Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο"

Transcript

1 Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

2 Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από προσθαφαίρεση αντικειμένων να κάνουμε γρήγορη αναζήτηση κάποιου αντικειμένου με βάση ένα κλειδί. Χαροκόπειο Πανεπιστήμιο 2/72

3 Παράδειγμα Έχουμε αντικείμενα που αντιπροσωπεύουν τραπεζικές συναλλαγές και θέλουμε να κάνουμε αναζήτηση με βάση ένα κλειδί που είναι η ημερομηνία. Χαροκόπειο Πανεπιστήμιο 3/72

4 Αναζήτηση Μπορούμε να υλοποιήσουμε μία δομή που να παρέχει αναζήτηση με διάφορους τρόπους. Το ζητούμενο είναι να είναι η αναζήτηση αποδοτική ταυτόχρονα με τις υπόλοιπες λειτουργίες. πχ μία υλοποίηση αναζήτησης σε λίστα δεν είναι αποδοτική Χαροκόπειο Πανεπιστήμιο 4/72

5 Δυαδικά Δέντρα Αναζήτησης (ΔΔΑ) Binary Search Tree (BST) Ορισμός Ένα δυαδικό δέντρο αναζήτησης είναι ένα δυαδικό δέντρο όπου κάθε κόμβος είναι συσχετισμένος με ένα κλειδί και με την πρόσθετη ιδιότητα ότι το κλειδί οποιουδήποτε κόμβου είναι μεγαλύτερο (ή ίσο) από τα κλειδιά όλων των κόμβων του αριστερού υποδέντρου αυτού του κόμβου, και μικρότερο από τα κλειδιά όλων των κόμβων του δεξιού υποδέντρου αυτού του κόμβου. Χαροκόπειο Πανεπιστήμιο 5/72

6 Παράδειγμα Χαροκόπειο Πανεπιστήμιο 6/72

7 Αναζήτηση σε ΔΔΑ Αλγόριθμος ξεκινάμε από την ρίζα εάν είμαστε σε ένα κόμβο και βρούμε το κλειδί που ψάχνουμε τότε επιστρέφουμε την πληροφορία αυτού του κόμβου αλλιώς πάμε δεξιά ή αριστερά ανάλογα με την σύγκριση του κλειδιού που ψάχνουμε και του κλειδιού του κόμβου Χαροκόπειο Πανεπιστήμιο 7/72

8 Αναζήτηση σε ΔΔΑ Αναζήτηση του Χαροκόπειο Πανεπιστήμιο 8/72

9 Αναζήτηση σε ΔΔΑ Αναζήτηση του Χαροκόπειο Πανεπιστήμιο 8/72

10 Αναζήτηση σε ΔΔΑ Αναζήτηση του 9 9 < Χαροκόπειο Πανεπιστήμιο 8/72

11 Αναζήτηση σε ΔΔΑ Αναζήτηση του 9 9 < < Χαροκόπειο Πανεπιστήμιο 8/72

12 Αναζήτηση σε ΔΔΑ Αναζήτηση του 9 9 < < > Χαροκόπειο Πανεπιστήμιο 8/72

13 Αναζήτηση σε ΔΔΑ Αναζήτηση του Χαροκόπειο Πανεπιστήμιο 9/72

14 Αναζήτηση σε ΔΔΑ Αναζήτηση του Χαροκόπειο Πανεπιστήμιο 9/72

15 Αναζήτηση σε ΔΔΑ Αναζήτηση του > Χαροκόπειο Πανεπιστήμιο 9/72

16 Αναζήτηση σε ΔΔΑ Αναζήτηση του > < Χαροκόπειο Πανεπιστήμιο 9/72

17 Αναζήτηση σε ΔΔΑ Αναζήτηση του > < > 16 NULL Χαροκόπειο Πανεπιστήμιο 9/72

18 Διάσχιση inorder κανόνας Επισκεπτόμαστε πρώτα το αριστερό υποδέντρο, μετά τον κόμβο και μετά το δεξιό υποδέντρο Επισκεπτόμαστε τους κόμβους με αύξουσα σειρά κλειδιού. Χαροκόπειο Πανεπιστήμιο 10/72

19 Εισαγωγή σε ΔΔΑ Αλγόριθμος τρέχουμε πρώτα μία αναζήτηση εάν βρούμε το κλειδί δεν κάνουμε τίποτα αλλιώς προσθέτουμε ένα καινούριο κόμβο με το νέο κλειδί στο σημείο που σταμάτησε η αναζήτηση Χαροκόπειο Πανεπιστήμιο 11/72

20 Εισαγωγή σε ΔΔΑ Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 12/72

21 Εισαγωγή σε ΔΔΑ Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 12/72

22 Εισαγωγή σε ΔΔΑ Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 12/72

23 Εισαγωγή σε ΔΔΑ Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 12/72

24 Εισαγωγή σε ΔΔΑ Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 12/72

25 Εισαγωγή σε ΔΔΑ Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 12/72

26 Εισαγωγή σε ΔΔΑ Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 12/72

27 Διαγραφή σε ΔΔΑ Αλγόριθμος τρέχουμε πρώτα μία αναζήτηση εάν δεν βρούμε το κλειδί δεν κάνουμε τίποτα αλλιώς υπάρχουν 3 περιπτώσεις ανάλογα με τον αριθμό των παιδιών του κόμβου που πρέπει να αφαιρέσουμε Χαροκόπειο Πανεπιστήμιο 13/72

28 Διαγραφή σε ΔΔΑ Περίπτωση 1: Διαγραφή του 17 (κανένα παιδί) Χαροκόπειο Πανεπιστήμιο 14/72

29 Διαγραφή σε ΔΔΑ Περίπτωση 1: Διαγραφή του 17 (κανένα παιδί) Χαροκόπειο Πανεπιστήμιο 14/72

30 Διαγραφή σε ΔΔΑ Περίπτωση 1: Διαγραφή του 17 (κανένα παιδί) Χαροκόπειο Πανεπιστήμιο 14/72

31 Διαγραφή σε ΔΔΑ Περίπτωση 1: Διαγραφή του 17 (κανένα παιδί) Χαροκόπειο Πανεπιστήμιο 14/72

32 Διαγραφή σε ΔΔΑ Περίπτωση 1: Διαγραφή του 17 (κανένα παιδί) Χαροκόπειο Πανεπιστήμιο 14/72

33 Διαγραφή σε ΔΔΑ Περίπτωση 2: Διαγραφή του 16 (ένα παιδί) Χαροκόπειο Πανεπιστήμιο 15/72

34 Διαγραφή σε ΔΔΑ Περίπτωση 2: Διαγραφή του 16 (ένα παιδί) Χαροκόπειο Πανεπιστήμιο 15/72

35 Διαγραφή σε ΔΔΑ Περίπτωση 2: Διαγραφή του 16 (ένα παιδί) Χαροκόπειο Πανεπιστήμιο 15/72

36 Διαγραφή σε ΔΔΑ Περίπτωση 2: Διαγραφή του 16 (ένα παιδί) Χαροκόπειο Πανεπιστήμιο 15/72

37 Διαγραφή σε ΔΔΑ Περίπτωση 2: Διαγραφή του 16 (ένα παιδί) Χαροκόπειο Πανεπιστήμιο 15/72

38 Διαγραφή σε ΔΔΑ Περίπτωση 2: Διαγραφή του 16 (ένα παιδί) Χαροκόπειο Πανεπιστήμιο 15/72

39 Διαγραφή σε ΔΔΑ Περίπτωση 2: Διαγραφή του 16 (ένα παιδί) Χαροκόπειο Πανεπιστήμιο 15/72

40 Διαγραφή σε ΔΔΑ Περίπτωση 3: Διαγραφή του 15 (δύο παιδιά) Χαροκόπειο Πανεπιστήμιο 16/72

41 Υπολογισμός του επόμενου κλειδιού της ρίζας Χρήσιμη ρουτίνα για την διαγραφή Το πρόβλημα Έχοντας ένα υποδέντρο θέλουμε να βρούμε τον κόμβο με το αμέσως επόμενο κλειδί από τη ρίζα του υποδέντρου. Χαροκόπειο Πανεπιστήμιο 17/72

42 Υπολογισμός του επόμενου κλειδιού της ρίζας Χαροκόπειο Πανεπιστήμιο 18/72

43 Υπολογισμός του επόμενου κλειδιού της ρίζας Χαροκόπειο Πανεπιστήμιο 18/72

44 Υπολογισμός του επόμενου κλειδιού της ρίζας Χαροκόπειο Πανεπιστήμιο 18/72

45 Υπολογισμός του επόμενου κλειδιού της ρίζας Ο επόμενος κόμβος της ρίζας έχει το πολύ ένα παιδί. Χαροκόπειο Πανεπιστήμιο 18/72

46 Διαγραφή σε ΔΔΑ Περίπτωση 3: Διαγραφή του 15 (δύο παιδιά) Χαροκόπειο Πανεπιστήμιο 19/72

47 Διαγραφή σε ΔΔΑ Περίπτωση 3: Διαγραφή του 15 (δύο παιδιά) Χαροκόπειο Πανεπιστήμιο 19/72

48 Διαγραφή σε ΔΔΑ Περίπτωση 3: Διαγραφή του 15 (δύο παιδιά) Χαροκόπειο Πανεπιστήμιο 19/72

49 Διαγραφή σε ΔΔΑ Περίπτωση 3: Διαγραφή του 15 (δύο παιδιά) Χαροκόπειο Πανεπιστήμιο 19/72

50 Διαγραφή σε ΔΔΑ Περίπτωση 3: Διαγραφή του 15 (δύο παιδιά) Χαροκόπειο Πανεπιστήμιο 19/72

51 Διαγραφή σε ΔΔΑ Περίπτωση 3: Διαγραφή του 15 (δύο παιδιά) Χαροκόπειο Πανεπιστήμιο 19/72

52 Διαγραφή σε ΔΔΑ Περίπτωση 3: Διαγραφή του 15 (δύο παιδιά) Χαροκόπειο Πανεπιστήμιο 19/72

53 Επιδόσεις Όλες οι λειτουργίες χρειάζονται χρόνο ανάλογο με το ύψος του δέντρου. Χαροκόπειο Πανεπιστήμιο 20/72

54 Προβλήματα Υπάρχουν πολλά δέντρα για τα ίδια αντικείμενα αριστερά η χειρότερη περίπτωση: ύψος h = O(n) δεξιά η καλύτερη περίπτωση: ύψος h = O(log n) Το δέντρο εξαρτάται από την σειρά της εισαγωγής και διαγραφής των στοιχείων του δέντρο, η οποία δεν είναι γνωστή εκ των προτέρων Χαροκόπειο Πανεπιστήμιο 21/72

55 Ισορροπημένα Δέντρα Αναζήτησης Balanced BSTs Δέντρα αναζήτησης τα οποία είναι ισορροπημένα ανά πάσα στιγμή ανεξάρτητα από την σειρά των εισαγωγών και διαγραφών στοιχείων. h = O(log n) Χαροκόπειο Πανεπιστήμιο 22/72

56 2-3-4 Δέντρα Αναζήτησης top-down Επιτρέπουμε κόμβους με 2, 3 ή 4 παιδιά (, 13] (13, + ] (, 13] (13, 29] (29, + ] (, 13] (13, 29] (29, 58] (58, + ] Χαροκόπειο Πανεπιστήμιο 23/72

57 2-3-4 Δέντρα Αναζήτησης top-down Ορισμός Ένα δέντρο αναζήτησης είναι ένα δέντρο το οποίο είτε είναι κενό είτε αποτελείται από τρεις τύπους κόμβων: 2-κόμβους, 3-κόμβους και 4-κόμβους. Ισορροπημένο Ένα ισορροπημένο δέντρο αναζήτησης είναι ένα δέντρο αναζήτησης του οποίου όλοι οι σύνδεσμοι δείχνουν σε κενά δέντρα τα οποία ισαπέχουν από τη ρίζα. Χαροκόπειο Πανεπιστήμιο 24/72

58 Παράδειγμα Ισορροπημένου Δέντρου Χαροκόπειο Πανεπιστήμιο 25/72

59 Ύψος Ισορροπημένου Δέντρου Θεώρημα Ένα δέντρο αναζήτησης με n κλειδιά έχει ύψος O(log n). Απόδειξη Έστω h το ύψος του δέντρου. Χαροκόπειο Πανεπιστήμιο 26/72

60 Ύψος Ισορροπημένου Δέντρου Θεώρημα Ένα δέντρο αναζήτησης με n κλειδιά έχει ύψος O(log n). Απόδειξη Έστω h το ύψος του δέντρου. Κάθε επίπεδο i έχει τουλάχιστον 2 i κόμβους. Χαροκόπειο Πανεπιστήμιο 26/72

61 Ύψος Ισορροπημένου Δέντρου Θεώρημα Ένα δέντρο αναζήτησης με n κλειδιά έχει ύψος O(log n). Απόδειξη Έστω h το ύψος του δέντρου. Κάθε επίπεδο i έχει τουλάχιστον 2 i κόμβους. Άρα n h 1 = 2 h 1. Χαροκόπειο Πανεπιστήμιο 26/72

62 Ύψος Ισορροπημένου Δέντρου Θεώρημα Ένα δέντρο αναζήτησης με n κλειδιά έχει ύψος O(log n). Απόδειξη Έστω h το ύψος του δέντρου. Κάθε επίπεδο i έχει τουλάχιστον 2 i κόμβους. Άρα n h 1 = 2 h 1. Λογαριθμίζοντας πέρνουμε πως log 2 (n + 1) h. Χαροκόπειο Πανεπιστήμιο 26/72

63 Αναζήτηση σε Ισορροπημένο Δέντρο Αναζήτηση σε Δέντρο: Γενίκευση του αλγόριθμου για ΔΔΑ Χαροκόπειο Πανεπιστήμιο 27/72

64 Εισαγωγή σε Ισορροπημένο Δέντρο Διατηρώντας την ισορροπία! Τρέχουμε αναζήτηση για να δούμε που πρέπει να προστεθεί το νέο κλειδί: εάν η αναζήτηση τερματιστεί σε 2-κόμβο τον κάνουμε 3-κόμβο εάν η αναζήτηση τερματιστεί σε 3-κόμβο τον κάνουμε 4-κόμβο εάν η αναζήτηση τερματιστεί σε 4-κόμβο σπάμε τον 4-κόμβο σε δύο 2-κόμβους μεταβιβάζοντας το μεσαίο κλειδί προς τα επάνω και μετά προσθέτουμε το καινούριο κλειδί σε έναν από τους 2-κόμβους (μπορεί να χρειαστεί να κάνουμε το ίδιο και στον πατέρα, μέχρι την ρίζα) Χαροκόπειο Πανεπιστήμιο 28/72

65 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 2-κόμβο (εισαγωγή του 14) Χαροκόπειο Πανεπιστήμιο 29/72

66 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 2-κόμβο (εισαγωγή του 14) Χαροκόπειο Πανεπιστήμιο 29/72

67 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 2-κόμβο (εισαγωγή του 14) Χαροκόπειο Πανεπιστήμιο 29/72

68 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 2-κόμβο (εισαγωγή του 14) Χαροκόπειο Πανεπιστήμιο 29/72

69 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 3-κόμβο (εισαγωγή του 10) Χαροκόπειο Πανεπιστήμιο 30/72

70 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 3-κόμβο (εισαγωγή του 10) Χαροκόπειο Πανεπιστήμιο 30/72

71 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 3-κόμβο (εισαγωγή του 10) Χαροκόπειο Πανεπιστήμιο 30/72

72 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 3-κόμβο (εισαγωγή του 10) Χαροκόπειο Πανεπιστήμιο 30/72

73 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 4-κόμβο (εισαγωγή του 4) Χαροκόπειο Πανεπιστήμιο 31/72

74 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 4-κόμβο (εισαγωγή του 4) Χαροκόπειο Πανεπιστήμιο 31/72

75 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 4-κόμβο (εισαγωγή του 4) Χαροκόπειο Πανεπιστήμιο 31/72

76 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 4-κόμβο (εισαγωγή του 4) Χαροκόπειο Πανεπιστήμιο 31/72

77 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 4-κόμβο (εισαγωγή του 4) Χαροκόπειο Πανεπιστήμιο 31/72

78 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 4-κόμβο (εισαγωγή του 4) Χαροκόπειο Πανεπιστήμιο 31/72

79 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 4-κόμβο (εισαγωγή του 4) Χαροκόπειο Πανεπιστήμιο 31/72

80 Εισαγωγή σε Ισορροπημένο Δέντρο Τερματισμός σε 4-κόμβο (εισαγωγή του 4) Υπάρχει όμως και η περίπτωση όπου και ο πατέρας είναι 4-κόμβος. Σε αυτήν την περίπτωση κάνουμε την ίδια διάσπαση ξανά, πιθανώς μέχρι την ρίζα Χαροκόπειο Πανεπιστήμιο 31/72

81 Εισαγωγή σε Ισορροπημένο Δέντρο Για να απλουστεύσουμε την διαδικασία εισαγωγής σε περίπτωση διάσπασης πολλών κόμβων, χρησιμοποιούμε την εξής τεχνική: φροντίζουμε η διαδρομή αναζήτησης να μη τερματίσει σε 4-κόμβο, χωρίζοντας κάθε 4-κόμβο που βρίσκουμε κατά την κάθοδο στο δέντρο Χαροκόπειο Πανεπιστήμιο 32/72

82 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

83 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

84 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

85 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

86 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

87 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

88 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

89 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

90 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

91 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

92 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

93 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

94 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

95 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

96 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

97 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

98 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

99 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

100 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

101 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

102 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

103 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

104 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

105 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

106 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

107 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

108 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

109 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

110 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

111 Εισαγωγή σε Ισορροπημένο Δέντρο Εισαγωγή του Χαροκόπειο Πανεπιστήμιο 33/72

112 Διαγραφή σε Ισορροπημένο Δέντρο Κάνουμε αναγωγή του προβλήματος στο πρόβλημα διαγραφής από φύλλο Χρησιμοποιούμε την τεχνική των ΔΔΑ π.χ για διαγραφή του 25, το αντικαθιστούμε πρώτα με τον inorder successor (26) ή με τον inorder predecessor (20) Χαροκόπειο Πανεπιστήμιο 34/72

113 Διαγραφή σε Ισορροπημένο Δέντρο Κάνουμε αναγωγή του προβλήματος στο πρόβλημα διαγραφής από φύλλο Χρησιμοποιούμε την τεχνική των ΔΔΑ π.χ για διαγραφή του 25, το αντικαθιστούμε πρώτα με τον inorder successor (26) ή με τον inorder predecessor (20) Χαροκόπειο Πανεπιστήμιο 34/72

114 Διαγραφή σε Ισορροπημένο Δέντρο Διαγραφή από Φύλλο Το φύλλο έχει 2 κλειδιά (π.χ διαγραφή του 26 παρακάτω), δηλαδή είναι είτε 3-κόμβος, είτε 4-κόμβος. Έυκολη περίπτωση, απλά το διαγράφουμε Χαροκόπειο Πανεπιστήμιο 35/72

115 Διαγραφή σε Ισορροπημένο Δέντρο Διαγραφή από Φύλλο Το φύλλο έχει 2 κλειδιά (π.χ διαγραφή του 26 παρακάτω), δηλαδή είναι είτε 3-κόμβος, είτε 4-κόμβος. Έυκολη περίπτωση, απλά το διαγράφουμε Χαροκόπειο Πανεπιστήμιο 35/72

116 Διαγραφή σε Ισορροπημένο Δέντρο Διαγραφή από Φύλλο Το φύλλο έχει 1 κλειδί (underflow), δηλαδή είναι 2-κόμβος. κάποιος αδελφός κόμβος (sibling node) έχει 2 κλειδιά balancing: π.χ διαγραφή του Χαροκόπειο Πανεπιστήμιο 36/72

117 Διαγραφή σε Ισορροπημένο Δέντρο Διαγραφή από Φύλλο Το φύλλο έχει 1 κλειδί (underflow), δηλαδή είναι 2-κόμβος. κάποιος αδελφός κόμβος (sibling node) έχει 2 κλειδιά balancing: π.χ διαγραφή του Χαροκόπειο Πανεπιστήμιο 36/72

118 Διαγραφή σε Ισορροπημένο Δέντρο Διαγραφή από Φύλλο Το φύλλο έχει 1 κλειδί (underflow), δηλαδή είναι 2-κόμβος. κάποιος αδελφός κόμβος (sibling node) έχει 2 κλειδιά balancing: π.χ διαγραφή του Χαροκόπειο Πανεπιστήμιο 36/72

119 Διαγραφή σε Ισορροπημένο Δέντρο Διαγραφή από Φύλλο Το φύλλο έχει 1 κλειδί (underflow), δηλαδή είναι 2-κόμβος. όλοι οι αδελφοί κόμβοι (sibling nodes) έχουν 1 κλειδί (είναι δηλαδή 2-κόμβοι) fusion: π.χ διαγραφή του Χαροκόπειο Πανεπιστήμιο 37/72

120 Διαγραφή σε Ισορροπημένο Δέντρο Διαγραφή από Φύλλο Το φύλλο έχει 1 κλειδί (underflow), δηλαδή είναι 2-κόμβος. όλοι οι αδελφοί κόμβοι (sibling nodes) έχουν 1 κλειδί (είναι δηλαδή 2-κόμβοι) fusion: π.χ διαγραφή του Χαροκόπειο Πανεπιστήμιο 37/72

121 Διαγραφή σε Ισορροπημένο Δέντρο Διαγραφή από Φύλλο Το φύλλο έχει 1 κλειδί (underflow), δηλαδή είναι 2-κόμβος. όλοι οι αδελφοί κόμβοι (sibling nodes) έχουν 1 κλειδί (είναι δηλαδή 2-κόμβοι) fusion: π.χ διαγραφή του Χαροκόπειο Πανεπιστήμιο 37/72

122 Διαγραφή σε Ισορροπημένο Δέντρο Διαγραφή από Φύλλο Ο πατέρας έχει τώρα και αυτός πρόβλημα (underflow) επαλαμβάνουμε ή balance ή fusion ανάλογα με τους αδελφούς κόμβους του Χαροκόπειο Πανεπιστήμιο 38/72

123 Διαγραφή σε Ισορροπημένο Δέντρο Διαγραφή από Φύλλο Ο πατέρας έχει τώρα και αυτός πρόβλημα (underflow) επαλαμβάνουμε ή balance ή fusion ανάλογα με τους αδελφούς κόμβους του Χαροκόπειο Πανεπιστήμιο 38/72

124 Διαγραφή σε Ισορροπημένο Δέντρο Διαγραφή από Φύλλο Ο πατέρας έχει τώρα και αυτός πρόβλημα (underflow) επαλαμβάνουμε ή balance ή fusion ανάλογα με τους αδελφούς κόμβους του Χαροκόπειο Πανεπιστήμιο 38/72

125 Διαγραφή σε Ισορροπημένο Δέντρο Το fusion μπορεί να γίνει μέχρι και την ρίζα. Σε περίπτωση που φτάσει στην ρίζα το ύψος του δέντρου μειώνεται κατά ένα. Η διαγραφή υλοποιείτε σε χρόνο O(log n). Χαροκόπειο Πανεπιστήμιο 39/72

126 2-3-4 Δέντρα θετικά: απλός αλγόριθμος εισαγωγής για διατήρηση ύψους πολυπλοκότητα O(log n) για εισαγωγή, διαγραφή και αναζήτηση αρνητικά: 3 διαφορετικοί κόμβοι πολύπλοκες διαδικασίες λόγω πολλών συνδέσμων, αντιγραφών συνδέσμων, κ.τ.λ Χαροκόπειο Πανεπιστήμιο 40/72

127 Κόκκινα-Μαύρα Δέντρα Τα κόκκινα-μάυρα δέντρα είναι μία αναπαράσταση των δέντρων ως καθιερωμένα ΔΔΑ (μόνο 2-κόμβους) προσθέτοντας ένα ψηφίο επιπλέον πληροφορίας ανά κόμβο (το χρώμα). Θεωρούμε πως οι σύνδεσμοι έχουν χρώμα κόκκινο ή μαύρο. Επίσης το χρώμα κάθε κόμβου είναι το χρώμα του συνδέσμου που δείχνει στον κόμβο. Χαροκόπειο Πανεπιστήμιο 41/72

128 Κόκκινα-Μαύρα Δέντρα Χαροκόπειο Πανεπιστήμιο 42/72

129 Κόκκινα-Μαύρα Δέντρα Αναζήτηση, εισαγωγή και διαγραφή Αναζήτηση Τα κόκκινα-μαύρα δέντρα είναι ΔΔΑ! Εισαγωγή και Διαγραφή Αντιστοιχία με τα δέντρα, απλά περιγράφουμε τις κινήσεις με περιστροφές! Χαροκόπειο Πανεπιστήμιο 43/72

130 Κόκκινα-Μαύρα Δέντρα Περιστροφές (πρώτη) Χαροκόπειο Πανεπιστήμιο 44/72

131 Κόκκινα-Μαύρα Δέντρα Περιστροφές (πρώτη) Χαροκόπειο Πανεπιστήμιο 44/72

132 Κόκκινα-Μαύρα Δέντρα Περιστροφές (πρώτη) Χαροκόπειο Πανεπιστήμιο 44/72

133 Κόκκινα-Μαύρα Δέντρα Περιστροφές (δεύτερη) Χαροκόπειο Πανεπιστήμιο 45/72

134 Κόκκινα-Μαύρα Δέντρα Περιστροφές (δεύτερη) Χαροκόπειο Πανεπιστήμιο 45/72

135 Κόκκινα-Μαύρα Δέντρα Περιστροφές (δεύτερη) Χαροκόπειο Πανεπιστήμιο 45/72

136 Κόκκινα-Μαύρα Δέντρα Περιστροφές Υπάρχουν και άλλες περιπτώσεις... Χαροκόπειο Πανεπιστήμιο 46/72

137 Άλλα Ισορροπημένα Δέντρα AVL δέντρα: O(log n) ύψος χρησιμοποιώντας περιστροφές splay δέντρα scapegoat δέντρα Χαροκόπειο Πανεπιστήμιο 47/72

138 AVL Δέντρα Το πρώτο ισοζυγισμένο δέντρο! G.M. Adelson-Velskii and E.M. Landis. An algorithm for the organization of information, Proceedings of the USSR Academy of Sciences 146: , Ονομάστηκε από τα αρχικά των συγγραφέων. Χαροκόπειο Πανεπιστήμιο 48/72

139 AVL Δέντρα Δυαδικό δέντρο αναζήτησης Επιπλέον συνθήκη ισορροπίας Η επιπλέον συνθήκη ισορροπίας πρέπει να διατηρείται εύκολα και να διατηρεί το ύψος του δέντρου σε O(log n). Χαροκόπειο Πανεπιστήμιο 49/72

140 AVL Δέντρα Ορισμός Ένα δέντρο AVL είναι ένα δυαδικό δέντρο αναζήτησης T όπου για κάθε κόμβο v T τα ύψη των υποδέντρων του διαφέρουν το πολύ κατά 1. Το ύψος του κενού υποδέντρου ορίζεται σε -1. Χαροκόπειο Πανεπιστήμιο 50/72

141 AVL Δέντρα Αριστερά AVL δέντρο, δεξιά μη-avl δέντρο. Χαροκόπειο Πανεπιστήμιο 51/72

142 AVL Δέντρα Ύψος Θεώρημα Ένα AVL δέντρο με n κλειδιά έχεις ύψος O(log n). Χαροκόπειο Πανεπιστήμιο 52/72

143 AVL Δέντρα Ύψος Θεώρημα Ένα AVL δέντρο με n κλειδιά έχεις ύψος O(log n). Απόδειξη Έστω n(h) ο ελάχιστος αριθμός κόμβων ενός AVL δέντρου με ύψος h. Χαροκόπειο Πανεπιστήμιο 52/72

144 AVL Δέντρα Ύψος Θεώρημα Ένα AVL δέντρο με n κλειδιά έχεις ύψος O(log n). Απόδειξη Έστω n(h) ο ελάχιστος αριθμός κόμβων ενός AVL δέντρου με ύψος h. Εύκολα φαίνεται πως n(1) = 1 και n(2) = 2. Για h > 2 ένα AVL δέντρο έχει την ρίζα και δύο υποδέντρα, ένα AVL υποδέντρο με ύψος h 1 και ένα AVL υποδέντρο με ύψος h 2. h-1 h-2 h Άρα n(h) = 1 + n(h 1) + n(h 2). Χαροκόπειο Πανεπιστήμιο 52/72

145 AVL Δέντρα Ύψος Θεώρημα Ένα AVL δέντρο με n κλειδιά έχεις ύψος O(log n). Απόδειξη Έστω n(h) ο ελάχιστος αριθμός κόμβων ενός AVL δέντρου με ύψος h. Επειδή n(h 1) > n(h 2) έχουμε πως n(h) = 1 + n(h 1) + n(h 2) > 2n(h 2) > 4n(h 4) > 8n(h 6) >... και μέσω αναγωγής n(h) > 2 i n(h 2i) Επειδή n(1) = 1 πέρνουμε πως n(h) > 2 (h 1)/2 και λογαριθμίζοντας πέρνουμε h < 2 log n(h) + 1. Χαροκόπειο Πανεπιστήμιο 52/72

146 Εισαγωγή σε AVL δέντρο Η εισαγωγή γίνεται κανονικά όπως και στα ΔΔΑ αλλά στην συνέχεια μπορεί να χρειαστεί να φτιάξουμε το δέντρο. Θα φροντίσουμε να κάνουμε O(d) πράξεις όπου d είναι το βάθος όπου γίνεται η εισαγωγή. Χαροκόπειο Πανεπιστήμιο 53/72

147 Εισαγωγή σε AVL δέντρο Θα φτιάξουμε το δέντρο με περιστροφές. Έστω x ο κόμβος με το μεγαλύτερο βάθος που είναι μη-ισοζυγισμένος. Υπάρχουν 4 περιπτώσεις ανάλογα με το αν η εισαγωγή είναι στο.1 αριστερό υποδέντρο του αριστερού παιδιού του x.2 δεξί υποδέντρο του αριστερού παιδιού του x.3 αριστερό υποδέντρο του δεξιού παιδιού του x.4 δεξί υποδέντρο του δεξιού παιδιού του x Οι περιπτώσεις 1&4 λύνονται με μονή περιστροφή ενώ οι περιπτώσεις 2&3 με διπλή περιστροφή. Χαροκόπειο Πανεπιστήμιο 54/72

148 Μονή Περιστροφή a b Z h h+1 X Y h X < b < Y < a < Z Χαροκόπειο Πανεπιστήμιο 55/72

149 Μονή Περιστροφή a b Z h h+1 X Y h X < b < Y < a < Z Χαροκόπειο Πανεπιστήμιο 55/72

150 Μονή Περιστροφή b a h+1 X Y h Z h X < b < Y < a < Z Χαροκόπειο Πανεπιστήμιο 55/72

151 Μονή Περιστροφή Χαροκόπειο Πανεπιστήμιο 56/72

152 Μονή Περιστροφή Χαροκόπειο Πανεπιστήμιο 56/72

153 Άλλες περιπτώσεις Στις περιπτώσεις 2&3 δεν λειτουργεί η μονή περιστροφή. a b Z h X h h+1 Y X < b < Y < a < Z Χαροκόπειο Πανεπιστήμιο 57/72

154 Άλλες περιπτώσεις Στις περιπτώσεις 2&3 δεν λειτουργεί η μονή περιστροφή. b a X h h+1 Y Z h X < b < Y < a < Z Χαροκόπειο Πανεπιστήμιο 57/72

155 Διπλή Περιστροφή a b c h Z W h X h Y h-1 W < b < X < c < Y < a < Z Χαροκόπειο Πανεπιστήμιο 58/72

156 Διπλή Περιστροφή a b c h Z W h X h Y h-1 W < b < X < c < Y < a < Z Χαροκόπειο Πανεπιστήμιο 58/72

157 Διπλή Περιστροφή a c b Y h-1 h Z W h X h W < b < X < c < Y < a < Z Χαροκόπειο Πανεπιστήμιο 58/72

158 Διπλή Περιστροφή a c b Y h-1 h Z W h X h W < b < X < c < Y < a < Z Χαροκόπειο Πανεπιστήμιο 58/72

159 Διπλή Περιστροφή c b a W h X h Y h-1 Z h W < b < X < c < Y < a < Z Χαροκόπειο Πανεπιστήμιο 58/72

160 Διαγραφή Η διαγραφή στοιχείων από ένα AVL δέντρο γίνεται με τον ίδιο τρόπο όπως και σε ΔΔΑ με επιπλέον πιθανές περιστροφές. O(log n) στην χειρότερη περίπτωση Χαροκόπειο Πανεπιστήμιο 59/72

161 Εξωτερική Μνήμη seek time: χρόνος ώστε οι κεφαλές να μετακινηθούν στο κατάλληλο σημείο (track) rotational delay: χρόνος αναμονής ώστε να περιστραφεί o κύλινδρος και να έρθει το κατάλληλο sector που ψάχνουμε Χαροκόπειο Πανεπιστήμιο 60/72

162 Εξωτερική Μνήμη η μνήμη των υπολογιστών (DRAM) έχει χρόνο πρόσβασης της τάξης των nanoseconds: 10 9 sec, πχ nsec οι δίσκοι έχουν χρόνο πρόσβασης της τάξης των milliseconds: 10 3, πχ 2-10 ms Χαροκόπειο Πανεπιστήμιο 61/72

163 Εξωτερική Μνήμη η μνήμη των υπολογιστών (DRAM) έχει χρόνο πρόσβασης της τάξης των nanoseconds: 10 9 sec, πχ nsec οι δίσκοι έχουν χρόνο πρόσβασης της τάξης των milliseconds: 10 3, πχ 2-10 ms Συμπέρασμα Δεν συμφέρει να διαβάζουμε λίγα δεδομένα από το δίσκο. Για αυτό τον λόγο οι δίσκοι διαβάζουν πάντα ένα block που είναι της τάξης των Kilobytes, πχ 512K. Χαροκόπειο Πανεπιστήμιο 61/72

164 Βήτα Δέντρα δομή αναζήτησης η οποία είναι αποτελεσματική για αποθήκευση σε δίσκο, γενικεύει τα δέντρα σε δέντρα με κόμβους μεταξύ t και 2t για t 2. Χαροκόπειο Πανεπιστήμιο 62/72

165 Ορισμός Βήτα Δέντρων Ένα δέντρο B-tree είναι ένα δέντρο με ρίζα και τις εξής ιδιότητες:.1 κάθε κόμβος x έχει τα εξής πεδία: (a) n[x], ο αριθμός των κλειδιών που έχει ο κόμβος x (b) τα n[x] κλειδιά σε σειρά: key 1 [x] key 2 [x]... key n[x] [x] (c) τιμή leaf[x] που είναι αλήθεια αν και μόνο αν ο κόμβος x είναι φύλλο Χαροκόπειο Πανεπιστήμιο 63/72

166 Ορισμός Βήτα Δέντρων Ένα δέντρο B-tree είναι ένα δέντρο με ρίζα και τις εξής ιδιότητες:.1 κάθε κόμβος x έχει τα εξής πεδία: (a) n[x], ο αριθμός των κλειδιών που έχει ο κόμβος x (b) τα n[x] κλειδιά σε σειρά: key 1 [x] key 2 [x]... key n[x] [x] (c) τιμή leaf[x] που είναι αλήθεια αν και μόνο αν ο κόμβος x είναι φύλλο.2 εαν ο x είναι εσωτερικός κόμβος περιέχει n[x] + 1 δείκτες c 1[x], c 2[x],..., c n[x]+1 [x] στα παιδιά του. Τα φύλλα δεν έχουν παιδιά οπότε οι δείκτες αυτοί δεν ορίζονται. Χαροκόπειο Πανεπιστήμιο 63/72

167 Ορισμός Βήτα Δέντρων Ένα δέντρο B-tree είναι ένα δέντρο με ρίζα και τις εξής ιδιότητες:.1 κάθε κόμβος x έχει τα εξής πεδία: (a) n[x], ο αριθμός των κλειδιών που έχει ο κόμβος x (b) τα n[x] κλειδιά σε σειρά: key 1 [x] key 2 [x]... key n[x] [x] (c) τιμή leaf[x] που είναι αλήθεια αν και μόνο αν ο κόμβος x είναι φύλλο.2 εαν ο x είναι εσωτερικός κόμβος περιέχει n[x] + 1 δείκτες c 1[x], c 2[x],..., c n[x]+1 [x] στα παιδιά του. Τα φύλλα δεν έχουν παιδιά οπότε οι δείκτες αυτοί δεν ορίζονται..3 Τα κλειδιά key i [x] χωρίζουν τις κλίμακες των κλειδιών που αποθηκεύονται σε κάθε υποδέντρο: εαν το k i είναι ένα κλειδί που αποθηκεύεται στο υποδέντρο με ρίζα c i [x] k 1 key 1 [x] k 2 key 2 [x] key n[x] [x] k n[x]+1. Χαροκόπειο Πανεπιστήμιο 63/72

168 Ορισμός Βήτα Δέντρων.4 Κάθε φύλλο έχει το ίδιο βάθος, το ύψος του δέντρου h. Χαροκόπειο Πανεπιστήμιο 64/72

169 Ορισμός Βήτα Δέντρων.4 Κάθε φύλλο έχει το ίδιο βάθος, το ύψος του δέντρου h..5 Έστω t 2 ο ελάχιστος βαθμός του δέντρου:.1 Κάθε κόμβος εκτός της ρίζας πρέπει να έχει τουλάχιστον t 1 κλειδιά (δηλαδή τουλάχιστον t παιδιά). Εαν το δέντρο είναι μη-κενό, η ρίζα πρέπει να έχει τουλάχιστον ένα κλειδί..2 Κάθε κόμβος μπορεί να περιέχει μέχρι 2t 1 κλειδιά, δηλαδή το πολύ 2t παιδιά. Ένας κόμβος λέγεται γεμάτος (full) εαν περιέχει ακριβώς 2t 1 κλειδιά. Χαροκόπειο Πανεπιστήμιο 64/72

170 Ορισμός Βήτα Δέντρων.4 Κάθε φύλλο έχει το ίδιο βάθος, το ύψος του δέντρου h..5 Έστω t 2 ο ελάχιστος βαθμός του δέντρου:.1 Κάθε κόμβος εκτός της ρίζας πρέπει να έχει τουλάχιστον t 1 κλειδιά (δηλαδή τουλάχιστον t παιδιά). Εαν το δέντρο είναι μη-κενό, η ρίζα πρέπει να έχει τουλάχιστον ένα κλειδί..2 Κάθε κόμβος μπορεί να περιέχει μέχρι 2t 1 κλειδιά, δηλαδή το πολύ 2t παιδιά. Ένας κόμβος λέγεται γεμάτος (full) εαν περιέχει ακριβώς 2t 1 κλειδιά. Το πιο απλό Βήτα-δέντρο είναι για t = 2. Κάθε εσωτερικός κόμβος έχει 2, 3 ή 4 παιδιά δηλαδή ένα δέντρο. Στην πράξη όμως έχουμε πολύ μεγαλύτερες τιμές για το t. Χαροκόπειο Πανεπιστήμιο 64/72

171 Ύψος Βήτα Δέντρου Θεώρημα Ένα Βήτα δέντρο με n 1 κλειδιά και ελάχιστο βαθμό t 2 έχει ύψος n + 1 h log t. 2 Απόδειξη Ένα Βήτα δέντρο με ύψος h έχει ελάχιστο αριθμό κόμβων αν η ρίζα έχει ένα κλειδί και όλοι οι υπόλοιποι κόμβοι t 1 κλειδιά. Στο επίπεδο 0 υπάρχει ένα κόμβος. Στο επίπεδο 1 υπάρχουν 2 κόμβοι. Στο επίπεδο 2 υπάρχουν 2t κόμβοι, στο επίπεδο 3 υπάρχουν 2t 2 κόμβοι, κ.τ.λ Χαροκόπειο Πανεπιστήμιο 65/72

172 Ύψος Βήτα Δέντρου Θεώρημα Ένα Βήτα δέντρο με n 1 κλειδιά και ελάχιστο βαθμό t 2 έχει ύψος n + 1 h log t. 2 Απόδειξη Ο αριθμός λοιπόν των κλειδιών είναι: n 1 + (t 1) = 1 + 2(t 1) = 2t h 1 h i=1 2t i 1 ( t h 1 t 1 ) Χαροκόπειο Πανεπιστήμιο 65/72

173 Προσπελάσεις Δίσκου Φροντίζοντας κάθε κόμβος να χωρά σε μια σελίδα δίσκου, κάνουμε τόσες προσπελάσεις δίσκου όσες και το ύψος του δέντρου κόµβος 1000 κλειδιά 1001 κόµβοι κλειδιά κόµβοι κλειδιά Το δέντρο έχει ύψος O(log t n). Χαροκόπειο Πανεπιστήμιο 66/72

174 Βασικές Παραδοχές για Υλοποίηση Βήτα Δέντρων (i) Η ρίζα του Βήτα δέντρου θα είναι πάντα στην μνήμη (ii) Θα έχουμε δύο συναρτήσεις που διαβάζουν και γράφουν έναν κόμβο στον σκληρό δίσκο DISK READ(x) DISK WRITE(x) Χαροκόπειο Πανεπιστήμιο 67/72

175 Αναζήτηση σε Βήτα Δέντρο Η αναζήτηση δουλεύει όπως και στα ΔΔΑ (Δυαδικά Δέντρα Αναζήτησης) μόνο που τώρα έχουμε περισσότερες επιλογές σε κάθε κόμβο. B TREE SEARCH(x, k) i = 1 while i n[x] and k > key i [x] do i = i + 1 end if i n[x] and k = key i [x] then return (x, i) end if leaf[x] then return nil else DISK READ(c i [x]) end return B TREE SEARCH(c i [x], k) Χαροκόπειο Πανεπιστήμιο 68/72

176 Εισαγωγή σε Βήτα Δέντρα Καθώς αναζητούμε την θέση εισαγωγής ενός στοιχείου, διαιρούμε στα δύο οποιουσδήποτε κόμβους είναι γεμάτοι (έχουν 2t 1 κλειδιά). Όταν διαιρείται ένας κόμβος το μεσαίο κλειδί ανεβαίνει προς τα επάνω. Με αυτό τον τρόπο κάνουμε χώρο για πιθανές διαιρέσεις κόμβων που βρίσκονται παρακάτω. Χαροκόπειο Πανεπιστήμιο 69/72

177 Διαίρεση κόμβου (split) t = 4 x keyi 1[x] keyi[x] N W x keyi 1[x] keyi[x] keyi+1[x] N S W y = ci[x] P Q R S T U V y = ci[x] P Q R z = ci+1[x] T U V T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 Χαροκόπειο Πανεπιστήμιο 70/72

178 Παράδειγμα t = 3 G M P X A C D E J K N O R S T U V Y Z Χαροκόπειο Πανεπιστήμιο 71/72

179 Παράδειγμα t = 3, εισαγωγή του B G M P X A B C D E J K N O R S T U V Y Z Χαροκόπειο Πανεπιστήμιο 71/72

180 Παράδειγμα t = 3, εισαγωγή του Q G M P T X A B C D E J K N O Q R S U V Y Z Χαροκόπειο Πανεπιστήμιο 71/72

181 Παράδειγμα t = 3, εισαγωγή του L P G M T X A B C D E J K L N O Q R S U V Y Z Χαροκόπειο Πανεπιστήμιο 71/72

182 Παράδειγμα t = 3, εισαγωγή του F P C G M T X A B D E F J K L N O Q R S U V Y Z Χαροκόπειο Πανεπιστήμιο 71/72

183 Διαγραφή από Β-Δέντρα Λειτουργεί με παρόμοιο τρόπο με τα δέντρα. Μπορεί να χρειαστεί να κάνουμε balance fuse Χαροκόπειο Πανεπιστήμιο 72/72

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ενδρικές οµές για Υλοποίηση υναµικών Λεξικών υναµικά λεξικά λειτουργίες LookUp( ), Insert( ) και Delete( ) Αναζητούµε δένδρα για την αποτελεσµατική υλοποίηση

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

ΗΥ240 - Παναγιώτα Φατούρου 2

ΗΥ240 - Παναγιώτα Φατούρου 2 ΕΝΟΤΗΤΑ ΥΛΟΠΟΙΗΣΗ ΛΕΞΙΚΩΝ ΜΕ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΗΥ24 - Παναγιώτα Φατούρου 1 Ισοζυγισµένα ένδρα Χρονική Πολυπλοκότητα αναζήτησης σε δοµές που έχουν ήδη διδάχθει: Στατική Μη-Ταξινοµηµένη Λίστα -> Ο(n), όπου

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

υαδικό έντρο Αναζήτησης (BSTree)

υαδικό έντρο Αναζήτησης (BSTree) Εργαστήριο 6 υαδικό έντρο Αναζήτησης (BSTree) Εισαγωγή Οι περισσότερες δοµές δεδοµένων, που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµ- µικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο

Διαβάστε περισσότερα

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων.

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων. ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ Χειµερινό Εξάµηνο 2002 Αποθήκευση Εγγραφών - Ευρετήρια ρ Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Επίπεδα Αφαίρεσης Σ Β Επίπεδο Όψεων Όψη Όψη

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

(α) Ζητείται να αναπαρασταθεί η παραπάνω γνώση σε Prolog, ώστε να δημιουργηθεί αντίστοιχο πρόγραμμα.

(α) Ζητείται να αναπαρασταθεί η παραπάνω γνώση σε Prolog, ώστε να δημιουργηθεί αντίστοιχο πρόγραμμα. 1. Δίνονται τα εξής γεγονότα «Ο Παύλος είναι πατέρας του Γιάννη και της Γεωργίας» και «Η Ελένη είναι μητέρα της Μαρίας και του Πέτρου». Επίσης, μας δίνεται και η εξής γνώση τύπου κανόνα, που αφορά το πότε

Διαβάστε περισσότερα

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1 ιαφάνεια 14-1 Κεφάλαιο 14 οµές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. NavatheΕλληνικήΈκδοση, ιαβλος, Επιµέλεια Μ.Χατζόπουλος 1 Θα µιλήσουµε για Τύποι Ταξινοµηµένων Ευρετηρίων

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

Αποθήκευση εδομένων. ομή ενός Σ Β. Εισαγωγή Το «εσωτερικό» ενός ΜΕΡΟΣ Β : Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα

Αποθήκευση εδομένων. ομή ενός Σ Β. Εισαγωγή Το «εσωτερικό» ενός ΜΕΡΟΣ Β : Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα Αποθήκευση εδομένων Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ Β : Εισαγωγή Το «εσωτερικό» ενός Σ Β ομή ενός Σ Β Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα Τυπικά, κάθε σχέση σε ένα

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Εργαστήριο 2: Πίνακες

Εργαστήριο 2: Πίνακες Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Αβδέλαρου Κωνσταντίνα

Αβδέλαρου Κωνσταντίνα ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ Αβδέλαρου Κωνσταντίνα 1 η Εργασία στο μάθημα Λειτουργικά Συστήματα Ταύρος, 9 Δεκεμβρίου 2014 Άσκηση 1.1 Το shell script που δημιουργήθηκε είναι:

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 13 Αρχεία Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Αρχεία Συλλογές δεδομένων Αποθηκεύονται στην περιφερειακή μνήμη π.χ. σκληρός

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Εισαγωγικά ΘΕ ΠΛΗ 204-5 ONLINE ΕΡΓΑΣΙΑ E2- Η Online Εργασία Ε2- αποτελεί (όπως περιγράφεται αναλυτικότερα και στον Οδηγό Σπουδών της Θ.Ε. που σας έχει διατεθεί) συμπληρωματική άσκηση στα πλαίσια της Γραπτής

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων Εισαγωγή στην επιστήμη των υπολογιστών Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων 1 ομή εδομένων Μια δομή δεδομένων (data structure) χρησιμοποιεί μια συλλογή από σχετικές μεταξύ τους μεταβλητές, οι οποίες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΙΑΧΕΙΡΙΣΗ ΑΡΧΕΙΩΝ Στέφανος Γκρίτζαλης Αναπληρωτής Καθηγητής Κωνσταντίνος Καραφασούλης ιδάσκων (Π 407) Μαγνητικοί ίσκοι Τα δεδοµένα αποθηκεύονται στο µαγνητικό φιλµ του δίσκου Ο δίσκος περιστρέφεται µε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

Εισαγωγή στα Λειτουργικά

Εισαγωγή στα Λειτουργικά Εισαγωγή στα Λειτουργικά Συστήματα Ενότητα 9: Αρχεία ΙΙ Γεώργιος Φ. Φραγκούλης Τμήμα Ηλεκτρολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

ΓΙΑΝΝΕΝΑ & ΣΥΓΧΡΟΝΗ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΧΕΙΡΙΣΗ ΓΙΑΝΝΕΝΑ & ΣΥΓΧΡΟΝΗ ΔΗΜΙΟΥΡΓΙΑ

ΓΙΑΝΝΕΝΑ & ΣΥΓΧΡΟΝΗ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΧΕΙΡΙΣΗ ΓΙΑΝΝΕΝΑ & ΣΥΓΧΡΟΝΗ ΔΗΜΙΟΥΡΓΙΑ ΓΙΑΝΝΕΝΑ & ΣΥΓΧΡΟΝΗ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΧΕΙΡΙΣΗ Περιγραφή και επεξήγηση της χρήσης του χώρου διαχείρισης της ιστοσελίδας για τους καλλιτέχνες 1 Περιεχόμενα Είσοδος στο χώρο διαχείρισης...3 Επεξεργασία της σελίδας

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ. Συστήματα αρχείων

ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ. Συστήματα αρχείων ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Συστήματα αρχείων Στόχοι 1 Να περιγράψουμε τις έννοιες: αρχείο, σύστημα αρχείων, κατάλογος, ιεραρχία καταλόγων. Να περιγράψουμε τη διαφορά

Διαβάστε περισσότερα

Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο 2009

Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο 2009 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΑΘΗΜΑ : ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ 4 ο ΕΞΑΜΗΝΟ Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : Πληροφορική Κατεύθυνσης ΤΑΞΗ : Β Αρ. σελίδων : 11 Ηµεροµηνία : 10/6/2008 Ώρα Έναρξης : 7:45 π.µ ιάρκεια : 2 ώρες Ονοµατεπώνυµο :...Τµήµα : Αριθµός :...Βαθµός

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Αλγόριθμος Ψησταριάς (Bakery Algorithm) Αλγόριθμος 2- επεξεργαστών

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2005-6) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 Στόχος Η εργασία επικεντρώνεται σε θέματα προγραμματισμού για Τεχνητή Νοημοσύνη και σε πρακτικά θέματα εξάσκησης σε Κατηγορηματική Λογική. Θέμα 1: Απλές Αναζητήσεις

Διαβάστε περισσότερα

C: Από τη Θεωρία στην Εφαρμογή

C: Από τη Θεωρία στην Εφαρμογή Δρ. Γ. Σ. Τσελίκης Δρ. Ν. Δ. Τσελίκας C: Από τη Θεωρία στην Εφαρμογή Ενδεικτικές Ασκήσεις από το Βιβλίο C: Από τη Θεωρία στην Εφαρμογή (Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας) Ενδεικτικές Ασκήσεις του Βιβλίου Ε.Α.1

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

Διάλεξη 18η: Διαχείρηση Αρχείων

Διάλεξη 18η: Διαχείρηση Αρχείων Διάλεξη 18η: Διαχείρηση Αρχείων Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Αρχεία CS100, 2015-2016 1 / 24 Η βιβλιοθήκη Εισόδου/Εξόδου Στο stdioh

Διαβάστε περισσότερα

Ενότητα 10 Γράφοι (ή Γραφήµατα)

Ενότητα 10 Γράφοι (ή Γραφήµατα) Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)

Διαβάστε περισσότερα

Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα

Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα Κεφάλαιο 4 ο Ο Προσωπικός Υπολογιστής Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα Όταν ολοκληρώσεις το κεφάλαιο θα μπορείς: Να εξηγείς τις αρχές λειτουργίας των οπτικών αποθηκευτικών μέσων. Να περιγράφεις τον

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ. Δικτυακή Πύλη Πολεοδομικής Εφαρμογής Οδηγός Χρήσης

ΓΕΩΓΡΑΦΙΚΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ. Δικτυακή Πύλη Πολεοδομικής Εφαρμογής Οδηγός Χρήσης ΓΕΩΓΡΑΦΙΚΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ Δικτυακή Πύλη Πολεοδομικής Εφαρμογής Οδηγός Χρήσης Νέσσος Πληροφορική Α.Ε. 2009 ΑΡΧΙΚΗ ΣΕΛΙΔΑ...3 ΑΡΙΣΤΕΡΟ ΤΜΗΜΑ ΣΕΛΙΔΑΣ...4 Μικρογραφία Χάρτη...5 Βookmarks...5 Επιλογή

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

«Προγραµµατισµός του LEGO Mindstorm NXT για το διαγωνισµό "Move the Ball!"»

«Προγραµµατισµός του LEGO Mindstorm NXT για το διαγωνισµό Move the Ball!» ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΚΠ 413 / ΕΚΠ 606 ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ Εργασία Εξαµήνου Προγραµµατισµός του LEGO Mindstorm NXT για το διαγωνισµό "Move the Ball!"

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Βιβλιογραφία "C Προγραμματισμός", Deitel & Deitel, Πέμπτη Έκδοση, Εκδόσεις

Διαβάστε περισσότερα

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό Υπολογιστικά συστήματα: Στρώματα 1 ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Αναπαράσταση δεδομένων 2 Τύποι δεδομένων Τα δεδομένα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1. Structural Programming

ΑΣΚΗΣΗ 1. Structural Programming ΑΣΚΗΣΗ 1 Structural Programming Στην άσκηση αυτή θα υλοποιήσετε σε C ένα απλό πρόγραµµα Βάσης εδοµένων το οποίο θα µπορούσε να χρησιµοποιηθεί από την γραµµατεία ενός πανεπιστηµίου για την αποθήκευση και

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Τμημα Πληροφορικης και Τηλεματικης Τσάμη Παναγιώτα ΑΜ: 20833 ΚΑΤΑΝΕΜΗΜΕΝΑ ΣΥΣΤΗΜΑΤΑ Άσκηση 1 Αθήνα 13-12-2011 Αναφορά Ενότητα 1 A Δημιουργήστε στο φλοιό 3 εντολές (alias) που η

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μάθημα 8. 1 Στέργιος Παλαμάς

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μάθημα 8. 1 Στέργιος Παλαμάς ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Τμήμα Λογιστικής Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Μάθημα 8 Κεντρική Μονάδα Επεξεργασίας και Μνήμη 1 Αρχιτεκτονική του Ηλεκτρονικού Υπολογιστή Μονάδες Εισόδου Κεντρική

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Γραμμές Παραγωγής Εκτίμηση Ελαττωματικών Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Παρουσίαση χαρακτηριστικών γραμμών παραγωγής Παραδείγματα σε παραγωγή

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

Περιεχόμενα. Περιβάλλον ηλεκτρονικού υπολογιστή...9 Επιφάνεια εργασίας...12 Διαχείριση αρχείων...15 Ιοί Η/Υ...21 Διαχείριση εκτυπώσεων...

Περιεχόμενα. Περιβάλλον ηλεκτρονικού υπολογιστή...9 Επιφάνεια εργασίας...12 Διαχείριση αρχείων...15 Ιοί Η/Υ...21 Διαχείριση εκτυπώσεων... Περιεχόμενα Περιβάλλον ηλεκτρονικού υπολογιστή...9 Επιφάνεια εργασίας...12 Διαχείριση αρχείων...15 Ιοί Η/Υ...21 Διαχείριση εκτυπώσεων...22 Περιβάλλον ηλεκτρονικού υπολογιστή...23 Επιφάνεια εργασίας...26

Διαβάστε περισσότερα

Διάλεξη 20: Χαμηλού Επιπέδου Προγραμματισμός II

Διάλεξη 20: Χαμηλού Επιπέδου Προγραμματισμός II Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 20: Χαμηλού Επιπέδου Προγραμματισμός II (Κεφάλαια 25.2, KNK-2ED) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132

Διαβάστε περισσότερα

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ 1 1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ ΜΚ ΕΚΠ ΑΝΑΛΥΣΗ ΑΡΙΘΜΟΥ ΣΕ ΓΙΝΟΜΕΝΟ ΠΡΩΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΘΕΩΡΙΑ 1. Πολλαπλάσια του α : Είναι οι αριθµοί που προκύπτουν αν πολλαπλασιάσουµε τον α µε όλους τους φυσικούς. Είναι

Διαβάστε περισσότερα

Αναλυτικός οδηγός της ενημέρωσης των Windows 8.1

Αναλυτικός οδηγός της ενημέρωσης των Windows 8.1 Αναλυτικός οδηγός της ενημέρωσης των Windows 8.1 Εγκατάσταση και ενημέρωση των Windows 8.1 Ενημερώστε το BIOS, εφαρμογές, προγράμματα οδήγησης και εκτελέστε το Windows Update Επιλέξτε τον τύπο εγκατάστασης

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

1. Τα τμήματα της επιφάνειας εργασίας των Windows

1. Τα τμήματα της επιφάνειας εργασίας των Windows 1. Τα τμήματα της επιφάνειας εργασίας των Windows Εικονίδια συντομεύσεων (αρχείου-φακέλου) Εικονίδια Ανενεργά Ενεργό Επιφάνεια (αρχείου-φακέλου) παράθυρα παράθυρο εργασίας Γραμμή μενού Γραμμή εργαλείων

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης

ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης ΠΡΟΒΛΗΜΑ Ένας μαθητής της Γ γυμνασίου, για να περάσει το μάθημα της Πληροφορικής θα πρέπει να βγάλει γενικό μέσο όρο (ΓΜΟ) 9.5 Το πρόγραμμα που

Διαβάστε περισσότερα

ΤΜΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ

ΤΜΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ ΤΜΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ Τα τμήματα ενός ηλεκτρονικού υπολογιστή είναι: 1. Επεξεργαστής 2. Μνήμη RAM και ROM 3. Κάρτα γραφικών 4. Μητρική Πλακέτα 5. Σκληρός Δίσκος 6. DVD / Blue Ray 7. Τροφοδοτικό

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

Ψηφιακή Εκπαιδευτική Πλατφόρμα, Διαδραστικά Βιβλία και Αποθετήριο Μαθησιακών Αντικειμένων

Ψηφιακή Εκπαιδευτική Πλατφόρμα, Διαδραστικά Βιβλία και Αποθετήριο Μαθησιακών Αντικειμένων Ψηφιακή Εκπαιδευτική Πλατφόρμα, Διαδραστικά Βιβλία και Αποθετήριο Μαθησιακών Αντικειμένων ΑΝΑΖΗΤΗΣΗ ΣΤΟ ΦΩΤΟΔΕΝΤΡΟ Για να αναζητήσετε Μαθησιακά Αντικείμενα στο Φωτόδεντρο χρησιμοποιείστε το πεδίο εισαγωγής

Διαβάστε περισσότερα

Εφαρμογές Πληροφορικής

Εφαρμογές Πληροφορικής Εφαρμογές Πληροφορικής Εγκατάσταση λογισμικού (προγραμμάτων) Ορισμοί Ο ηλεκτρονικός υπολογιστής χωρίζεται σε δύο μέρη, το υλικό και το λογισμικό. Το υλικό αποτελείται από όλα τα εξαρτήματα τα οποία έχουν

Διαβάστε περισσότερα

Κεφάλαιο 5Β (επανάληψη) Εισαγωγή στην Πληροφορική. Τυπικοί χρόνοι πρόσβασης. Μέσος χρόνος πρόσβασης. Ταχύτητα µεταφοράς δεδοµένων

Κεφάλαιο 5Β (επανάληψη) Εισαγωγή στην Πληροφορική. Τυπικοί χρόνοι πρόσβασης. Μέσος χρόνος πρόσβασης. Ταχύτητα µεταφοράς δεδοµένων Κεφάλαιο 5Β (επανάληψη) Εισαγωγή στην Πληροφορική Χειµερινό Εξάµηνο 2006-07 Απόδοση των οδηγών αποθηκευτικών µέσων Μέσος χρόνος πρόσβασης (Average Access Time) Ταχύτητα µεταφοράς δεδοµένων (Data-Transfer

Διαβάστε περισσότερα

Εισαγωγή. E-03: Λειτουργικά Συστήµατα ΙΙ 6. Εαρινό Εξάµηνο 2005-06. Κατανεµηµένα συστήµατα αρχείων. Μέρη κατανεµηµένου συστήµατος αρχείων

Εισαγωγή. E-03: Λειτουργικά Συστήµατα ΙΙ 6. Εαρινό Εξάµηνο 2005-06. Κατανεµηµένα συστήµατα αρχείων. Μέρη κατανεµηµένου συστήµατος αρχείων Εισαγωγή Ε-03: Λειτουργικά Συστήµατα ΙΙ Εαρινό Εξάµηνο 2005-06 «Κατανεµηµένα Συστήµατα Αρχείων (1/2)» ρ. Παναγιώτης Χατζηδούκας (Π..407/80) Σύστηµα αρχείων Αποθήκευση, προσπέλαση και διαχείριση δεδοµένων

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ ΔΕΔΟΜΕΝΩΝ ΣΤΗΝ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Μηχανισμοί Ελέγχου Προσπέλασης)

ΑΣΦΑΛΕΙΑ ΔΕΔΟΜΕΝΩΝ ΣΤΗΝ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Μηχανισμοί Ελέγχου Προσπέλασης) ΑΣΦΑΛΕΙΑ ΔΕΔΟΜΕΝΩΝ ΣΤΗΝ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Μηχανισμοί Ελέγχου Προσπέλασης) Καλλονιάτης Χρήστος Επίκουρος Καθηγητής Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας, Πανεπιστήμιο Αιγαίου http://www.ct.aegean.gr/people/kalloniatis

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ Τμήμα Εφαρμοσμένης Πληροφορικής ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εξάμηνο Α' Φύλλο Ασκήσεων 3 ΔΟΜΕΣ ΕΠAΝΑΛΗΨΗΣ Διδάσκοντες: Μάγια Σατρατζέμη, Αλέξανδρος Χατζηγεωργίου, Ηλίας Σακελλαρίου, Στέλιος Ξυνόγαλος

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 21: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 2009 2010 Γραπτή Εργασία #3 Παράδοση: 28 Μαρτίου 2010 Άσκηση 1 (15 µονάδες) Ένας επεξεργαστής υποστηρίζει τόσο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 7 Ο. Αριθμητικές πράξεις Τυχαίοι αριθμοί Εφαρμογές σε προβλήματα ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 7 Ο. Αριθμητικές πράξεις Τυχαίοι αριθμοί Εφαρμογές σε προβλήματα ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 7 Ο Αριθμητικές πράξεις Τυχαίοι αριθμοί Εφαρμογές σε προβλήματα ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Οι αριθμητικές πράξεις που εκτελούνται στον υπολογιστή αποτελούν το

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΛΥΚΕΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 10 /6 / 2015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα