ω 4 ω ω+1 ω ω ω ω+1 + ω ω ω+1 + ω ω ω ω+1 + ω ω 2 ω ω+1 2 1

2 ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω ω+1 2 ω ω2 + ω ω+2 ω ω2 2 ω ω2+1 ω ω3 ω ω2 ω ω2 + 1 ω ω2 + 2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω2 ω ω2 2 ω ω ω ω2 3 ω ω2 +1 ω ω ω ω2 +ω ω ω2 2 ω ω3 ω ω3 + 1 ω ω3 2 ω ω4 ω ωω ω ωω + 1 ω ωω + 2 ω ωω + ω ω ωω + ω ω ω ωω 2 ω ωω ω ωω 3 ω ωω +1 ω ωω +1 2 ω ωω +ω ω ωω 2 ω ωω 3 ω ωω+1 2

3 ω ωω ω ωω+1 2 ω ωω+2 ω ωω2 ω ωω2 + 1 ω ωω2 2 ω ωω2 +1 ω ωω ω ωω2 +ω ω ωω2 2 ω ωω2+1 ω ωω3 ω ωω2 ω ωω2 +1 ω ωωω ω ωωω + 1 ω ωωω 2 ω ωωω +1 ω ωωω +ω ω ωωω 2 ω ωωω +1 ω ωωω +ω ω ωωω 2 ω ωωω+1 ω ωωω2 ω ωωω2 ω ωωωω = φ 1 (0) = ψ(0) ω + ω ω2 + ω3 + ω 2 + ω ω ω + ω ωω + ω ωωω ω 2 + ω ω 3 ω = ω +1 (ω + 1) = ω +1 + ω2 = ω +1 2 ω ω = ω +ω 3

4 2 = ω ω ω ω = ω = ω 3 ω = ω ω +1 ω + ω 2 ω ω = ω ω ω+1 = ω ω +1 + ω+1 + ω ω+1 2 ω+1 ω = ω ω ω+2 = ω ω ω2 = ω ω +1 2 ω 2 = ω ω +2 ω ω = ω ω +ω ω ω +1 = ω ω +ω + ω ω2 = ω ω +ω 2 ω ω+1 = ω ω +ω+1 ω ω2 = ω ω +ω2 ω ω2 = ω ω +ω2 ω ωω = ω ω +ωω = ω ω 2 2 = ω ω 3 ω = ω ω ω +1 = ω ωω 2 ω = ω ω ωω +1 = ω ω ωω 2 ε 1 = φ 1 (1) = ψ(1) 4

5 ε ε ε 1 + ω ε 1 + ε ε 1 + ω ε ε 1 2 ε ε 1 ω = ω ε 1+1 ε 1 = ω ε 1+ ε 1 2 = ω ε 12 ε 1 ω = ω ωε 1 +1 ε 1 ω ω = ω ωε 1 +ω ε 1 = ω ωε 1 + ε 1 ω = ω ω ε 1 +ω +1 ε 1 = ω ωε 1 +ω 2 ε 1 ε 1 = ω ωε 1 2 ε 1 ε 1 ω = ω ω ωε 1 +1 ε 1 ε 1 = ω ωωε 1 + ε 1 ε 1 ε 1 = ω ωωε 1 2 ε 2 = φ 1 (2) = ψ(2) ε ε 3 = φ 1 (3) = ψ(3) ε ω = φ 1 (ω) = ψ(ω) ε ω + 1 ε ω + ω ε ω + ε ω + ε 1 5

6 ε ω2 ε ω 2 ε ω = φ 1 (ω) φ 1(0) ε ω ε 1 = φ 1 (ω) φ 1(1) ε ω ε ω = φ 1 (ω) φ 1(ω) ε ω ε ω εω = φ 1 (ω) φ 1(ω) φ 1 (ω) ε ω+1 = φ 1 (ω + 1) = ψ(ω + 1) ε ω2 = φ 1 (ω2) = ψ(ω2) ε ω 2 = φ 1 (ω 2 ) = ψ(ω 2 ) ε ω ω = φ 1 (ω ω ) = ψ(ω ω ) ε ε0 = φ 1 (φ 1 (0)) = ψ(ψ(0)) ε ε0 2 = φ 1 (φ 1 (0) 2) = ψ(ψ(0) 2) ε ε0 = φ 1 (φ 1 (0) φ 1(0) ) = ψ(ψ(0) ψ(0) ) ε ε1 = φ 1 (φ 1 (1)) = ψ(ψ(1)) ε εε0 = φ 1 (φ 1 (φ 1 (0))) = ψ(ψ(ψ(0))) φ 2 (0) = ψ(ω) φ 2 (0) + 1 = ψ(ω) + 1 φ 2 (0) + 2 = ψ(ω) + 2 φ 2 (0) + ω = ψ(ω) + ω φ 2 (0) 2 = ψ(ω) 2 φ 2 (0) ω = ψ(ω) ω φ 2 (0) ω = ψ(ω) ω φ 2 (0) φ 2(0) = ψ(ω) ψ(ω) φ 1 (φ 2 (0) + 1) = ψ(ω + 1) φ 1 (φ 2 (0) + 2) = ψ(ω + 2) φ 1 (φ 2 (0) + ω) = ψ(ω + ω) φ 1 (φ 2 (0) 2) = ψ(ω + ψ(ω)) φ 1 (φ 1 (φ 2 (0) + 1)) = ψ(ω + ψ(ω + 1)) φ 2 (1) = ψ(ω2) 6

7 φ 2 (1) + 1 = ψ(ω2) + 1 φ 2 (1) 2 = ψ(ω2) 2 φ 2 (1) φ 2(1) = ψ(ω2) ψ(ω2) φ 1 (φ 2 (1) + 1) = ψ(ω2 + 1) φ 1 (φ 1 (φ 2 (1) + 1)) = ψ(ω2 + ψ(ω2 + 1)) φ 2 (2) = ψ(ω3) φ 2 (ω) = ψ(ωω) φ 2 ( ) = φ 2 (φ 1 (0)) = ψ(ωψ(0)) φ 2 (ε 1 ) = φ 2 (φ 1 (1)) = ψ(ωψ(1)) φ 2 (φ 1 (φ 1 (0))) = ψ(ωψ(ψ(0))) φ 2 (φ 2 (0)) = ψ(ωψ(ω)) φ 1 (φ 2 (φ 2 (0)) + 1) = ψ(ωψ(ω) + 1) φ 2 (φ 1 (φ 2 (0) + 1)) = ψ(ωψ(ω + 1)) φ 2 (φ 2 (1)) = ψ(ωψ(ω2)) φ 2 (φ 2 (φ 2 (0))) = ψ(ωψ(ωψ(ω))) φ 3 (0) = ψ(ω 2 ) φ 3 (0) + 1 = ψ(ω 2 ) + 1 φ 3 (0) 2 = ψ(ω 2 ) 2 φ 3 (0) φ 3(0) = ψ(ω 2 ) ψ(ω2 ) φ 1 (φ 3 (0) + 1) = ψ(ω 2 + 1) φ 1 (φ 1 (φ 3 (0) + 1)) = ψ(ω 2 + ψ(ω 2 + 1)) φ 2 (φ 3 (0) + 1) = ψ(ω 2 + Ω) φ 1 (φ 2 (φ 3 (0) + 1) + 1) = ψ(ω 2 + Ω + 1) 7

8 φ 2 (φ 2 (φ 3 (0) + 1)) = ψ(ω 2 + Ωψ(Ω 2 )) φ 3 (1) = ψ(ω 2 2) φ 3 (φ 3 (0)) = ψ(ω 2 ψ(ω 2 )) φ 4 (0) = ψ(ω 3 ) φ ω(0) = ψ(ω ω ) φ ω(0) + 1 = ψ(ω ω ) + 1 φ 1 (φ ω(0) + 1) = ψ(ω ω + 1) φ 2 (φ ω(0) + 1) = ψ(ω ω + Ω) φ 3 (φ ω(0) + 1) = ψ(ω ω + Ω 2 ) φ ω(1) = ψ(ω ω 2) φ ω(ω) = ψ(ω ω ω) φ ω(φ ω(0)) = ψ(ω ω ψ(ω ω )) φ ω+1 (0) = ψ(ω ω+1 ) φ ω2 (0) = ψ(ω ω2 ) φ ω(φ ω2 (0) + 1) = ψ(ω ω2 + Ω ω ) φ ω+1 (φ ω2 (0) + 1) = ψ(ω ω2 + Ω ω+1 ) φ ω2 (1) = ψ(ω ω2 2) φ ω ω (0) = ψ(ω ωω ) φ ε0 (0) = φ φ1 (0)(0) = ψ(ω ψ(0) ) φ ε0 (1) = φ φ1 (0)(1) = ψ(ω ψ(0) 2) φ ε0 ( ) = φ φ1 (0)(φ 1 (0)) = ψ(ω ψ(0) ψ(0)) φ φ1 (0)(φ φ1 (0)(0)) = ψ(ω ψ(0) ψ(ω ψ(0) )) φ ε0 +1(0) = φ φ1 (0)+1(0) = ψ(ω ψ(0)+1 ) φ ε1 (0) = φ φ1 (1)(0) = ψ(ω ψ(1) ) φ εε0 (0) = φ φ1 (φ 1 (0))(0) = ψ(ω ψ(ψ(0)) ) φ φ2 (0)(0) = ψ(ω ψ(ω) ) φ φφ1 (0) (0) (0) = ψ(ω ψ(ωψ(0)) ) Γ 0 = φ(1, 0, 0) = ψ(ω Ω ) 8

9 Γ Γ Γ 0 + ω Γ 0 2 Γ 0 2 Γ 0 ω Γ 0 Γ 0 ε Γ0 +1 = φ(1, φ(1, 0, 0) + 1) = ψ(ω Ω + 1) φ(φ 1 (0), φ(1, 0, 0) + 1) = ψ(ω Ω + Ω ψ(0) ) φ(φ φ1 (0)(0), φ(1, 0, 0) + 1) = ψ(ω Ω + Ω ψ(ωψ(0)) ) φ(φ(1, 0, 0), 1) = ψ(ω Ω + Ω ψ(ωω) ) φ(1, φ(φ(1, 0, 0), 1) + 1) = ψ(ω Ω + Ω ψ(ωω) + 1) φ(φ 1 (0), φ(φ(1, 0, 0), 1) + 1) = ψ(ω Ω + Ω ψ(ωω) + Ω ψ(0) ) φ(φ φ1 (0)(0), φ(φ(1, 0, 0), 1) + 1) = ψ(ω Ω + Ω ψ(ωω) + Ω ψ(ωψ(0)) ) φ(φ(1, 0, 0), 2) = ψ(ω Ω + Ω ψ(ωω) 2) φ(φ(1, 0, 0), φ 1 (0)) = ψ(ω Ω + Ω ψ(ωω) ψ(0)) φ(φ(1, 0, 0), φ(1, 0, 0)) = ψ(ω Ω + Ω ψ(ωω) ψ(ω Ω )) φ(φ(1, 0, 0), φ(φ(1, 0, 0), φ(1, 0, 0))) = ψ(ω Ω + Ω ψ(ωω) ψ(ω Ω + Ω ψ(ωω) ψ(ω Ω ))) φ(φ(1, 0, 0) + 1, 0) = ψ(ω Ω + Ω ψ(ωω )+1 ) 9

10 φ(φ(φ(1, 0, 0), 1), 0) = ψ(ω Ω + Ω ψ(ωω +Ω ψ(ωω ) ) ) Γ 1 = φ(1, 0, 1) = ψ(ω Ω 2) Γ Γ 2 = φ(1, 0, 2) = ψ(ω Ω 3) Γ ω = φ(1, 0, ω) = ψ(ω Ω ω) Γ Γ0 = φ(1, 0, φ(1, 0, 0)) = ψ(ω Ω ψ(ω Ω )) Γ ΓΓ0 = φ(1, 0, φ(1, 0, φ(1, 0, 0))) = ψ(ω Ω ψ(ω Ω ψ(ω Ω ))) φ(1, 1, 0) = ψ(ω Ω+1 ) φ(1, 1, 0) + 1 φ(1, 0, φ(1, 1, 0) + 1) = ψ(ω Ω+1 + Ω Ω ) φ(1, 1, 1) = ψ(ω Ω+1 2) φ(1, 2, 0) = ψ(ω Ω+2 ) φ(1, ω, 0) = ψ(ω Ω+ω ) φ(1, φ(1, 0, 0), 0) = ψ(ω Ω+ψ(ΩΩ) ) φ(2, 0, 0) = ψ(ω Ω2 ) φ(2, 0, 0) + 1 φ(2, 0, 1) = ψ(ω Ω2 2) φ(2, 1, 0) = ψ(ω Ω2+1 ) φ(3, 0, 0) = ψ(ω Ω3 ) φ(ω, 0, 0) = ψ(ω Ωω ) φ(ω, 0, 0) + 1 φ(ω, 0, 0) 2 φ(ω, 0, 0) φ(ω,0,0) φ(1, φ(ω, 0, 0) + 1) = ψ(ω Ωω + 1) φ(2, φ(ω, 0, 0) + 1) = ψ(ω Ωω + Ω) φ(φ 1 (0), φ(ω, 0, 0) + 1) = ψ(ω Ωω + Ω ψ(0) ) φ(φ(1, 0, 0), φ(ω, 0, 0) + 1) = ψ(ω Ωω + Ω ψ(ωω) ) 10

11 φ(1, 0, φ(ω, 0, 0) + 1) = ψ(ω Ωω + Ω Ω ) φ(2, 0, φ(ω, 0, 0) + 1) = ψ(ω Ωω + Ω Ω2 ) φ(ω, 0, 1) = ψ(ω Ωω 2) φ(ω, 0, φ(ω, 0, 0)) = ψ(ω Ωω ψ(ω Ωω )) φ(ω, 1, 0) = ψ(ω Ωω+1 ) φ(ω, φ(ω, 0, 0), 0) = ψ(ω Ωω+ψ(ΩΩω) ) φ(ω + 1, 0, 0) = ψ(ω Ω(ω+1) ) φ(ω2, 0, 0) = ψ(ω Ωω2 ) φ(ω ω, 0, 0) = ψ(ω Ωωω ) φ(φ 1 (0), 0, 0) = ψ(ω Ωψ(0) ) φ(φ 1 (0), 0, 0) 2 φ(φ 1 (0), 0, 0) φ(φ 1(0),0,0) φ(1, φ(φ 1 (0), 0, 0) + 1) = ψ(ω Ωψ(0) + 1) φ(ω, φ(φ 1 (0), 0, 0) + 1) = ψ(ω Ωψ(0) + Ω ω ) φ(φ 1 (0), 0, 1) = ψ(ω Ωψ(0) 2) φ(φ 1 (0), 0, φ 1 (0)) = ψ(ω Ωψ(0) ψ(0)) φ(φ 1 (0), 0, φ(φ 1 (0), 0, 0)) = ψ(ω Ωψ(0) ψ(ω Ωψ(0) )) φ(φ 1 (0), 1, 0) = ψ(ω Ωψ(0)+1 ) φ(φ 1 (0), φ 1 (0), 0) = ψ(ω Ωψ(0)+ψ(0) ) φ(φ 1 (0), φ(φ 1 (0), 0, 0), 0) = ψ(ω Ωψ(0)+ψ(ΩΩψ(0)) ) φ(φ 1 (0) + 1, 0, 0) = ψ(ω Ω(ψ(0)+1) ) φ(φ 1 (1), 0, 0) = ψ(ω Ωψ(1) ) 11

12 φ(φ 1 (φ 1 (0)), 0, 0) = ψ(ω Ωψ(ψ(0)) ) φ(φ 2 (0), 0, 0) = ψ(ω Ωψ(Ω) ) φ(φ φ1 (0)(0), 0, 0) = ψ(ω Ωψ(Ωψ(0)) ) φ(φ(1, 0, 0), 0, 0) = ψ(ω Ωψ(ΩΩ) ) φ(φ(φ 1 (0), 0, 0), 0, 0) = ψ(ω Ωψ(ΩΩψ(0)) ) φ(1, 0, 0, 0) = ψ(ω Ω2 ) φ(1, 0, 0, 0) + 1 φ(1, 0, 0, 0) + 2 φ(1, 0, 0, 0) + ω φ(1, 0, 0, 0)2 φ(1, 0, φ(1, 0, 0, 0) + 1) = ψ(ω Ω2 + Ω Ω ) φ(1, 0, 0, 1) = ψ(ω Ω2 2) φ(1, 0, 0, 1) + 1 φ(1, 0, 0, 2) = ψ(ω Ω2 3) φ(1, 0, 0, ω) = ψ(ω Ω2 ω) φ(1, 0, 1, 0) = ψ(ω Ω2 +1 ) φ(1, 0, 1, 0) + 1 φ(1, 0, 1, 1) = ψ(ω Ω2 +1 2) φ(1, 0, 2, 0) = ψ(ω Ω2 +2 ) φ(1, 0, ω, 0) = ψ(ω Ω2 +ω ) φ(1, 1, 0, 0) = ψ(ω Ω2 +Ω ) φ(1, 1, 0, 0) + 1 φ(1, 1, 0, 1) = ψ(ω Ω2 +Ω 2) φ(1, 1, 1, 0) = ψ(ω Ω2 +Ω+1 ) φ(1, 2, 0, 0) = ψ(ω Ω2 +Ω2 ) φ(1, ω, 0, 0) = ψ(ω Ω2 +Ωω ) φ(2, 0, 0, 0) = ψ(ω Ω22 ) φ(2, 0, 0, 0) + 1 φ(2, 0, 0, 1) = ψ(ω Ω22 2) φ(2, 0, 1, 0) = ψ(ω Ω2 2+1 ) φ(2, 1, 0, 0) = ψ(ω Ω2 2+Ω ) 12

13 φ(3, 0, 0, 0) = ψ(ω Ω23 ) φ(ω, 0, 0, 0) = ψ(ω Ω2ω ) φ(1, 0, 0, 0, 0) = ψ(ω Ω3 ) φ(1, 0, 0, 0, 0) + 1 φ(1, 0, 0, 0, 1) = ψ(ω Ω3 2) φ(1, 0, 0, 1, 0) = ψ(ω Ω3 +1 ) φ(1, 0, 1, 0, 0) = ψ(ω Ω3 +Ω ) φ(1, 1, 0, 0, 0) = ψ(ω Ω3 +Ω 2 ) φ(2, 0, 0, 0, 0) = ψ(ω Ω32 ) φ(1, 0, 0, 0, 0, 0) = ψ(ω Ω4 ) Conventions and notations: The order on finite rooted trees is recursively defined as follows: a tree A is less than a tree B, written A B, iff: either there is some child (=immediate subtree) B of B such that A B, or the following two conditions hold: every child A of A satisfies A B, and the list of children of A is lexicographically less than the list of children of B for the order (with the leftmost children having the most weight, i.e., either B has more children than A, or if A and B are the leftmost children on which they differ then A B ). This is a well-order. ω is the smallest infinite ordinal. Ordinal addition, multiplication and exponentiation are defined as usual: (i) α + 0 = α (ii) α + 1 is the successor of α. (iii) α + (β + 1) = (α + β) + 1 (iv) If δ is limit then α + δ is the limit of the α + β for β < δ. (v) α 0 = 0 (vi) α(β + 1) = αβ + α (vii) α 0 = 1 (viii) α β+1 = α β α φ 1 (α) = ε α is the α-th fixed point of ξ ω ξ (with the smallest: it is the limit of ω, ω ω, ω ωω, etc.). The Veblen hierarchy: For any β > 1, let φ β (α) be the α-th common fixed point of φ γ for all 0 < γ < β (with φ β (0) the smallest). Note: (i) φ β (α) is continuous in α for all β but it is not continuous in β except for α = 0. (ii) φ β+1 (0) is the limit of φ β (0), φ β (φ β (0)), φ β (φ β (φ β (0))), etc. (iii) φ β+1 (α + 1) is the limit of φ β+1 (α) + 1, φ β (φ β+1 (α) + 1), φ β (φ β (φ β+1 (α) + 1)), etc. (iv) If δ is limit (and β is arbitrary) then φ β (δ) is the limit of the φ β (ξ) for ξ < δ. (v) If δ is limit then φ δ (0) is the limit of the φ γ (0) for γ < δ. (vi) If δ is limit then φ δ (α + 1) is the limit of the φ γ (φ δ (α) + 1) for γ < δ. 13

14 φ(1, 0, α) = Γ α is the α-th fixed point of ξ φ ξ (0) (with Γ 0 the smallest: it is the limit of φ 1 (0), φ φ1(0)(0) φ φφ1 (0)(0)(0), etc.; this is known as the Feferman-Schütte ordinal). More generally, let φ(β, α) = φ β (α) (we only use the notation with a subscript for values less than Γ 0 ) and define φ of finitely many variables by: φ(β n, β n 1,..., β r, 0, 0,..., 0, α) is the α-th fixed point of all the ξ φ(γ n, γ n 1,..., γ r, ξ, 0, 0,..., 0) for (γ n,..., γ r ) lexicographically less than (β n,..., β r ) (the leftmost variable having the most weight), with the convention that φ(0, β n 1,..., β 0 ) = φ(β n 1,..., β 0 ). Ω is the first uncountable ordinal. A collapsing function: ψ(α) is defined inductively as the smallest ordinal not expressible from 0, 1, ω and Ω using addition, multiplication, exponentiation, and application of the function ψ itself to ordinals less than α. Or, more rigorously: Assume ψ has been defined for all ordinals β < α. Let C(α) be the set of ordinals constructed starting from 0, 1, ω and Ω by recursively applying the following functions: ordinal addition, multiplication and exponentiation and the function ψ α, i.e., the restriction of ψ to ordinals β < α. Formally, we define C(α) 0 = {0, 1, ω, Ω} and inductively C(α) n+1 = C(α) n {β 1 + β 2, β 1 β 2, β 1 β 2 : β 1, β 2 C(α) n } {ψ(β) : β C(α) n β < α} for all natural numbers n, and we let C(α) be the union of the C(α) n for all n. Define ψ(α) as the smallest ordinal not in C(α). It turns out that: (i) ψ is continuous and non-decreasing. (ii) The range of ψ is precisely the set of ε-numbers (i.e., fixed points of ξ ω ξ ) up to the Bachmann-Howard ordinal. (iii) C(α) consists exactly of those ordinals whose iterated base Ω representation only has pieces less than ψ(α); in particular, C(α) Ω = α. (iv) ψ(α + 1) is always equal either to the first ε-number after ψ(α) this happens when α C(α) or else to ψ(α) which happens when α C(α). (v) If δ is limit then ψ(δ) is the limit of the ψ(ξ) for ξ < δ. (vi) ψ(α + Ω) is the first fixed point of ξ ψ(α + ξ). (vii) ψ(αω) is the first fixed point of ξ ψ(αξ). (viii) ψ(α Ω ) is the first fixed point of ξ ψ(α ξ ). (ix) ψ(α βω ) is the first fixed point of ξ ψ(α βξ ). Certain ordinals have special names: ψ(ω Ω ) = φ(1, 0, 0) = Γ 0 is the Feferman-Schütte ordinal : it is the set of ordinals constructed starting from 0, 1, ω by recursively applying ordinal addition, multiplication and exponentiation and the Veblen functions φ β (α) of two variables; ψ(ω Ωω ) is the small Veblen ordinal: it is the set of ordinals constructed starting from 0, 1, ω by recursively applying ordinal addition, multiplication and exponentiation and the Veblen functions φ( ) of finitely many variables, and it is also the length of the ordering of finite rooted trees; ψ(ω ΩΩ ) is the large Veblen ordinal (it can be defined similarly to the small Veblen ordinal using a generalization of φ( ) to transfinitely many variables all but finitely many of which are zero); ψ(ε Ω+1 ) is the Bachmann-Howard ordinal. 14

15 α example α example = φ(φ 1 (1), ω, ω 2 + ω) φ(2,0,ωωω2 ) φ(ω ωω+1, ω, φ(1, 0, 0)) φ(ω ω + ω, 0, 2) = ψ(ω Ωψ(1)+ω (ω 2 + ω)) ψ(ωω2 ω ωω2 ) ψ(ω Ωωωω+1 +ω ψ(ω Ω )) ψ(ω Ω(ωω +ω) 3) 15

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

About these lecture notes. Simply Typed λ-calculus. Types

About these lecture notes. Simply Typed λ-calculus. Types About these lecture notes Simply Typed λ-calculus Akim Demaille akim@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées Many of these slides are largely inspired from Andrew D. Ker

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Chapter 2. Ordinals, well-founded relations.

Chapter 2. Ordinals, well-founded relations. Chapter 2. Ordinals, well-founded relations. 2.1. Well-founded Relations. We start with some definitions and rapidly reach the notion of a well-ordered set. Definition. For any X and any binary relation

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13 ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Distances in Sierpiński Triangle Graphs

Distances in Sierpiński Triangle Graphs Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα