The ε-pseudospectrum of a Matrix

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "The ε-pseudospectrum of a Matrix"

Transcript

1 The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, / 18

2 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of Problems () The ε-pseudospectrum of a Matrix Feb 16, / 18

3 Let A M n (C) matrix. () The ε-pseudospectrum of a Matrix Feb 16, / 18

4 Let A M n (C) matrix. Spectrum of A σ(a) = {λ C det(λi A) = 0} () The ε-pseudospectrum of a Matrix Feb 16, / 18

5 Let A M n (C) matrix. Spectrum of A σ(a) = {λ C det(λi A) = 0} Positive Semi-definite matrix M = M and σ(m) R + () The ε-pseudospectrum of a Matrix Feb 16, / 18

6 Let A M n (C) matrix. Spectrum of A σ(a) = {λ C det(λi A) = 0} Positive Semi-definite matrix M = M and σ(m) R + M = AA () The ε-pseudospectrum of a Matrix Feb 16, / 18

7 Let A M n (C) matrix. Spectrum of A σ(a) = {λ C det(λi A) = 0} Positive Semi-definite matrix M = M and σ(m) R + M = AA Singular values of A { s s σ(aa )} () The ε-pseudospectrum of a Matrix Feb 16, / 18

8 Let A M n (C) matrix. Spectrum of A σ(a) = {λ C det(λi A) = 0} Positive Semi-definite matrix M = M and σ(m) R + M = AA Singular values of A { s s σ(aa )} s i (A) i th largest singular value of A () The ε-pseudospectrum of a Matrix Feb 16, / 18

9 Let A M n (C) matrix. Spectrum of A σ(a) = {λ C det(λi A) = 0} Positive Semi-definite matrix M = M and σ(m) R + M = AA Singular values of A { s s σ(aa )} s i (A) i th largest singular value of A Spectral Norm of A A = max x =1 Ax 2 = s 1 (A) () The ε-pseudospectrum of a Matrix Feb 16, / 18

10 Let A M n (C) matrix. Spectrum of A σ(a) = {λ C det(λi A) = 0} Positive Semi-definite matrix M = M and σ(m) R + M = AA Singular values of A { s s σ(aa )} s i (A) i th largest singular value of A Spectral Norm of A A = max x =1 Ax 2 = s 1 (A) Note: The spectrum of A is an unstable. Invertibility is affected quickly even by small perturbations. Some generalizations of the spectrum are 1 numerical range 2 polynomial numerical hull 3 pseudospectrum () The ε-pseudospectrum of a Matrix Feb 16, / 18

11 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of Problems () The ε-pseudospectrum of a Matrix Feb 16, / 18

12 The ε Pseudospectrum Let A M n (C), a norm on M n (C), and ε > 0 () The ε-pseudospectrum of a Matrix Feb 16, / 18

13 The ε Pseudospectrum Let A M n (C), a norm on M n (C), and ε > 0 σ ε (A) = {z C z σ(a + E) for some E with E < ε} σ ε (A) = {z C (z A)v < ε for some v with v = 1} σ ε (A) = {z C (zi A) 1 1 ε } () The ε-pseudospectrum of a Matrix Feb 16, / 18

14 The ε Pseudospectrum Let A M n (C), a norm on M n (C), and ε > 0 σ ε (A) = {z C z σ(a + E) for some E with E < ε} σ ε (A) = {z C (z A)v < ε for some v with v = 1} σ ε (A) = {z C (zi A) 1 1 ε } If is the spectral norm, then σ ε (A) = {z C s n (zi A) ε} () The ε-pseudospectrum of a Matrix Feb 16, / 18

15 Pseudospectral Radius and Abscissa Pseudospectral Radius ρ ε (A) = max z σ ε z The radius of the smallest circle centered at the origin containing σ ε (A) () The ε-pseudospectrum of a Matrix Feb 16, / 18

16 Pseudospectral Radius and Abscissa Pseudospectral Radius ρ ε (A) = max z σ ε z The radius of the smallest circle centered at the origin containing σ ε (A) Pseudospectral Abscissa ρ ε (A) = max z σ ε Re(z) The rightmost vertical support line of σ ε (A) () The ε-pseudospectrum of a Matrix Feb 16, / 18

17 Goal To completely describe the geometry of the pseudospectrum of a matrix. () The ε-pseudospectrum of a Matrix Feb 16, / 18

18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of Problems () The ε-pseudospectrum of a Matrix Feb 16, / 18

19 Reducing Properties () The ε-pseudospectrum of a Matrix Feb 16, / 18

20 Reducing Properties ) 1 σ ε (diag(d 1,, d n ) () The ε-pseudospectrum of a Matrix Feb 16, / 18

21 Reducing Properties ) 1 σ ε (diag(d 1,, d n ) = n D(d i, ε) i=1 () The ε-pseudospectrum of a Matrix Feb 16, / 18

22 Reducing Properties ) 1 σ ε (diag(d 1,, d n ) = n D(d i, ε) i=1 2 σ ε (UAU ) = σ ε (A) for any unitary U () The ε-pseudospectrum of a Matrix Feb 16, / 18

23 Reducing Properties ) 1 σ ε (diag(d 1,, d n ) = n D(d i, ε) i=1 2 σ ε (UAU ) = σ ε (A) for any unitary U 3 If A is normal, i.e. AA = A A, then σ ε (A) = z σ(a) D(z, ε) () The ε-pseudospectrum of a Matrix Feb 16, / 18

24 Reducing Properties ) 1 σ ε (diag(d 1,, d n ) = n D(d i, ε) i=1 2 σ ε (UAU ) = σ ε (A) for any unitary U 3 If A is normal, i.e. AA = A A, then σ ε (A) = 4 σ ε (A 1 A 2 ) = σ ε (A 1 ) σ ε (A 2 ) z σ(a) D(z, ε) () The ε-pseudospectrum of a Matrix Feb 16, / 18

25 Reducing Properties ) 1 σ ε (diag(d 1,, d n ) = n D(d i, ε) i=1 2 σ ε (UAU ) = σ ε (A) for any unitary U 3 If A is normal, i.e. AA = A A, then σ ε (A) = 4 σ ε (A 1 A 2 ) = σ ε (A 1 ) σ ε (A 2 ) z σ(a) D(z, ε) 5 σ ε (αi + βa) = α + βσ ε β (A) () The ε-pseudospectrum of a Matrix Feb 16, / 18

26 Reducing Properties ) 1 σ ε (diag(d 1,, d n ) = n D(d i, ε) i=1 2 σ ε (UAU ) = σ ε (A) for any unitary U 3 If A is normal, i.e. AA = A A, then σ ε (A) = 4 σ ε (A 1 A 2 ) = σ ε (A 1 ) σ ε (A 2 ) z σ(a) D(z, ε) 5 σ ε (αi + βa) = α + βσ ε β (A) 6 σ ε (A ) = σ ε (A) () The ε-pseudospectrum of a Matrix Feb 16, / 18

27 Containment Properties 1 σ(a) σ ε (A) () The ε-pseudospectrum of a Matrix Feb 16, / 18

28 Containment Properties 1 σ(a) σ ε (A) 2 If ε 1 ε 2, then σ ε1 (A) σ ε2 (A) () The ε-pseudospectrum of a Matrix Feb 16, / 18

29 Containment Properties 1 σ(a) σ ε (A) 2 If ε 1 ε 2, then σ ε1 (A) σ ε2 (A) 3 σ ε E (A) σ ε (A + E) σ ε+ E (A) () The ε-pseudospectrum of a Matrix Feb 16, / 18

30 Containment Properties 1 σ(a) σ ε (A) 2 If ε 1 ε 2, then σ ε1 (A) σ ε2 (A) 3 σ ε E (A) σ ε (A + E) σ ε+ E (A) 4 If κ(x ) = X X 1 = s1(x ) s n(x ), then σ ε κ(s) (SAS 1 ) σ ε (A) σ εκ(s) (SAS 1 ) () The ε-pseudospectrum of a Matrix Feb 16, / 18

31 Containment Properties 1 σ(a) σ ε (A) 2 If ε 1 ε 2, then σ ε1 (A) σ ε2 (A) 3 σ ε E (A) σ ε (A + E) σ ε+ E (A) 4 If κ(x ) = X X 1 = s1(x ) s n(x ), then σ ε κ(s) (SAS 1 ) σ ε (A) σ εκ(s) (SAS 1 ) 5 If u, v are unit vectors such that X v = λv and u X = λu, then κ(λ) = 1/ u v. If A has n distinct eigenvalues, then σ ε (A) D(λ, εκ(λ)) λ σ(a) () The ε-pseudospectrum of a Matrix Feb 16, / 18

32 Containment Properties 1 σ ε (A) λ W (A) D(λ, ε) () The ε-pseudospectrum of a Matrix Feb 16, / 18

33 Containment Properties 1 σ ε (A) D(λ, ε) λ W (A) 2 σ ε (A) D(λ, ε + dep(a)) λ σ(a) () The ε-pseudospectrum of a Matrix Feb 16, / 18

34 Containment Properties 1 σ ε (A) D(λ, ε) λ W (A) 2 σ ε (A) D(λ, ε + dep(a)) λ σ(a) 3 If A = [a ij ] and r j = n a jk, then k=1 j n σ ε (A) D(a jj, r j + ε n) j=1 () The ε-pseudospectrum of a Matrix Feb 16, / 18

35 Geometric Properties 1 σ ε (A) has at most n connected components () The ε-pseudospectrum of a Matrix Feb 16, / 18

36 Geometric Properties 1 σ ε (A) has at most n connected components 2 Each connected component contains at least one eigenvalue of A () The ε-pseudospectrum of a Matrix Feb 16, / 18

37 Geometric Properties 1 σ ε (A) has at most n connected components 2 Each connected component contains at least one eigenvalue of A [ ] xi A ɛi 3 z = x + iy σ ε (A) if and only if iy is an eigenvalue of ɛi A xi () The ε-pseudospectrum of a Matrix Feb 16, / 18

38 Geometric Properties 1 σ ε (A) has at most n connected components 2 Each connected component contains at least one eigenvalue of A [ ] xi A ɛi 3 z = x + iy σ ε (A) if and only if iy is an eigenvalue of ɛi A xi 4 σ ε (A) has no flat portions () The ε-pseudospectrum of a Matrix Feb 16, / 18

39 Geometric Properties 1 σ ε (A) has at most n connected components 2 Each connected component contains at least one eigenvalue of A [ ] xi A ɛi 3 z = x + iy σ ε (A) if and only if iy is an eigenvalue of ɛi A xi 4 σ ε (A) has no flat portions 5 σ ε (A) generally not convex, nor simply-connected () The ε-pseudospectrum of a Matrix Feb 16, / 18

40 Geometric Properties 1 σ ε (A) has at most n connected components 2 Each connected component contains at least one eigenvalue of A [ ] xi A ɛi 3 z = x + iy σ ε (A) if and only if iy is an eigenvalue of ɛi A xi 4 σ ε (A) has no flat portions 5 σ ε (A) generally not convex, nor simply-connected 6 If σ ε (A) = n D(z i, ε) such that D(z j, ε) D(z i, ε) for all j. Then A is normal. i=1 i=1 j () The ε-pseudospectrum of a Matrix Feb 16, / 18

41 Geometric Properties 1 σ ε (A) has at most n connected components 2 Each connected component contains at least one eigenvalue of A [ ] xi A ɛi 3 z = x + iy σ ε (A) if and only if iy is an eigenvalue of ɛi A xi 4 σ ε (A) has no flat portions 5 σ ε (A) generally not convex, nor simply-connected 6 If σ ε (A) = n D(z i, ε) such that D(z j, ε) D(z i, ε) for all j. Then A is normal. i=1 i=1 j 7 If σ ε (A) = σ ε (B) for any ε, then σ ε (A) and σ ε (B) have the same minimal polynomial. () The ε-pseudospectrum of a Matrix Feb 16, / 18

42 Geometric Properties 1 σ ε (A) has at most n connected components 2 Each connected component contains at least one eigenvalue of A [ ] xi A ɛi 3 z = x + iy σ ε (A) if and only if iy is an eigenvalue of ɛi A xi 4 σ ε (A) has no flat portions 5 σ ε (A) generally not convex, nor simply-connected 6 If σ ε (A) = n D(z i, ε) such that D(z j, ε) D(z i, ε) for all j. Then A is normal. i=1 i=1 j 7 If σ ε (A) = σ ε (B) for any ε, then σ ε (A) and σ ε (B) have the same minimal polynomial. Converse is not true. () The ε-pseudospectrum of a Matrix Feb 16, / 18

43 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of Problems () The ε-pseudospectrum of a Matrix Feb 16, / 18

44 2 2 Matrix Reduction () The ε-pseudospectrum of a Matrix Feb 16, / 18

45 2 2 Matrix Reduction [ ] a b Let A = with σ(a) = {λ 1, λ 2 } c d () The ε-pseudospectrum of a Matrix Feb 16, / 18

46 2 2 Matrix Reduction [ ] a b Let A = with σ(a) = {λ 1, λ 2 } c d = σ ε (A) = (a+d) 2 + σ ε ([ a d 2 b c d a 2 ]) () The ε-pseudospectrum of a Matrix Feb 16, / 18

47 2 2 Matrix Reduction [ ] a b Let A = with σ(a) = {λ 1, λ 2 } c d = σ ε (A) = (a+d) 2 + σ ε ([ a d 2 b c d a 2 ]) ([ã ]) b = α + e iβ σ ε c ã () The ε-pseudospectrum of a Matrix Feb 16, / 18

48 2 2 Matrix Reduction [ ] a b Let A = with σ(a) = {λ 1, λ 2 } c d = σ ε (A) = (a+d) 2 + σ ε ([ a d 2 b c d a 2 ]) = σ ε (A) = σ ε (UAU ) = α + e iβ σ ε ([ r s ([ã ]) b = α + e iβ σ ε c ã 0 r ]), where () The ε-pseudospectrum of a Matrix Feb 16, / 18

49 2 2 Matrix Reduction [ ] a b Let A = with σ(a) = {λ 1, λ 2 } c d = σ ε (A) = (a+d) 2 + σ ε ([ a d 2 b c d a 2 ]) = σ ε (A) = σ ε (UAU ) = α + e iβ σ ε ([ r s ([ã ]) b = α + e iβ σ ε c ã 0 r ]), where α = λ1+λ2 2 and re 2iβ = (λ 1 λ 2 ) 2 and s = tr((a αi )(A αi ) ) 2r 2 () The ε-pseudospectrum of a Matrix Feb 16, / 18

50 2 2 Matrices [ ] r s Let A = 0 r () The ε-pseudospectrum of a Matrix Feb 16, / 18

51 2 2 Matrices [ ] r s Let A = 0 r If r = 0, then () The ε-pseudospectrum of a Matrix Feb 16, / 18

52 2 2 Matrices [ ] r s Let A = 0 r If r = 0, then σ ε (A) = D(0, ε 2 + εs) () The ε-pseudospectrum of a Matrix Feb 16, / 18

53 2 2 Matrices [ ] r s Let A = 0 r If r = 0, then σ ε (A) = D(0, ε 2 + εs) If r 0, then any z = x + iy σ ε (A) satisfies () The ε-pseudospectrum of a Matrix Feb 16, / 18

54 2 2 Matrices [ ] r s Let A = 0 r If r = 0, then σ ε (A) = D(0, ε 2 + εs) If r 0, then any z = x + iy σ ε (A) satisfies y 2 + x 2 + ε2 s 2 4r 2 2 ( ε 2 + r 1 + s2 4r 2 ) y 2 + x 2 + ε2 s 2 4r 2 r 2 ( ε s2 4r 2 ) 0 () The ε-pseudospectrum of a Matrix Feb 16, / 18

55 2 2 Matrices 1 ρ ε (A) = e iθ ρ ε (A 1 ) () The ε-pseudospectrum of a Matrix Feb 16, / 18

56 2 2 Matrices 1 ρ ε (A) = e iθ ρ ε (A 1 ) 2 α ε (A) = tr(a) 2 + α ε (A 0 ) () The ε-pseudospectrum of a Matrix Feb 16, / 18

57 2 2 Matrices 1 ρ ε (A) = e iθ ρ ε (A 1 ) 2 α ε (A) = tr(a) 2 + α ε (A 0 ) Method of Lagrange Multipliers maximize f (x, y) subject to g(x, y) = c Λ(x, y, λ) = f (x, y) + λ(g(x, y) c) = Λ(x, y, λ) = 0 () The ε-pseudospectrum of a Matrix Feb 16, / 18

58 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of Problems () The ε-pseudospectrum of a Matrix Feb 16, / 18

59 Problems 1 A generalized quadratic matrix is of the form [ ] ai bt A = ct di What can we say about the pseudospectral radius/abscissa of A? 2 Consider real structured ε pseudospectrum of A M n (R) σ R ε (A) = {z σ(a + E) E M n (R), E < ε} 3 Consider Special types of nonnormal Matrices. () The ε-pseudospectrum of a Matrix Feb 16, / 18

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

On Numerical Radius of Some Matrices

On Numerical Radius of Some Matrices International Journal of Mathematical Analysis Vol., 08, no., 9-8 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/ijma.08.75 On Numerical Radius of Some Matrices Shyamasree Ghosh Dastidar Department

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

A Hierarchy of Theta Bodies for Polynomial Systems

A Hierarchy of Theta Bodies for Polynomial Systems A Hierarchy of Theta Bodies for Polynomial Systems Rekha Thomas, U Washington, Seattle Joint work with João Gouveia (U Washington) Monique Laurent (CWI) Pablo Parrilo (MIT) The Theta Body of a Graph G

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

About these lecture notes. Simply Typed λ-calculus. Types

About these lecture notes. Simply Typed λ-calculus. Types About these lecture notes Simply Typed λ-calculus Akim Demaille akim@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées Many of these slides are largely inspired from Andrew D. Ker

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

x j (t) = e λ jt v j, 1 j n

x j (t) = e λ jt v j, 1 j n 9.5: Fundamental Sets of Eigenvector Solutions Homogenous system: x 8 5 10 = Ax, A : n n Ex.: A = Characteristic Polynomial: (degree n) p(λ) = det(a λi) Def.: The multiplicity of a root λ i of p(λ) is

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Divergence for log concave functions

Divergence for log concave functions Divergence or log concave unctions Umut Caglar The Euler International Mathematical Institute June 22nd, 2013 Joint work with C. Schütt and E. Werner Outline 1 Introduction 2 Main Theorem 3 -divergence

Διαβάστε περισσότερα

The Jordan Form of Complex Tridiagonal Matrices

The Jordan Form of Complex Tridiagonal Matrices The Jordan Form of Complex Tridiagonal Matrices Ilse Ipsen North Carolina State University ILAS p.1 Goal Complex tridiagonal matrix α 1 β 1. γ T = 1 α 2........ β n 1 γ n 1 α n Jordan decomposition T =

Διαβάστε περισσότερα

X = [ 1 2 4 6 12 15 25 45 68 67 65 98 ] X X double[] X = { 1, 2, 4, 6, 12, 15, 25, 45, 68, 67, 65, 98 }; double X.Length double double[] x1 = { 0, 8, 12, 20 }; double[] x2 = { 8, 9, 11, 12 }; double mean1

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13 ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

Elliptic Numerical Range of 5 5 Matrices

Elliptic Numerical Range of 5 5 Matrices International Journal of Mathematical Analysis Vol. 11, 017, no. 15, 719-73 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijma.017.7581 Elliptic Numerical Range of 5 5 Matrices Shyamasree Ghosh

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Module 5. February 14, h 0min

Module 5. February 14, h 0min Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα