AVL-trees C++ implementation

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "AVL-trees C++ implementation"

Transcript

1 Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ AVL-trees C++ implementation Δομές Δεδομένων Μάριος Κενδέα 31 Μαρτίου 2015

2 Εισαγωγή (1/3) Δυαδικά Δένδρα Αναζήτησης: πολύ καλή δομή δεδομένων για την υλοποίηση maps, sets, και άλλα παρόμοια. Κύρια δυσκολία : είναι αποδοτικά μόνο όταν είναι ισοζυγισμένα Ορίζονται σχέσεις μεταξύ κόμβων Parent: ο γονεϊκός κόμβος του κόμβου αναφοράς LSON: το αριστερό παιδί του κόμβου αναφοράς RSON: το δεξί παιδί του κόμβου αναφοράς Ancestor: κάποιος κόμβος πρόγονος του κόμβου αναφοράς 31 Μαρτίου

3 Εισαγωγή (2/3) Ύψος δέντρου: για ένα δέντρο με n στοιχεία χρειάζονται O(logn) επίπεδα. Το ύψος του δέντρου καθορίζει και το κόστος αναζήτησης γιατί έχουμε μια σύγκριση σε κάθε επίπεδο Ιδιότητα δυαδικού δέντρου αναζήτησης: Για να είναι ένα δέντρο δυαδικό δέντρο αναζήτησης (Binary Search Tree BST) πρέπει να πληροί την ιδιότητα δυαδικού δέντρου αναζήτησης: Έστω n κόμβος ενός δυαδικού δέντρου αναζήτησης. Τότε όλοι οι κόμβοι που βρίσκονται στο αριστερό υποδέντρο του n έχουν τιμή περιεχομένου μικρότερη ή ίση με το περιεχόμενο του n. Αντίστοιχα, οι κόμβοι που βρίσκονται στο δεξιό υποδέντρο του n έχουν τιμή περιεχομένου μεγαλύτερη ή ίση από το περιεχόμενο του n. Έτσι το δυαδικό δέντρο αναζήτησης εγγυάται χρόνο αναζήτησης O(logn) με μια σύγκριση σε κάθε ένα από τα O(logn) επίπεδα. Στη συνέχεια η ένθεση (insert) και η διαγραφή απαιτούν σταθερό χρόνο. 31 Μαρτίου

4 Εισαγωγή (3/3) Τα ισοζυγισμένα δέντρα απαντούν στο πρόβλημα του ύψους χειρότερης περίπτωσης ενός δυαδικού δέντρου αναζήτησης Διατηρούν μια αναλογία μεταξύ του αριστερού και του δεξιού υποδέντρου σε κάθε κόμβο ώστε το συνολικό ύψος να είναι πολύ κοντά στο logn Ισοζυγισμένα με βάρη (weight-balanced) και ισοζυγισμένα με ύψος (height balanced) To AVL tree είναι ένα ισοζυγισμένο δέντρο βάσει ύψους (ισοσκελισμένο) που σε κάθε κόμβο του, το ύψος του αριστερού υποδέντρου επιτρέπεται να διαφέρει μόνο κατά 1 από το ύψος του δεξιού υποδέντρου. 31 Μαρτίου

5 AVL Trees (1/8) Τα AVL trees, είναι μια απλή και αποδοτική δομή δεδομένων για την διατήρηση της ισορροπίας. Είναι η πρώτη που προτάθηκε ( An algorithm for the organisation of information - Proceedings of the USSR Academy of Sciences 146: , 1962) από τους G.M. Adelson-Velskii και E.M. Landis 31 Μαρτίου

6 AVL Trees (2/8) Σε κάθε κόμβο του δέντρου αντιστοιχεί ένας αριθμός που δείχνει τον παράγοντα ισοσκελισμού. Αν hleft είναι το ύψος του αριστερού υποδέντρου του κόμβου v και hright το ύψος του δεξιού υποδέντρου, τότε ο παράγοντας ισοσκελισμού υπολογίζεται από την πράξη hright - hleft Εφόσον θέλουμε η διαφορά ύψους των υποδέντρων θέλουμε να είναι το πολύ 1, επιτρεπτές τιμές είναι τα -1, 0, 1. Το AVL tree εγγυάται ύψος δέντρου h τέτοιο ώστε logn <= h < 1.44log(n+2) -1 Άρα επί της ουσίας O(logn)! h h-1 h-2 31 Μαρτίου

7 AVL Trees (3/8) Insert Η εισαγωγή γίνεται κανονικά με εύρεση του κατάλληλου σημείου για ένθεση και στη συνέχεια κατασκευή νέου κόμβου στο σημείο αυτό. 0 Πολλές φορές χαλάει η ισορρόπία του AVL tree και εμφανίζονται βάρη 2 ή -2. Για να αποκατασταθεί ο ισοσκελισμός και η ιδιότητα των AVL δέντρων πρέπει να γίνουν κάποιες πράξεις που ονομάζονται περιστρόφές Tree A (AVL) Tree B (not AVL) Μαρτίου

8 AVL Trees (4/8) Insert Mόνο κόμβοι στο path από το σημείο εισαγωγής προς τον κόμβο της ρίζας μπορεί να αλλάξουν ύψος Οπότε, πάμε προς τα πάνω, διορθώνοντας τα ύψη (h right -h left ) είναι 2 ή 2, κάνουμε περιστροφή γύρο από τον κόμβο Αν ο κόμβος που χρειάζεται περιστροφή είναι ο. Υπάρχουν 4 περιπτώσεις: Εξωτερικές περιπτώσεις (απαιτεί απλή περιστροφή) : 1. Εισαγωγή στο αριστερό υποδέντρο του αριστερού παιδιού του. 2. Εισαγωγή στο δεξί υποδέντρο του δεξιού παιδιού του. Εσωτερικές περιπτώσεις (απαιτεί διπλή περιστροφή) : 3. Εισαγωγή στο δεξί υποδέντρο του αριστερού παιδιού του. 4. Εισαγωγή στο αριστερό υποδέντρο του δεξιού παιδιού του. Με αντίστοιχο τρόπο λειτουργεί και η διαγραφή: αναζήτηση, διαγραφή, εξισορρόπηση. 31 Μαρτίου

9 AVL Trees (5/8) Απλή περιστροφή Μαρτίου

10 AVL Trees (6/8) Διπλή περιστροφή Μαρτίου

11 AVL Trees (7/8) Περιστροφές 31 Μαρτίου

12 AVL Trees (8/8) ΨΕΥΔΟΚΩΔΙΚΑΣ ΕΠΙΛΟΓΗΣ ΠΕΡΙΣΤΡΟΦΗΣ IF tree is right heavy { IF tree's right subtree is left heavy Perform Double Left rotation ELSE Perform Single Left rotation ELSE IF tree is left heavy { IF tree's left subtree is right heavy Perform Double Right rotation ELSE Perform Single Right rotation 31 Μαρτίου

13 AVL Trees & C++ (1/9) Αρχικά, χρειαζόμαστε μια κλάση για τους κόμβους με βάση την οποία θα δομηθεί το δέντρο: template <class KeyType> class AvlNode { private: Comparable<KeyType> * mydata; // Data field AvlNode<KeyType> * mysubtree[2]; // Subtree pointers short mybal; // Balance factor //... many details omitted ; Παρατηρούμε ότι περιέχει ένα πίνακα για τα δύο παιδιά του κόμβου και μια μεταβλητή για τον παράγοντα ισοσκελισμού. balance (1,0,-1) Η κλάση αυτή μας αρκεί για το δέντρο! 31 Μαρτίου left key right

14 AVL Trees & C++ (2/9) Ορίζουμε τα βοηθητικά στοιχεία σε μια κλάση Comparable enum cmp_t { MIN_CMP = -1, // less than EQ_CMP = 0, // equal to MAX_CMP = 1 // greater than ; template <class KeyType> class Comparable { private: KeyType mykey; public: Comparable(KeyType key) : mykey(key) {; cmp_t Compare(KeyType key) const; KeyType Key() const { return mykey; ; 31 Μαρτίου

15 AVL Trees & C++ (3/9) Κώδικας για την αριστερή περιστροφή: enum dir_t { LEFT = 0, RIGHT = 1 ; template <class KeyType> void AvlNode<KeyType>::RotateLeft(AvlNode<KeyType> * & root) { AvlNode<KeyType> * oldroot = root; root = root->mysubtree[right]; oldroot->mysubtree[right] = root->mysubtree[left]; root->mysubtree[left] = oldroot; // update balances oldroot->mybal -= (1 + MAX(root->myBal, 0)); root->mybal -= (1 - MIN(oldRoot->myBal, 0)); 31 Μαρτίου

16 AVL Trees & C++ (4/9) Κώδικας για την δεξιά περιστροφή: template <class KeyType> void AvlNode<KeyType>::RotateRight(AvlNode<KeyType> * & root) { AvlNode<KeyType> * oldroot = root; // perform rotation root = root->mysubtree[left]; oldroot->mysubtree[left] = root->mysubtree[right]; root->mysubtree[right] = oldroot; // update balances oldroot->mybal += (1 - MIN(root->myBal, 0)); root->mybal += (1 + MAX(oldRoot->myBal, 0)); 31 Μαρτίου

17 AVL Trees & C++ (5/9) Ένωση των δύο προηγούμενων συναρτήσεων σε μια: template <class KeyType> void AvlNode<KeyType>::RotateOnce(AvlNode<KeyType> * & root, dir_t dir) { AvlNode<KeyType> * oldroot = root; dir_t otherdir = Opposite(dir); short factor = (RIGHT - LEFT) * (1 - (2 * dir)); // rotate root = tree->mysubtree[otherdir]; oldroot->mysubtree[otherdir] = tree->mysubtree[dir]; root->mysubtree[dir] = oldroot; // update balances oldroot->mybal -= factor * (1 + MAX(factor * root->mybal, 0)); root->mybal += factor * (1 + MAX(factor * oldroot->mybal, 0)); 31 Μαρτίου

18 AVL Trees & C++ (6/9) Διπλή περιστροφή με χρήση της RotateOnce: template <class KeyType> void AvlNode<KeyType>::RotateTwice(AvlNode<KeyType> * & root, dir_t dir) { dir_t otherdir = Opposite(dir); RotateOnce(root->mySubtree[otherDir], otherdir); RotateOnce(root, dir); 31 Μαρτίου

19 AVL Trees & C++ (7/9) Μέθοδος για τη σύγκριση του περιεχομένου ενός κόμβου με το ζητούμενο: template <class KeyType> cmp_t AvlNode<KeyType>::Compare(KeyType key, cmp_t cmp) const { switch (cmp) { case EQ_CMP : // Standard comparison return mydata->compare(key); case MIN_CMP : // Find the minimal element in this tree return (mysubtree[left] == NULL)? EQ_CMP : MIN_CMP; case MAX_CMP : // Find the maximal element in this tree return (mysubtree[right] == NULL)? EQ_CMP : MAX_CMP; 31 Μαρτίου

20 AVL Trees & C++ (8/9) Μέθοδος insert: template <class KeyType> Comparable<KeyType> * AvlNode<KeyType>::Insert(Comparable<KeyType> * item, AvlNode<KeyType> * & root, int & change) { // See if the tree is empty if (root == NULL) { // Insert new node here root = new AvlNode<KeyType>(item); change = HEIGHT_CHANGE; return NULL; // Initialize Comparable<KeyType> * found = NULL; int increase = 0; // Compare items and determine which direction to search cmp_t result = root->compare(item->key()); dir_t dir = (result == MIN_CMP)? LEFT : RIGHT; 31 Μαρτίου

21 AVL Trees & C++ (9/9) Μέθοδος insert (συνέχεια): if (result!= EQ_CMP) { // Insert into "dir" subtree found = Insert(item, root->mysubtree[dir], change); if (found) return found; // already here - dont insert increase = result * change; // set balance factor increment else { // key already in tree at this node increase = HEIGHT_NOCHANGE; // 0 return root->mydata; root->mybal += increase; // update balance factor change = (increase && root->mybal)? (1 - ReBalance(root)) : HEIGHT_NOCHANGE; return NULL; // the key was successfully inserted 31 Μαρτίου

22 Αναφορές Ολοκληρωμένος κώδικας AVL tree σε C++: Βασικές Πληροφορίες για AVL tree: AVL με παραδείγματα: Standard AVL C++ Animated AVL Tree Java applet 31 Μαρτίου

23 ? 31 Μαρτίου

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Υλικό από τις σηµειώσεις Ν. Παπασπύρου, 2006 Δέντρα δυαδικής αναζήτησης Δενδρικές δοµές δεδοµένων στις οποίες Όλα τα στοιχεία στο αριστερό υποδέντρο της ρίζας είναι

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #10 (β)

ιαφάνειες παρουσίασης #10 (β) ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 16 Δένδρα (Trees) 1 / 42 Δένδρα (Trees) Ένα δένδρο είναι ένα συνδεδεμένο γράφημα χωρίς κύκλους Για κάθε

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Δένδρα (Trees) Βασικές Έννοιες. Δυαδικά Δένδρα. Δυαδικά Δένδρα Αναζήτησης. AVL Δένδρα. Δένδρα: Βασικές Έννοιες Ορισμοί Λειτουργίες Υλοποιήσεις ΑΤΔ Δένδρο: μοντέλο ιεραρχικής

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι - Δυαδικά Δένδρα (binary trees) - Δυαδικά Δένδρα Αναζήτησης (binary search trees) 1 Δυαδικά Δένδρα Ορισμοί Λειτουργίες Υλοποιήσεις ΑΤΔ Εφαρμογές 2 Ορισμοί (αναδρομικός ορισμός) Ένα δένδρο t είναι ένα πεπερασμένο

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 5

Δομές Δεδομένων Ενότητα 5 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Δυαδικά Δένδρα Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Συγκρίσιμα Αντικείμενα (comparable)

Συγκρίσιμα Αντικείμενα (comparable) Συγκρίσιμα Αντικείμενα (comparable) public class Student implements Comparable{ public String lastname; public String firstname; public int am; public int compareto(object s) throws ClassCastException{

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Δέντρα Δυαδικά Δέντρα Δυαδικά Δέντρα Αναζήτησης (inary Search Trees) http://aetos.it.teithe.gr/~demos/teaching_r.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής

Διαβάστε περισσότερα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου

Διαβάστε περισσότερα

Ισοζυγισμένα υαδικά έντρα Αναζήτησης

Ισοζυγισμένα υαδικά έντρα Αναζήτησης Ισοζυγισμένα υαδικά έντρα Αναζήτησης ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη Ισοζυγισμένα υαδικά έντρα Αναζήτησης Ισοζυγισμένα Α είναι

Διαβάστε περισσότερα

Μάθημα 22: Δυαδικά δέντρα (Binary Trees)

Μάθημα 22: Δυαδικά δέντρα (Binary Trees) Trees Page 1 Μάθημα 22: Δυαδικά δέντρα (Binary Trees) Ένα δένδρο είναι δυαδικό αν όλοι οι κόμβοι του έχουν βαθμό (degree)

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα

Διαβάστε περισσότερα

Ισοζυγισµένο έντρο (AVL Tree)

Ισοζυγισµένο έντρο (AVL Tree) Εργαστήριο 7 Ισοζυγισµένο έντρο (AVL Tree) Εισαγωγή Εκτός από τα δυαδικά δέντρα αναζήτησης (inry serh trees) που εξετάσαµε σε προηγούµενο εργαστήριο, υπάρχουν αρκετά είδη δέντρων αναζήτησης µε ξεχωριστό

Διαβάστε περισσότερα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 23: Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ισοζυγισμένα Δέντρα - Υλοποίηση AVL-δέντρων - Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα Διδάσκων:

Διαβάστε περισσότερα

υαδικά δέντρα αναζήτησης

υαδικά δέντρα αναζήτησης υαδικά δέντρα αναζήτησης οµές εδοµένων 3 ο εξάµηνο Ορισµός δυαδικού δέντρου αναζήτησης Σ ένα δυαδικό δέντρο αναζήτησης, για κάθε κόµβο Χ, Όλα τα κλειδιά(αντικείµενα) στο αριστερό υποδέντρο του Χ έχουν

Διαβάστε περισσότερα

Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά

Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά EPL231: Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά Αναδρομή Η αναδρομή εμφανίζεται όταν μία διεργασία καλεί τον εαυτό της Υπάρχουν

Διαβάστε περισσότερα

9. Κόκκινα-Μαύρα Δέντρα

9. Κόκκινα-Μαύρα Δέντρα Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 9. Κόκκινα-Μαύρα Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 9/12/2016 Δέντρα,

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης

Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης Δοµές Δεδοµένων 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης Ε. Μαρκάκης Περίληψη Δέντρα Δυαδικής Αναζήτησης Υλοποιήσεις εισαγωγής και αναζήτησης Χαρακτηριστικά επιδόσεων ΔΔΑ Εισαγωγή στη ρίζα ΔΔΑ Υλοποιήσεις

Διαβάστε περισσότερα

ΔυαδικάΔΕΝΔΡΑΑναζήτησης

ΔυαδικάΔΕΝΔΡΑΑναζήτησης ΔυαδικάΔΕΝΔΡΑΑναζήτησης Ρίζα (κόμβος που δεν έχει γονέα) πρόγονοι απόγονοι γονέας παιδιά έντρο είναι µία συλλογή από στοιχεία, που ονοµάζονται κόµβοι και συνδέονται µεταξύ τους µε τη βοήθεια ακµών αδέλφια

Διαβάστε περισσότερα

Μπαλτάς Αλέξανδρος 21 Απριλίου 2015

Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ B- Trees Δομές Δεδομένων Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ampaltas@ceid.upatras.gr Περιεχόμενα 1. Εισαγωγή 2. Ορισμός B- tree 3. Αναζήτηση σε B- tree 4. Ένθεση σε

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 3

Αλγόριθμοι Ταξινόμησης Μέρος 3 Αλγόριθμοι Ταξινόμησης Μέρος 3 Μανόλης Κουμπαράκης 1 Ταξινόμηση με Ουρά Προτεραιότητας Θα παρουσιάσουμε τώρα δύο αλγόριθμους ταξινόμησης που χρησιμοποιούν μια ουρά προτεραιότητας για την υλοποίηση τους.

Διαβάστε περισσότερα

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 8: C++ ΒΙΒΛΙΟΗΚΗ STL, ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δομές Δεδομένων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές

Διαβάστε περισσότερα

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990,

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990, ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μια σημείωση από τον Α. Δελή για το άρθρο: W. Pugh, Skip Lists: A Probabilistic Alternative to Balanced Trees, Comms of the ACM, 33(), June 10,

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ 1 ένδρα εσωτερικός κόµβος u το δένδρο έχει ύψος 4 u έχει ύψος 3 w έχει βάθος 2 κόµβος ένδρο: γράφηµα χωρίς κύκλους o Ρίζα (root) o Κόµβος (node) o Ακµή (edge) o Γονέας (parent) Παιδί (child)

Διαβάστε περισσότερα

Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:

Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ενδρικές οµές για Υλοποίηση υναµικών Λεξικών υναµικά λεξικά λειτουργίες LookUp( ), Insert( ) και Delete( ) Αναζητούµε δένδρα για την αποτελεσµατική υλοποίηση

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Υλοποίηση Δυαδικού Σωρού σε γλώσσα Java. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Υλοποίηση Δυαδικού Σωρού σε γλώσσα Java. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Υλοποίηση Δυαδικού Σωρού σε γλώσσα Java Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σωρός Μεγίστου ως ΑΤΔ Ένας σωρός μεγίστου (max heap) είναι ένας ΑΤΔ που

Διαβάστε περισσότερα

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων

Διαβάστε περισσότερα

Δομές δεδομένων. Ενότητα 5η: Υλοποίηση Λεξικών με Ισοζυγισμένα Δένδρα Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

Δομές δεδομένων. Ενότητα 5η: Υλοποίηση Λεξικών με Ισοζυγισμένα Δένδρα Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 5η: Υλοποίηση Λεξικών με Ισοζυγισμένα Δένδρα Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΝΟΤΗΤΑ 5 ΥΛΟΠΟΙΗΣΗ ΛΕΞΙΚΩΝ ΜΕ ΙΣΟΖΥΓΙΣΜΕΝΑ ΔΕΝΔΡΑ

Διαβάστε περισσότερα

Μη AVL Δέντρα Εισαγωγή κόμβου 4, 6 : 4 12 :

Μη AVL Δέντρα Εισαγωγή κόμβου 4, 6 : 4 12 : AVL δέντρα AVL Δέντρα L R G.M. AdelsonVelkii και E.M. Landis 192 Μη AVL Δέντρα Εισαγωγή κόμβου, : : Αριστερή στροφή 1 8, 1 : 8 1 7 : 7 8 1 Δεξιά στροφή 8 7 Αριστερή στροφή 1 8 7 1 Περιπτώσεις LL : ο νέος

Διαβάστε περισσότερα

5 ΔΕΝΤΡΑ (Trees) Σχήµα 5.1 : ενδροειδής αναπαράσταση αρχείων στα Windows. έντρα. \ {root directory} Accessories. Program Files.

5 ΔΕΝΤΡΑ (Trees) Σχήµα 5.1 : ενδροειδής αναπαράσταση αρχείων στα Windows. έντρα. \ {root directory} Accessories. Program Files. 5 ΔΕΝΤΡΑ (Trees) Oι περισσότερες δοµές δεδοµένων που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµµικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο αυτή θα ασχοληθούµε µε τις µή-γραµµικές

Διαβάστε περισσότερα

Κεφάλαιο 8 Ισορροπημένα Δένδρα Αναζήτησης

Κεφάλαιο 8 Ισορροπημένα Δένδρα Αναζήτησης Κεφάλαιο 8 Ισορροπημένα Δένδρα Αναζήτησης Περιεχόμενα 8.1 Κατηγορίες ισορροπημένων δένδρων αναζήτησης... 155 8.1.1 Περιστροφές... 156 8.2 Δένδρα AVL... 157 8.2.1 Αποκατάσταση συνθήκης ισορροπίας... 158

Διαβάστε περισσότερα

ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:

ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες: Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι

Διαβάστε περισσότερα

Red-black δέντρα (Κεφ. 5)

Red-black δέντρα (Κεφ. 5) Red-black δέντρα (Κεφ. ) Δομές Δεδομένων Παπαγιαννόπουλος Δημήτριος 30 Μαρτίου 07 30 Μαρτίου 07 papagianno@ceid.upatras.gr . Εισαγωγή Περιεχόμενα. Ορισμός red-black δέντρων 3. Αναζήτηση σε red-black δέντρα

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως

Διαβάστε περισσότερα

Δημιουργία Δυαδικών Δέντρων Αναζήτησης

Δημιουργία Δυαδικών Δέντρων Αναζήτησης Δημιουργία Δυαδικών Δέντρων Αναζήτησης Τα Δυαδικά δέντρα αναζήτησης είναι διατεταγμένα δυαδικά δέντρα όπου έχει σημασία η διάταξη των παιδιών κάθε κόμβου. Συγκεκριμένα για τα Δυαδικά δέντρα αναζήτησης,

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 17η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης

Δοµές Δεδοµένων. 17η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης Δοµές Δεδοµένων 17η Διάλεξη Ισορροπηµένα δέντρα Ε. Μαρκάκης Περίληψη Εισαγωγή Τυχαιοποιηµένα ΔΔΑ (Randomized Binary Search trees) Στρεβλά ΔΔΑ (Splay trees) Καθοδικά δέντρα 2-3-4 (Top-Down 2-3-4 trees)

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 18η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης

Δοµές Δεδοµένων. 18η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης Δοµές Δεδοµένων 18η Διάλεξη Ισορροπηµένα δέντρα Ε. Μαρκάκης Περίληψη Επανάληψη των Τυχαιοποιηµένων ΔΔΑ, Στρεβλών ΔΔΑ, Δέντρων 2-3-4 Δέντρα κόκκινου-µαύρου Λίστες Παράλειψης Χαρακτηριστικά επιδόσεων - συµπεράσµατα

Διαβάστε περισσότερα

υαδικό έντρο Αναζήτησης (BSTree)

υαδικό έντρο Αναζήτησης (BSTree) Εργαστήριο 6 υαδικό έντρο Αναζήτησης (BSTree) Εισαγωγή Οι περισσότερες δοµές δεδοµένων, που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµ- µικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο

Διαβάστε περισσότερα

Red- black δέντρα Εκτενείς Δομές Δεδομένων (Κεφ. 5)

Red- black δέντρα Εκτενείς Δομές Δεδομένων (Κεφ. 5) ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Red- black δέντρα Εκτενείς Δομές Δεδομένων (Κεφ. ) Δομές Δεδομένων Μπαλτάς Αλέξανδρος 4 Μαρτίου 0 ampaltas@ceid.upatras.gr Περιεχόμενα. Εισαγωγή. Ορισμός red- black

Διαβάστε περισσότερα

Ενότητα 7 Ουρές Προτεραιότητας

Ενότητα 7 Ουρές Προτεραιότητας Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση

Διαβάστε περισσότερα

Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο

Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο Ουρές προτεραιότητας Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο αριθμός είναι μεγάλος, τόσο οι πελάτες

Διαβάστε περισσότερα

Εργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι

Εργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι Μεταγλωττιστές Εργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι 2015-1016 Δομές Δεδομένων Μια δομή δεδομένων είναι μια συλλογή δεδομένων με κάποιες ιδιότητες

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι (Γ εξάμηνο) Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Ηπείρου. Άσκηση εργαστηρίου #6 (Υλοποίηση δυαδικού δένδρου αναζήτησης)

Δομές Δεδομένων και Αλγόριθμοι (Γ εξάμηνο) Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Ηπείρου. Άσκηση εργαστηρίου #6 (Υλοποίηση δυαδικού δένδρου αναζήτησης) Δομές Δεδομένων και Αλγόριθμοι (Γ εξάμηνο) Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Ηπείρου Γκόγκος Χρήστος 04/12/2014 Άσκηση εργαστηρίου #6 (Υλοποίηση δυαδικού δένδρου αναζήτησης) Στην εργασία αυτή παρουσιάζεται

Διαβάστε περισσότερα

Οι βασικές πράξεις που ορίζουν τον ΑΤ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:

Οι βασικές πράξεις που ορίζουν τον ΑΤ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες: υαδικά έντρα Αναζήτησης (Binary Search Trees) Ορισµός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόµενα στο αριστερό υποδέντρο του t είναι

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Τα δυαδικά δένδρα αναζήτησης και οι εφαρμογές τους» ΔΕΛΗ ΜΑΡΙΑ 2005011

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου 2 Ουρές

Διαβάστε περισσότερα

Ενότητα 7 Ουρές Προτεραιότητας

Ενότητα 7 Ουρές Προτεραιότητας Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type).

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί

Διαβάστε περισσότερα

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου Συμπίεση Η συμπίεση δεδομένων ελαττώνει το μέγεθος ενός αρχείου : Εξοικονόμηση αποθηκευτικού χώρου Εξοικονόμηση χρόνου μετάδοσης Τα περισσότερα αρχεία έχουν πλεονασμό στα δεδομένα τους Είναι σημαντική

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και Αντικείμενα Μέθοδοι Παράδειγμα 1 Θέλουμε ένα πρόγραμμα που να προσομοιώνει την κίνηση ενός αυτοκινήτου, το οποίο κινείται και τυπώνει τη θέση του.

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, AVL- ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Υλοποίηση ΑVL-δένδρων Εισαγωγή κόµβων και περιστροφές ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 7-1 AVL ένδρα Είναι δυνατό

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Πίνακες Συµβόλων Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Πίνακες Συµβόλων Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Πίνακες Συµβόλων Κεφάλαιο 12 (12.1-12.4) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Πίνακες συµβόλων Διεπαφή πίνακα συµβόλων Αναζήτηση µε αριθµοδείκτη Ακολουθιακή αναζήτηση Δυαδική αναζήτηση

Διαβάστε περισσότερα

Ουρά Προτεραιότητας (priority queue)

Ουρά Προτεραιότητας (priority queue) Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι - Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες

Διαβάστε περισσότερα

Λίστες παράλειψης (skip lists)

Λίστες παράλειψης (skip lists) Χρησιμοποιεί πρόσθετους συνδέσμους στους κόμβους μιας συνδεδεμένης λίστας επιτάχυνση της αναζήτησης με παράλειψη μεγάλων τμημάτων της λίστας Μια λίστα παράλειψης είναι μια διατεταγμένη συνδεδεμένη λίστα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και Αντικείμενα Μέθοδοι Παράδειγμα Θέλουμε ένα πρόγραμμα που να προσομοιώνει την κίνηση ενός αυτοκινήτου, το οποίο κινείται και τυπώνει τη θέση του.

Διαβάστε περισσότερα

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,

Διαβάστε περισσότερα

AVL δέντρα. h L h R. G.M. Adelson_Velkii και E.M. Landis 1962

AVL δέντρα. h L h R. G.M. Adelson_Velkii και E.M. Landis 1962 AVL δέντρα L - R 1 L R G.M. AdelsonVelkii και E.M. Landis 1962 AVL Δέντρα Μη AVL Δέντρα Εισαγωγή κόμβου 4, 6 : 4 12 : 6 4 6 Αριστερή στροφή 6 4 12 12 8, 14 : 6 4 12 8 14 7 : 4 6 12 6 4 8 6 8 12 7 8 14

Διαβάστε περισσότερα

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (path) o Πρόγονος απόγονος (ancestor, descendant)

Διαβάστε περισσότερα

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή

Διαβάστε περισσότερα

Κεφάλαιο 10 Ψηφιακά Λεξικά

Κεφάλαιο 10 Ψηφιακά Λεξικά Κεφάλαιο 10 Ψηφιακά Λεξικά Περιεχόμενα 10.1 Εισαγωγή... 213 10.2 Ψηφιακά Δένδρα... 214 10.3 Υλοποίηση σε Java... 222 10.4 Συμπιεσμένα και τριαδικά ψηφιακά δένδρα... 223 Ασκήσεις... 225 Βιβλιογραφία...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Δέντρα Δυαδικής Αναζήτησης Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Δέντρα Δυαδικής Αναζήτησης Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δέντρα Δυαδικής Αναζήτησης Κεφάλαιο 12 (12.6 12.9) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Δυαδικής Αναζήτησης (ΔΔΑ) Υλοποιήσεις εισαγωγής και αναζήτησης Χαρακτηριστικά επιδόσεων

Διαβάστε περισσότερα

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων. Διδάσκων: Μαρία Χαλκίδη

Ευρετήρια. Βάσεις Δεδομένων. Διδάσκων: Μαρία Χαλκίδη Ευρετήρια Βάσεις Δεδομένων Διδάσκων: Μαρία Χαλκίδη Βασικές έννοιες Οι μηχανισμοί δεικτοδότησης χρησιμοποιούνται για να επιταχύνουν την προσπέλαση σε επιθυμητά δεδομένα. π.χ., author catalog in library

Διαβάστε περισσότερα

Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Τομέας Ηλεκτρονικής και Υπολογιστών. ΤΗΜΜΥ Α.Π.Θ Πέμπτη 24 / 12 / 2015 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Τομέας Ηλεκτρονικής και Υπολογιστών. ΤΗΜΜΥ Α.Π.Θ Πέμπτη 24 / 12 / 2015 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Τομέας Ηλεκτρονικής και Υπολογιστών 5 o Εξάμηνο ΤΗΜΜΥ Α.Π.Θ 2015-2016 Πέμπτη 24 / 12 / 2015 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ DS Proximity Part 3 MinMax Algorithm (0,5

Διαβάστε περισσότερα

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

Προγραμματισμός Αναδρομή

Προγραμματισμός Αναδρομή Προγραμματισμός Αναδρομή Προγραμματισμός Προγραμματισμός Κλήσεις Συναρτήσεων Όταν καλείται μια συνάρτηση, πρέπει Να θυμάται σε ποιο σημείο του προγράμματος θα επιστρέψει Να δεσμεύσει χώρο για την τιμή

Διαβάστε περισσότερα

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Απλές Λίστες CS100, 2015-2016 1 / 10 Δομές δεδομένων Ορισμός:

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 3 Δέντρα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 3 Δέντρα ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 3 Δέντρα Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 19/03/2013 Ημερομηνία Παράδοσης:

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 15η Διάλεξη Δέντρα Δυαδικής Αναζήτησης και Κατακερµατισµός. Ε. Μαρκάκης

Δοµές Δεδοµένων. 15η Διάλεξη Δέντρα Δυαδικής Αναζήτησης και Κατακερµατισµός. Ε. Μαρκάκης Δοµές Δεδοµένων 15η Διάλεξη Δέντρα Δυαδικής Αναζήτησης και Κατακερµατισµός Ε. Μαρκάκης Περίληψη Υλοποιήσεις άλλων λειτουργιών σε ΔΔΑ: Επιλογή k-οστού µικρότερου Διαµέριση Αφαίρεση στοιχείου Ένωση 2 δέντρων

Διαβάστε περισσότερα

Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 8 Ξένα Σύνολα

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων Ενότητα 13: B-Δέντρα/AVL-Δέντρα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Προαπαιτούμενες Ασκήσεις 5 ου Εργαστηρίου. Dose stoixeio (integer) : 25 Found stoixeio in position 7 Dose stoixeio (integer) :94 Value not found

Προαπαιτούμενες Ασκήσεις 5 ου Εργαστηρίου. Dose stoixeio (integer) : 25 Found stoixeio in position 7 Dose stoixeio (integer) :94 Value not found Α. Πρώτη προαπαιτούµενη Κάθε οµάδα θα πρέπει να δηµιουργήσει τον ζητούµενο παρακάτω πίνακα και α. να εµφανίσει τα στοιχεία του, β. να τυπώσει τον µέσο όρο των στοιχείων του, γ. να ταξινοµήσει τα στοιχεία

Διαβάστε περισσότερα