1 Fuchs. Fuchs. Gauss (1.1) (α) n := α(α + 1) (α + n 1) Bessel Riemann. [MUI], [WW] Gauss. (1.2) x(1 x) d2 u dx 2 + ( γ (α + β + 1)x ) du
|
|
- Αθος Γαλάνη
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Fuchs Kac-Moody root 1 Gauss 1. Fuchs (1.1) F (α, β, γ; x) = n=0 (α) n (β n ) x n (γ) n n!, (α) n := α(α + 1) (α + n 1) Bessel Riemann [MUI], [WW] Gauss (1.2) x(1 x) d2 u dx 2 + ( γ (α + β + 1)x ) du dx αβu = 0 1 Fuchs Fuchs n n Riemann P 1 (C) {c 0,..., c p } X 1. X U U O(U) n n F(U), U F(U) F (1.3) X U V : = F(V ) = F(U) V 2. F(U) 0 F(U) u(x) C, N, ɛ (1.4) u(x) < C x N (0 < x < ɛ) U {x C ; e iθ x / R + } θ R 3. n n 1 Wronskian X F(U) Wronskian X c 0 =
2 F P P u = 0 (1.5) ( p P = (x c j ) n) d n n 1 dx n + ( p a k (x) (x c j ) k) d k dx k, k=0 a k (x) C[x], deg a k (x) (n k)(p 1). Fuchs 2. F(U) P u = 0 u 1 (x),...,u n (x) u ν (x) x λ ν log k ν x. (λ ν, k ν ) (ν = 1,..., n). {λ ν ; ν = 1,..., n} {0, 1,..., n 1} Gauss, 0, 1, {α, β}, {0, 1 γ}, {0, γ α β} Riemann scheme (2.1) x = x = 0 x = 1 α 0 0 ; x β 1 γ γ α β F ũ = (ũ 1,..., ũ n ) c j γ j M j M j (2.2) q γ 3 γ 0 γ γ 2 1 c 0 c 1 c 2 γ i γ j (ũ) = γ j (ũm i ) = γ j (ũ)m i = ũm j M i, M p M p 1 M 1 M 0 = I n. c j λ j,1,..., λ j,n M j e 2πiλ j,1,..., e 2πiλ j,n λ j,ν λ j,ν / Z (1 ν < ν n) M j Fuchs (α 1 ) ν (α n ) ν (2.3) nf n 1 (α 1,..., α n, β 1,..., β n 1 ; x) = (β 1 ) ν (β n 1 ) ν ν! xν, 0, 1 1 n 1 1 0, 1,..., n 2 2 ν=0
3 Jordan-Pochhammer, c j p + 1 p, c j j = 1,..., p) 0,..., p 2 p 1 λ, λ + 1,..., λ + p 1 λ x λ p c j {[λ j,1 ] (mj,1),..., [λ j,nj ] (mj,nj )} (2.4) {λ j,ν + k ; k = 0,..., m j,ν 1, ν = 1,..., n j } (2.5) λ j,ν λ j,ν / Z n = m j,1 + + m j,nj λ j,ν = λ j,1 (ν = 2,..., n j ) (2.4) Jordan n m j,1 + + m j,nj dual [Os5] Riemann scheme x = c 0 c 1 c p [λ 0,1 ] (m0,1 ) [λ 1,1 ] (m1,1 ) [λ p,1 ] (mp,1 ) (2.6) {λ m } :=..... ; x [λ 0,n0 ] (m0,n0 ) [λ 1,n1 ] (m1,n1 ) [λ p,np ] (mp,np ) p + 1 n (2.7) n = m j,1 + + m j,nj (j = 0,..., p) F P Jordan-Pochhammer Riemann scheme x = 0 1 (2.8) (2.9) 1 β 1 [0] (n 1) α 1.. ; x, n α ν = ν=1 n β ν, ν=1 1 β n 1 α n 1 0 β n α n x = c 1 c p [λ 0] (p 1) [0] (p 1) [0] (p 1) ; x, (p 1)λ 0 + λ 0 λ 1 λ p p λ j = p 1 j=0 1 n, n 11, 1 n p 11, p 11,, p 11 }{{} p+1 n = 2, p = 2 Gauss 11, 11, 11 3
4 m = {m j,ν } 0 j p 1 ν n j (2.10) m j,ν = nδ ν,1, n j = 1 n p + 1 n = ord m (j > p), m j,ν = 0 (ν > n j ) {λ m } Fuchs Riemann scheme (GRS) Fuchs (FC) n p j (2.11) {λ m } := m j,ν λ j,ν ord m + idx m = 0. (2.12) (2.13) j=0 ν=1 ( p idx(m, m ) := lim p j=0 ν=1 idx m := idx(m, m). m j,ν m j,ν (p 1) ord m ord m ),. m Fuchs (FC) generic λ j,ν GRS) {λ m } F Fuchs m irreduciblyrealizable Fuchs 3. Kac-Moody root (3.1) I := {0, (j, ν) ; j = 0, 1,..., ν = 1, 2,...}. α i (i I) h s i W Kac-Moody root (Π, W ) α i W Weyl (3.2) Π = {α i ; i I} = {α 0, α j,ν ; j = 0, 1, 2,..., ν = 1, 2,...}. (3.3) (3.4) I := I \ {0}, Π := Π \ {α 0 }, Q := α Π Zα Q + := α Π Z 0 α. (3.5) (α α) = 2 (α Π), (α 0 α j,ν ) = δ ν,1, 0 (i j or µ ν > 1), (α i,µ α j,ν ) = 1 (i = j and µ ν = 1). 4 α 0 α 0,1 α 0,2 α 1,1 α 1,2 α 2,1 α 2,2 α 3,1 α 3,2
5 (α α) 0 α h s α (3.6) (3.7) s α : h x x 2 (x α) (α α) α h, s i = s αi for i I. = re im + = Q + (3.8) (3.9) (3.10) re := W Π (), re + := re Q +, im + := W B () B := {β Q + ; supp β is connected and (β, α) 0 im := im + im, im := im +. ( α Π)}, w W, α Q (3.11) (3.12) (3.13) (w) + := re + w 1 re, L(w) := # (w) +, h(α) := n 0 + n j,ν for α = n 0 α 0 + n j,ν α j,ν Q. j 0 ν 1 j 0 ν 1 w = s i1 s i2 s ik i ν I w W minimal expression (3.14) (w) + = { α ik, s ik (α ik 1 ), s ik s ik 1 (α ik 2 ),..., s ik s i2 (α i1 ) }. α + wα B {α 0 } w W w (α) + := (w) + h (3.15) (3.16) (3.17) (3.18) (3.19) h := {Λ = λ i α i Cα i ; λ j,1 = 0 (j 1)}, i I i I Λ 0 := 1 2 α i=ν+1 (1 ν)α j,ν, j=0 ν=1 Λ j,ν := (i ν)α j,i (j = 0,..., p, ν = 0, 1, 2,...), Λ 0 := 2Λ 0 2Λ 0,0 = α 0 + (1 + ν)α 0,ν + (1 ν)α j,ν, ν=1 ν=1 Λ 0 j,k := Λ j,0 Λ k,0 = ν(α k,ν α j,ν ) (0 j < k). ν=1 (3.20) (3.21) (3.22) (Λ 0 α) = (Λ 0 j,k α) = 0 ( α Π), (Λ j,ν α j,ν ) = δ j,j δ ν,ν (j, j = 0, 1,..., ν, ν = 1, 2,...), (Λ j,0 α i ) = δ i,0 ( i Π). 5
6 4. reduction. u(x) (x c j ) λj u(x) (4.1) Ad ( (x c j ) λ j ) : x x, (x c j ) d dx (x c j) d dx λ j addition gauge fractional Euler (4.2) u(x) µ u(x) = 1 Γ(µ) (4.3) µ : d dx d dx, x c j (x s) µ 1 u(s)ds x d dx x d dx µ Weyl. Weyl P P u(x) = 0 u(x) u(x) v(x) v(x) Qv(x) = 0 Q Weyl. P (2.6) GRS (1.5) Fuchs addition Ad ( ) (x c j ) λ j l = (l0,..., l p ) Z p+1 0 Euler (4.4) l P := Ad ( p p (x c j ) λ j,l j ) (x c j ) m j,l j d l (m) m 0,l 0 Ad( 1 λ 0,l0 λ p,l p ) (p 1)n m 1,l 1 m p,l p a 1 n (x) n (x c j ) n m ( p j,l j Ad (x c j ) λ j,l j )P. d l (m) := m 0,l0 + + m p,lp (p 1) ord m. l P m = l m, GRS {λ m } = l{λ m } λ j,ν Fuchs generic (4.5) m j,ν = m j,ν δ ν,lj d l (m), λ j,ν = λ j,ν + (1 δ ν,lj 2δ j,0 )µ, µ = λ 0,l0 + + λ p,lp 1 (4.6) ord l m = ord m d l (m). m j,lj 0 l m ord l m d l (m) l l l max (m) (4.7) m j,lmax (m) j = max{m j,1,..., m j,nj } max m = lmax(m)(m) d max (m), max {λ m } max P m irreducibly realizable K reduction (4.8) ord m > ord max m > ord 2 maxm > > ord K maxm, ord K m = 1 or d max ( K maxm) 0. 6
7 {λ m } Kac-Moody Schlesinger [CB] (4.9) α l := α 0 + l j 1 j=0 ν=1 α m := ord m α 0 + Λ(λ) := Λ 0 + p j=0 ν=1 α j,ν re +, p j=0 ν=1 i=ν+1 m j,i α j,ν Q +, λ j,ν (Λ j,ν 1 Λ j,ν ) h := h /CΛ 0. { Pm : Fuchs with {λ m } } { } (Λ(λ), α m ) ; α m + l, addition W -action, +τλ 0 0,j { Pm : Fuchs with {λ m } } { (Λ(λ), α m ) ; α m + }. P m Kac-Moody root system α m m : rigid α re + : supp α α 0 m : monotone α Q + : (α β) 0 ( β Π ) m : realizable kα : k Z >0, α +, supp α α 0 m : irreducibly realizable α +, supp α α 0 indivisible or (α α) < 0 m : basic and monotone α Q + : (α β) 0 ( β Π) indivisible α + : (α α m ) = 1 ( α (m) + ) m: simply reducible and monotone (α β) 0 ( β Π ) (α α 0 ) > 0, α α 0, indivisible ord m n 0 : α = n 0 α 0 + i,ν n i,να i,ν idx(m, m ) (α m α m ) l s αl {λ m } (Λ(λ), m) {λ m } (Λ(λ) α m α m ) 4.1 ( [Os5]). m irreducibly realizable {λ m } GRS (1.5) P m (λ, g 1,..., g N ) Fuchs λ j,ν generic m simply reducible {λ m } GRS Fuchs (g 1,..., g N ) C N g 1,..., g N (4.10) N = idx m. P m (λ, g) (x, λ, g) g i 1 g i x ν dj dx j 7
8 irreducibly realizable m idx m = 2 rigid m indivisible {m j,ν } 1 basicindivisible d max (m) 0 monotone m j,1 m j,2 m j,3 m idx m (cf. [Os3]). idx m = 0 affine root D 4, Ẽ6, Ẽ7, Ẽ8 4 cf. [Ko]idx m = 2 13 [Os3] irreducible realizable m reduction (4.8) (4.11) ord i maxm = ord i 1 maxm 1 (i = 1,..., K) m simply reducible simply reducible non-rigid m idx m (cf. [Os5]) rigid simply reducible 21111, 222, 33 Simpson in [Si] (cf. [MWZ]) order type name partitions n H n hypergeometric family 1 n, 1 n, n 11 2m EO 2m even family 1 2m, mm 11, mm 2m + 1 EO 2m+1 odd family 1 2m+1, mm1, m + 1m 6 X 6 extra case , 222, 42 rigid m ord m [Os5] or reduction (5.1) P m (λ)u = (). m irreducible realizable (5.1) (5.2) (Λ(λ) α) / Z ( α (m) + ). (5.3) (m) + := (α m ) +. c 0 = 0, c 1 = 1m 0,n0 = 1 x = 0 u 0,n0 x λ 0,n 0 1 x = 1 u 1,n1 (1 x) λ 1,n 1 c(λ 0,n0 λ 1,n1 ). 5.2 (). l 0 n 0, l 1 n 1 l Z p 1 {λ m } = l{λ m } P m (λ )v = 0 c (λ 0,n 0 λ 1,n 1 ) (5.4) c (λ 0,n 0 λ 1,n 1 ) Γ(λ 0,n 0 λ 0,1 + 1)Γ(λ 1,1 λ 1,n 1 ) = c(λ 0,n0 λ 1,n1 ) Γ(λ 0,n0 λ 0,1 + 1)Γ(λ 1,1 λ 1,n1 ). 8
9 m rigid m 1,n1 = m 2,n2 = 1 c(λ 1,n1 λ 2,n2 ) cf. (4.8) (4.8) {λ(k) m(k) } = k max{λ m } k = 0,..., Kλ(k) j,max = λ(k) j,lmax (m(k)) j 5.3 (). m rigid m 1,n1 = 1, c 0 =, c 1 = 1 x = 0 λ 1,n1 u(x) u(x) u(x) x λ1,n 1 (5.5) (5.6) u(x) := K 1 k=0 s0 0 K 1 k=0 Γ ( λ(k) 1,n1 λ(k) 1,max + 1 ) Γ ( λ(k) 1,n1 λ(k) 1,max + µ(k) + 1 ) Γ ( µ(k) ) sk 1 K 1 0 s λ(k) 1,n 1 K (s k s k+1 ) µ(k) 1 k=0 ( ( sk s k+1 ) λ(k)1,max p j=2 p j=2 p ( = x λ 1,n 1 1 x ) λ(0)j,max c j K 1 i=0 K j=2 ( 1 c 1 j s k ) ) λ(k)j,max 1 c 1 j s k+1 ( 1 s ) K λ(k)j,max s0 dsk ds 1 c j =x (ν j,k ) 2 j p Z (p 1)K 0 1 k K ( λ(i)1,n1 λ(i) 1,max + 1 ) p s=2 K t=i+1 ν s,t ( λ(i)1,n1 λ(i) 1,max + µ(i) + 1 ) p i=1 s=2 ( ) p λ(i 1)s,max λ(i) s,max ν s,i! ν s,i s=2 K t=i+1 ν s,t p s=2 ( x c s ) K i=1 ν s,i. 5.4 (). m rigid m j,nj = 1 j = 0, 1, 2, c 0 = (5.7) ɛ j,ν = δ j,1 δ ν,n1 δ j,2 δ ν,n2, ɛ j,ν = δ j,0 δ ν,n0 δ j,2 δ ν,n2 j = 0,..., p, ν = 1,..., n j. u λ (x) (5.1) x = c 1 λ j,ν generic (5.8) u λ (x) (x c 1 ) λ1,n 1 (5.9) K 1 u λ (x) = u λ+ɛ (x) + (c 1 c 2 ) ν=0 λ(ν + 1) 1,n1 λ(ν) 1,l(ν)1 + 1 λ(ν) 1,n1 λ(ν) 1,l(ν)1 + 1 u λ+ɛ (x). cf. [Os2], [Os6] Gauss (1.2) α, β, α γ, β γ / Z Gauss F (α, β, γ; 1) = Γ(γ)Γ(γ α β) Γ(γ α)γ(γ β) 9
10 F (α, β, γ; x) = 3 Γ(γ) Γ(α)Γ(γ α) x 0 x γ+1 (x s) α+γ 1 s α 1 (1 s) β ds F (α + 1, β, γ; x) F (α, β, γ; x) = βx F (α + 1, β + 1, γ + 1; x) γ References [CB] W. Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspaces and sum zero, Duke Math. J. 118 (2003), [DG] M. Dettweiler and S. Reiter, An algorithm of Katz and its applications to the inverse Galois problems, J. Symbolic Comput. 30 (2000), [DG2], Middle convolution of Fuchsian systems and the construction of rigid differential systems. J. Algebra 318 (2007), [Ha] Y. Haraoka, Integral representations of solutions of differential equations free from accessory parameters, Adv. Math. 169 (2002), [Ha2], 7,, [HF] Y. Haraoka and G. M. Filipuk, Middle convolution and deformation for Fuchsian systems, J. Lond. Math. Soc. 76 (2007), [Kc] V. C. Kac, Infinite dimensional Lie algebras, Third Edition, Cambridge Univ. Press [Ka] N. M. Katz, Rigid Local Systems, Annals of Mathematics Studies 139, Princeton University Press, [Ko] V. P. Kostov, The Deligne-Simpson problem for zero index of rigidity, Perspective in Complex Analysis, Differential Geometry and Mathematical Physics, World Scientific 2001, [MWZ] P. Magyar, J. Weyman and A. Zelevinski, Multiple flag variety of finite type, Adv. in Math. 141 (1999), [MUI] III 1960 [Os1] T. Oshima, Heckman-Opdam hypergeometric functions and their specializations, Harmonische Analysis und Darstellungstheorie Topologischer Gruppen, Mathematisches Forschungsinstitut Oberwolfach, Report 49 (2007), [Os2], Okubo, a computer program for Katz/Yokoyama/Oshima algorithms on MS- Windows, ftp://akagi.ms.u-tokyo.ac.jp/pub/math/okubo/okubo.zip, [Os3], Classification of Fuchsian systems and their connection problem, arxiv: , preprint, 2008, 29pp. [Os4], Katz s middle convolution and Yokoyama s extending operation, arxiv: , 2008, 18pp. [Os5], Fractional calculus of Weyl algebra and Fuchsian differential equations, preprint, 176pp, [Os6], muldif.rr, a library of the calculation of differential operators for computer algebra Risa/Asir, ftp://akagi.ms.u-tokyo.ac.jp/pub/math/muldif/, [Si] C. T. Simpson, Products of Matrices, Canadian Math. Soc. Conference Proceedings 12, AMS, Providence RI (1991), [Si2], Katz s middle convolution algorithm, 53 pp, arxiv:math/ [WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth Edition, 1927, Cambridge University Press. [Yo] T. Yokoyama, Construction of systems of differential equations of Okubo normal form with rigid monodromy, Math. Nachr. 279 (2006),
Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
On the k-bessel Functions
International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
The k-bessel Function of the First Kind
International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
AN ELEMENTARY APPROACH TO THE GAUSS HYPERGEOMETRIC FUNCTION
AN ELEMENTARY APPROACH TO THE GAUSS HYPERGEOMETRIC FUNCTION TOSHIO OSHIMA Abstract. We give an introduction to the Gauss hypergeometric function, the hypergeometric equation and their properties in an
ADE. 1 Introduction. (Ryo Fujita) Lie. U q (Lg) U(Lg) Dynkin. Dynkin. Dynkin. 4 A n (n Z 1 ), B n (n Z 2 ), C n (n Z 2 ), D n (n Z 4 )
ADE (Ryo Fujita) 1 Introduction Lie g U(g) q 2 q q Hopf Drinfeld- U q (g) C S 1 g U(g) q U q (g) U(Lg) q U q (Lg) Lg := g C[t ±1 ] Lie U q (Lg) 2 R ADE Lie g U q (Lg) ADE Dynkin Dynkin Q Dynkin Q Hernandez-Leclerc
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì
Discriminantal arrangement
Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.
( ),.,,, 1, [17]. 1. 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K. 1.2. Σ g g. M g, Σ g. g 1 Σ g,, Σ g Σ g. Σ g, M g,, Σ g.. g = 1, M 1 M 1, SL(2, Z). Q. g = 2, 2000 M 2 (Korkmaz [20], Bigelow Budney [5])., Bigelow
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Wishart α-determinant, α-hafnian
Wishart α-determinant, α-hafnian (, JST CREST) (, JST CREST), Wishart,. ( )Wishart,. determinant Hafnian analogue., ( )Wishart,. 1 Introduction, Wishart. p ν M = (µ 1,..., µ ν ) = (µ ij ) i=1,...,p p p
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS
Òðóäû ÁÃÒÓ 07 ñåðèÿ ñ. 9 54.765.... -. -. -. -. -. : -. N. P. Mozhey Belarusian State University of Inforatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS In this article we present
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.
338-8570 255 e-mail: tkishimo@rimath.saitama-u.ac.jp 1 C T κ(t ) 1 [Projective] κ = κ =0 κ =1 κ =2 κ =3 dim = 1 P 1 elliptic others dim = 2 P 2 or ruled elliptic surface general type dim = 3 uniruled bir.
Diderot (Paris VII) les caractères des groupes de Lie résolubles
Βιογραφικο Σημειωμα Μ. Ανουσης Προσωπικά στοιχεία Εκπαίδευση Μιχάλης Ανούσης Πανεπιστήμιο Αιγαίου 83200 Καρλόβασι Σάμος Τηλ.: (3022730) 82127 Email: mano@aegean.gr 1980 Πτυχίο από το Τμήμα Μαθηματικών
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ
Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
The q-commutators of braided groups
206 ( ) Journal of East China Normal University (Natural Science) No. Jan. 206 : 000-564(206)0-0009-0 q- (, 20024) : R-, [] ABCD U q(g).,, q-. : R- ; ; q- ; ; FRT- : O52.2 : A DOI: 0.3969/j.issn.000-564.206.0.002
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
Math-Net.Ru Общероссийский математический портал
Mth-Net.u Общероссийский математический портал М. Ю. Ватолкин, О собственных функциях и собственных значениях одной квазидифференциальной краевой задачи второго порядка, Изв. ИМИ УдГУ, 25, выпуск 246),
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Τίτλος Μαθήματος: Ειδικές Συναρτήσεις
Τίτλος Μαθήματος: Ειδικές Συναρτήσεις Ενότητα: Ολοκληρώματα Lommel Όνομα Καθηγήτριας: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.
Γεώργιος Ακρίβης Προσωπικά στοιχεία Έτος γέννησης 1950 Τόπος γέννησης Χρυσοβίτσα Ιωαννίνων Εκπαίδευση 1968 1973,, Ιωάννινα. Μαθηματικά 1977 1983,, Μόναχο, Γερμανία. Μαθηματικά, Αριθμητική Ανάλυση Ακαδημαϊκές
. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u
. (1) Nehari c (c, 2c) 2c Bahri- Coron Bahri-Lions (2) Hénon u = x α u p α (3) u(x) u(x) + u(x) p = 0... (1) 1 Ω R N f : R R Neumann d 2 u + u = f(u) d > 0 Ω f Dirichlet 2 Ω R N ( ) Dirichlet Bahri-Coron
GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES
GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES RICHARD J. MATHAR Abstract. The manuscript provides tables of abscissae and weights for Gauss- Laguerre integration on 64, 96 and 128
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q
40 4 Vol 40 No 4 206 7 Journal of Jiangxi Normal UniversityNatural Science Jul 206 000-586220604-033-07 p q -φ 2 * 330022 Nevanlinna p q-φ 2 p q-φ p q-φ O 74 52 A DOI0 6357 /j cnki issn000-5862 206 04
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))
Drinfeld Drinfeld 29 8 8 11 Drinfeld [Hat3] 1 p q > 1 p A = F q [t] A \ F q d > 0 K A ( ) k( ) = A/( ) A K Laurent F q ((1/t)) 1/t C Drinfeld Drinfeld p p p [Hat1, Hat2] 1.1 p 1.1.1 k M > 0 { Γ 1 (M) =
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
GegenbauerC3General Notations Traditional name Gegenbauer function Traditional notation C Ν Λ z Mathematica StandardForm notation GegenbauerCΝ, Λ, z Primary definition 07.4.0.000.0 C Λ Ν z Λ Π Ν Λ F Ν,
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
ΜΑΡΙΑ Χ. ΠΑΠΑΤΡΙΑΝΤΑΦΥΛΛΟΥ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ
ΜΑΡΙΑ Χ. ΠΑΠΑΤΡΙΑΝΤΑΦΥΛΛΟΥ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Ημερομηνία και τόπος γέννησης: 27 Οκτωβρίου 1955, Αθήνα. Οικογενειακή κατάσταση: Εγγαμη, με ένα παιδί. Διεύθυνση κατοικίας: Αριστάρχου 24, Αργυρούπολη 164
Ευρετικές Μέθοδοι. Ενότητα 3: Ευρετικές μέθοδοι αρχικοποίησης και βελτίωσης για το TSP. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής
Ευρετικές Μέθοδοι Ενότητα 3: Ευρετικές μέθοδοι αρχικοποίησης και βελτίωσης για το TSP Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]
(Akihiko Inoue) Graduate School of Science, Hiroshima University (Yukio Kasahara) Graduate School of Science, Hokkaido University Mohsen Pourahmadi, Department of Statistics, Texas A&M University 1, =
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA
DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation
: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00
: 2010 9 6 ( ) 9 10 : 1. 9/6( ) 10:20 12:40 GL(2) Hecke ( ) 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 16:45 18:15 GL(2) I ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 9/7( ) 7:00 9:00 9:15 10:30 GL(2)
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Lecture 10 - Representation Theory III: Theory of Weights
Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)
On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) 1 1 Introduction (E) {1+x 2 +β(x,y)}y u x (x,y)+{x+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y)
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
Θεοδώρα Θεοχάρη Αποστολίδη
Θεοδώρα Θεοχάρη Αποστολίδη Καθηγήτρια Τμήμα Μαθηματικών Σχολής Θετικών Επιστημών ΠΕΡΙΛΗΠΤΙΚΟ Β Ι Ο Γ Ρ Α Φ Ι Κ Ο Σ Η Μ Ε Ι Ω Μ Α Θεσσαλονίκη 2014 ΓΕΝΙΚΑ Ετος γέννησης : 1947, Τόπος: Πύργος Ηλείας Οικογενειακή
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
f O(U) (f n ) O(Ω) f f n ; L (K) 0(n )
30 11 http://www.ozawa.phys.waseda.ac.jp/index2.html Ω C OΩ M Ω f M Ω Polf C PC RC 1 Ω C K C K Ω 1 K U Ω U f OU f n OΩ f f n ; L K 0n 2 K U Ω U f OU f n OΩ f f n ; L K 0n 3 z Ω \ K f OΩ f; L K < fz 4 K
Cyclic or elementary abelian Covers of K 4
Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3
ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko
M a t h e m a t i c a B a l k a n i c a New Series Vol. 26, 212, Fasc. 1-2 On Some Generalizations of Classical Integral Transforms Nina Virchenko Presented at 6 th International Conference TMSF 211 Using
Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±
Ó³ Ÿ. 2009.. 6, º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ Œ ˆ ˆ Œ ˆŒ ˆ ˆ ˆ ˆ ˆ Ÿ Œ ƒ ˆ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ÿ. ʲ ±μ ± ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï Œ É ³ É Î ±μ ±μ³
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Estimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
n+1 v2 2 1 + x 3 1 + x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =
Κεφάλαιο 2 Λείες πολλαπλότητες Σύνοψη Παρουσιάζουμε τον ορισμό μιας λείας (διαφορικής) πολλαπλότητας και αναλύουμε δύο βασικά παραδείγματα, τη μοναδιαία σφαίρα και τον προβολικό χώρο. Στη συνέχεια, μελετάμε
DEIM Forum 2016 G7-5 152-8565 2-12-1 152-8565 2-12-1 889-1601 5200 E-mail: uragaki.k.aa@m.titech.ac.jp,,,.,,,,,,, 1. 1. 1,,,,,,.,,,,, 1. 2 [1],,,,, [2] (, SPM),,,,,,,. [3],, [4]. 2 A,B, A B, B A, B, 2,,,
ΚΩΝΣΤΑΝΤΙΝΟΣ Σ. ΠΟΛΙΤΗΣ Διπλ. Φυσικός Πανεπιστημίου Πατρών Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ
ΚΩΝΣΤΑΝΤΙΝΟΣ Σ. ΠΟΛΙΤΗΣ Διπλ. Φυσικός Πανεπιστημίου Πατρών Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΒΙΟΓΡΑΦΙΚΑ ΣΤΟΙΧΕΙΑ 1.1 ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ Επώνυμο ΠΟΛΙΤΗΣ Όνομα Όνομα πατρός Διεύθυνση Ηλ. διεύθυνση
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]
1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter
The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points
Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,
Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function
Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function March 22, 2013 References: A. Knapp, Lie Groups Beyond an Introduction. Ch V Fulton-Harris, Representation
Discretization of Generalized Convection-Diffusion
Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion
Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants
Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants F. Kleefeld and M. Dillig Institute for Theoretical Physics III, University of Erlangen Nürnberg, Staudtstr.
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Minimal Surfaces PDE as a Monge Ampère Type Equation
Minimal Surfaces PDE as a Monge Ampère Type Equation Dmitri Tseluiko Abstract In the recent Bîlă s paper [1] it was determined the symmetry group of the minimal surfaces PDE (using classical methods).
ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3
ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 Dedicated to Professor Megumi Saigo, on the occasion of his 7th birthday
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
IUTeich. [Pano] (2) IUTeich
2014 12 2012 8 IUTeich 2013 12 1 (1) 2014 IUTeich 2 2014 02 20 2 2 2014 05 24 2 2 IUTeich [Pano] 2 10 20 5 40 50 2005 7 2011 3 2 3 1 3 4 2 IUTeich IUTeich (2) 2012 10 IUTeich 2014 3 1 4 5 IUTeich IUTeich
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev