f O(U) (f n ) O(Ω) f f n ; L (K) 0(n )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "f O(U) (f n ) O(Ω) f f n ; L (K) 0(n )"

Transcript

1 Ω C OΩ M Ω f M Ω Polf C PC RC 1 Ω C K C K Ω 1 K U Ω U f OU f n OΩ f f n ; L K 0n 2 K U Ω U f OU f n OΩ f f n ; L K 0n 3 z Ω \ K f OΩ f; L K < fz 4 K Ω K Ω : {z Ω; fz f; L K f OΩ} : K = K Ω 5 Ω \ K V V Ω 6 Ω \ K V V Ω 7 Ω \ K V V Ω 8 Ω \ K V V Ω 1

2 Ω K Ω K 0 r<1/4 r Ω={z C; r< z < 1}, K= {z C; 2r z 1/2} Ω \ K Ω \ K V 1 = {z C; 1/2 < z < 1} V 2 = {z C; r< z < 2r} Ω \ K = V 1 V 2 V 1 V 2 Ω \ K V 1 = {z C; 1/2 z 1} V 2 = {z C; r z 2r} {z C; z =1} V 1 \ Ω {z C; z = r} V 2 \ Ω V 1 Ω V 2 Ω V 1 Ω ={z C; z =1} V 2 Ω ={z C; z = r} 5-8 Ω={z C; z < 1} 0 <r<1 r K = {z C; r/2 z <r} Ω\K Ω\K V 1 = {z C; r< z < 1} V 2 = {z C; z <r/2} Ω \ K = V 1 V 2 V 1 V 2 Ω \ K V 1 = {z C; r z 1} V 2 = {z C; z r/2} V 1 Ω V 2 Ω V 2 Ω = 5-8 Ω C K C K Ω f OΩ f n ; n Z 1 RC ξ j ;1 j N Ω n Z 1 Polf n ={ξ j ;1 j n} Ω f n f; L K 0n 1/2 n Q n j, k; j, k Z Ω Ω n n Z 1 { } z C;, Q n j, k := Ω n := Int Ω n ; n Z 1 j j +1 Re z 2n 2, k n 2 2 n n Im z k +1 j,k I n Q n j, k, I n := {j, k Z Z; Q n j, k Ω} Ω= n 1 Int Ω n Ω N 0 Z 1 n N 0 n Z 1 K Int Ω n δ 0 := dk, Ω N0 δ 0 > 0 n N 0 δ 0 dk, Ω n dk, Ω n+1 dk, C \ Ω 2

3 N N 0 n N 2 2 n 1 δ 0 n N K Int Ω n, 2 2 δ n 1 0 dk, Ω n dk, Ω n+1 dk, C \ Ω, 2 d Ω n, C \ Ω 2 n Ω N C 1 γ 1/2 N γ 1,,γ N j {1,,N} γ j Q N k, l Ω γ j Q N k,l Ω Q N k,l Q N k, l =γ j Q N k,l Ω Q N k,l ξ j Q N k,l Ω z K ζ γ j 2 ζ ξ j 2 δ 0 N dk, Ω N 1 dk, Ω z ξ j z K ζ γ j 1/z ζ K γ j 1 z ζ = 1 1 ζ ξ j k = z ξ j 1 ζ ξ j z ξ j k+1 z ξ j n Z 1 f n := N R jn, R jn z := 1 2πi f n RC n γ j ζ ξ j k fζdζz ξ j k 1 Polf n ={ξ 1,,ξ N } Ω 3

4 f f n ; L K =sup fz f n z z K N 1 fζ =sup z K 2πi γ ζ z dζ R jn z 1 N 1 n =sup z K 2πi γ j ζ z + ζ ξ j k fζdζ z ξ j k+1 1 N ζ ξ j k =sup fζdζ z K 2πi γ j z ξ j k+1 k=n+1 1 2π f; L Ω N 1 k 1 Lγ δ 0 2 k=n+1 1 = f; L Ω 2 n+1 N Lγ πδ 0 0 n Lγ γ K C V C \ K V a, b Polf ={a} f n RC f n RC n Polf n ={b} f n f; L K 0n f n RC p j ;0 j m m p j z fz =,z C\{a} z a j j=0 a, b V I =[0, 1] γ : I C γi V, γ0 = a, γ0 = b γi K δ := dγi, K δ>0 γ I t ν ;0 ν l 0=t 0 <t 1 < <t l =1, max 1 ν l γt ν γt ν 1 δ 2 a ν = γt ν a 0 = a, a l = b max sup a ν 1 a ν 1 ν l z K z a ν 1 2 K δ/2 1 = 1 1 z a ν 1 z a ν 1 a ν 1 a ν = z a ν j 1 1 z a ν 1 = j j + k! j 1! k! 4 a ν 1 a ν k z a ν k+1 a ν 1 a ν k z a ν k+j+1

5 K R n ν,j RC R ν,j n z := j + k! j 1! k! a ν 1 a ν k z a ν k+j+1,z C \{a ν} j 1 max sup 1 1 ν l z K z a ν 1 j Rν,j n z =max sup j + k! a ν 1 a ν k 1 ν l z K j 1! k! z a ν k+j+1 k=n+1 k max sup j + k! a ν 1 a ν 1 1 ν l z K j 1! k! z a ν z a ν j+1 k=n+1 1 j + k! 1 δ j+1 j 1! k! 2 k 0 k=n+1 n fz =p 0 z+ f 1 n := p 0 + f n 1 RC, Polf n 1 ={a 1 } m m p j z z a 0 j p j R 1,j n f f 1 n ; L K 0 n ε>0 N 1 1 f f n 1 ; L K ε/l f 1 N 1 = p 0 z+ m N 1 k 1 =0 k 1 + j! j 1! k 1! a 0 a 1 k 1 p j z z a 1 k 1+j+1 f 2 n = p 0 + m N 1 k 1 =0 f n 2 RC, Polf n 2 ={a 2 } f 1 k 1 + j! j 1! k 1! a 0 a 1 k 1 p j R 2, k 1+j+1 n N 1 f n 2 ; L K n 5

6 N 2 1 f 1 N 1 f 2 N 2 ; L K ε/l 2 ν l ν N ν 1 f ν n := p 0 + m N 1 k 1 =0 N ν 1 k ν 1 =0 k k ν 1 + j + ν 2! j 1! p j R ν, k 1+ +k ν 1 +j+ν 1 n ν 1 μ=1 a μ 1 a μ kμ k μ! f ν n RC, Polf n ν ={a ν } f n := f l n f f n ; L K f f 1 N 1 ; L K + ν 1 max f N 2 ν l 1 ν 1 f ν N ν ; L K ε/l f n RC, Polf n ={b} l 1 ν=2 f ν 1 N ν 1 l 1 ε + f l 1 N l l 1 f n l ; L K lim sup n f ν N ν ; L K + f l 1 N l 1 f n l ; L K f f n ; L K l 1 ε + lim f l 1 l n N l 1 f n l ; L K = l 1 ε l N l 1 n N l n f f n ; L K <ε f n RC : 1 2: U U 0 K U Ω U f OU U 0 U f U 0 OU U U 0 f U 0 f OU : K K Ω 3 4 K K Ω z 0 K Ω \ K z 0 K Ω \ K : f OΩ, fz 0 f; L K 6

7 5 6: 6 7 8: V Ω V Ω=Ω Ω V Ω V Ω = V Ω = V Ω V Ω V Ω 1 5: Ω\ K V V Ω V K V K a V \ K V V Ω a Ω \ K Ω \ K a ε - Ba; ε Ω \ K a V Ba; ε V Ba; ε V Ω \ K V Ba; ε V V V K V V K f OΩ f; L V = f; L V f; L K z 0 V z 0 K δ := dz 0,K > 0 U := {z Ω; dz, K <δ/2} U K U Ω z 0 U z U fz = 1 z z 0 f OU 1 f n OΩ sup z K f n f; L K 0 n f n zz z 0 1 =sup z z 0 f n z fz f m f n OΩ z K sup z z 0 f n f; L K 0 n z K f m f n ; L V = f m f n ; L V f m f n ; L K 0 m, n g CV g V OV f n g; L V 0 n 7

8 sup gzz z 0 1 z V =sup z z 0 gz f n z + z z 0 f n z 1 z V sup z z 0 gz f n z +sup z z 0 f n z 1 z V sup z V z V z z 0 g f n ; L V +sup z V f n zz z 0 1 sup z z 0 g f n ; L V +sup f n zz z 0 1 z V z K 0n z V gzz z 0 =1 z = z 0 7 2: U C K U U Ω U f OU ξ j U R jn ; n Z 1 RC j =1,,N : R n = N R jn RC j f n = PolR jn ={ξ j } n Z 1 R n f; L K 0n f j n ; n Z 1 OΩ Rjn f n j ; L K 0n N f j n OΩ f n ξ j U Ω \ K Ω \ K V ξ j V V 7 V Ω η j V Ω V ξ j, η j ξ j, η j K ξ j, η j C \ K n Z 1 R jnl ; l Z 1 RC PolR jnl ={η j } n, l Z 1 R jnl R jn ; L K 0l 8

9 l n ; n Z 1 Z 1 l 1 <l 2 < <l n n R jnln R jn ; L K < 1/n n f j n := R jnln Ω f j n ; n Z 1 OΩ V K B0; r r>0 V C\B0; r V η j C \ B0; r V V ξ j, η j ξ j, η j K ξ j, η j C \ K n Z 1 R jnl ; l Z 1 RC PolR jnl ={η j } n, l Z 1 R jnl R jn ; L K 0l l n ; n Z 1 Z 1 l 1 <l 2 < <l n n R jnln R jn ; L K < 1/n n l k k, l Z 1 1 l sup z K z η j + m! k m k +1!η m+1 z m k+1 m=k 1 j 1 1 =sup z K ηj k 1 z/η j 1 l m k+1 m! z k η j m k +1! η j m=k 1 = 1 η j sup m k+1 m! z k z K m k +1! η j m=l+1 1 m k+1 m! r 0l η j k m k +1! η j m=l+1 p jn ; n Z 1 PC f n j p jn R jnln ; L K < 1/n n := p jn Ω f n j ; n Z 1 OΩ 3 5: Ω\K V V Ω 1 5 V K f OΩ 3 f; L V = f; L V f; L K 9

10 7 3: z 0 Ω \ K δ := dz 0 ; K > 0 Bz 0 ; δ/4 Ω \ K K := K Bz 0 ; δ/4 Ω \ K V V Bz 0 ; δ/4 = Ω \ K 7 V Ω U := K δ/2 Bz 0 ; δ/2, K δ/2 := {z C; dz; K <δ/2} U K U Ω K δ/2 Bz 0 ; δ/2 = K δ/2 g 0 Bz 0 ; δ/2 g 1 g OU K g K f 1 g f OΩ f g; L K < 1/2 f; L K = f g; L K < 1/2 f 1; L Bz 0 ; δ/4 = f g; L Bz 0 ; δ/4 < 1/2 fz 0 = 1 1 fz 0 1 fz f 1; L Bz 0 ; δ/4 > 1/2 > f; L K K C 1 K U U f OU p n PC p n f; L K 0n 2 K U : f OU p n OC p n f; L K n 3 C \ K Ω =C 10

11 Ω C K Ω \ K Ω C K C K Ω V λ ; λ Λ Ω \ K V λ Ω Λ K V λ ; λ Λ K 0 := K λ Λ V λ Λ λ Λ V λ v λ Q 2 V λ λ Λ v λ Q 2 V λ ϕ :Λ λ ϕλ :=v λ Q 2 λ, μ Λ λ μ V λ V μ = ϕ Q 2 ϕλ ϕ :Λ λ ϕλ ϕλ Λ K 0 K 0 K R>0 K B0; R K 0 K 0 B0; 2R K 0 B0; 2R v K 0 v > 2R v v K 0 \ K λ Λ v V λ V := C \ B0; R V V C \ K v V V V λ V λ K 0 K 0 \ K 0 ζ K 0 K 0 = K λ Λ V λ K Ω \ K =Ω K 0 Ω=Ω Ω ζ Ω ζ Ω ζ Ω ζ K 0 ζ Ω \ K Ω \ K V ζ V ζ K 0 V K 0 V z V K 0 V Ω \ K z λ Λ V λ z V λ λ Λ V λ V λ = V V λ ζ Ω δ := dk, C \ Ω > 0 ζ K 0 z n K 0 z n ζn ζ Ω dz n, C \ Ω = inf{ z n ξ ; ξ C \ Ω} inf{ z n ζ + ζ ξ ; ξ C \ Ω} = z n ζ 0n 11

12 dz n, C\Ω <δ/2 z n K 0 Bz n ; dz n, C\Ω Ω \ K z z n <dz n, C \ Ω z C z Ω dz n, C \ Ω = inf{ z ξ ; ξ Ω} z n z dz n, C \ Ω = inf{ z n ξ ; ξ C \ Ω} inf{ z z n + z n ξ ; ξ C \ Ω} = z z n + inf{ z n ξ ; ξ C \ Ω} < 2dz n, C \ Ω <δ z K z n K 0 Ω \ K = λ Λ V λ z n V λ λ Λ B z n ; dz n, C\Ω Ω \ K B z n ; dz n, C\Ω V λ = Ω B z n ; dz n, C\Ω Ω V λ V λ Ω K 0 \ K 0 Ω C K C K Ω K Ω K Ω K Ω := {z Ω; fz f; L K f OΩ} V λ ; λ Λ Ω \ K V λ Ω Λ K Ω K Ω = K λ Λ V λ K 0 K Ω = K 0 K 0 ˆK Ω V λ K Ω λ Λ V λ Ω \ K λ Λ V λ Ω 1 5 V λ K f OΩ f; L V λ = f; L V λ f; L K V λ K Ω K 0 K Ω 12

13 ˆK Ω K 0 K 0 K 0 Ω Ω \ K 0 V V Ω K 0 =K 0 Ωˆ K K 0 K Ω K 0 Ωˆ K Ω K 0 Ωˆ = K 0 Ω C Ω U n ; n Z 1 iii i n Z 1 U n U n U n+1 ii U n Ω U n n Z 1 V n := {z Ω; dz, Ω > 1/n, z <n} V n V n+1 n Z 1, Ω= n Z 1 V n V n V n+1 V n 0 V n+1 \ V n V n+1 Ṽ n V n 0 = V n Ṽn V n 0 W n := IntV n 0 V n V n V n 0 V n =IntV n IntV n 0 = W n W n =V n 0 W n =IntV n 0 V n 0 W n V n 0 =V n 0 V n Ṽn V n 0 V n Ṽn =IntV n Ṽn IntV n 0 = W n V n 0 = V n Ṽn V n Ṽn = V n Ṽn W n U 1 := W 1, n 1 := 1 U 1 = W 1 =V 1 0 Ω n 2 n 1 U 1 V n2 U 2 := W n2 U 1 U 1 V n2 W n2 = U 2 n 1 n 2 n j, U j = W nj, U j V nj+1 j Z 1 U j U j V nj+1 W nj+1 = U j+1 Ω= U j U j U j = W nj =V nj 0 j Z 1 U j Ωˆ = V nj 0 ˆ =V Ω nj 0 = U j U j Ω U j 13

14 Ω C u z = f f :Ω C u :Ω C z := 1 2 x + i y f C0 C z C uz := 1 2πi = 1 π C R 2 fζ dζ d ζ ζ z fζ ζ z dξdη ζ = ξ +iη C R 2 dζ d ζ =dξ +idη dξ idη = 2idξ dη C z uz C u u C C C u z = f Ω C f C Ω u C Ω Ω U n ; n Z 1 ϕ j ; j Z 1 C 0 Ω U j+1 ϕ j =1 ψ 1 = ϕ 1,ψ j = ϕ j ϕ j 1 j 2 j 2 U j ϕ j 1 =1 U j U j+1 ϕ j =1 U j ψ j =0 ψ j ; j Z 1 Ω ψ j =1 f C Ω j 1 fψ j C 0 Ω C\Ω fψ j C 0 C u j C C C u j z = fψ j 14

15 j 2 U j fψ j =0 u j U j ii u j U j OU j Ω U j 1 j 2 v j OΩ u j v j ; L U j 1 2 j v 1 OΩ u := u j v j k 2 u j v j U j OU j u j v j Ω C Ω u j v j j=k L U k 1 u j v j U k 1 OU k 1 u = j=k u j v j Ω u C Ω u z = z u j v j = z u j = fψ j = f u C Ω Ω C U λ ; λ Λ f λμ O ; λ, μ Λ 2 I, Λ 2 I := {λ, μ Λ2 ; U λ U μ } iii i alternating condition λ, μ Λ 2 I U λ U μ f λμ = f μλ ii cocycle condition λ, μ, ν Λ 3 I := {λ, μ, ν Λ3 ; U λ U μ U ν } U λ U μ U ν f λμ + f μν + f νλ =0 f λ OU λ ; λ Λ λ, μ Λ 2 I U λ U μ f λμ = f μ f λ 15

16 ϕ λ ; λ Λ U λ ; λ Λ λ Λ ϕ λ C 0 Ω; R ϕ λ 0 U λ supp ϕ λ U λ Ω K {λ Λ; supp ϕ λ K} 1 λ Λ ϕ λ =1 Ω λ Λ g λ := μ Λ λ ϕ μ f μλ Λ λ := {μ Λ; λ, μ Λ I } λ, μ Λ 2 I U λ U μ g λ g μ = ϕ ν f νλ f νμ ν Λ λ Λ μ = ϕ ν f νλ + f μν ν Λ λ Λ μ = ϕ ν f λμ ν Λ λ Λ μ = ϕ ν f μλ = f μλ ϕ ν = f μλ ϕ ν = f μλ ν Λ λ Λ μ ν Λ λ Λ μ ν Λ f μλ OU λ U μ U λ U μ g λ z = g μ z λ Λ U λ f U λ := g λ z f :Ω C g λ C Ω f C Ω Ω u z = f u C Ω f λ := g λ + u λ, μ Λ 2 I U λ U μ f λμ = g λ g μ =f λ u f μ u =f λ f μ f λ U λ f λ OU λ f λ z = g λ z + u z = g λ z + f =0 16

17 Ω C U λ ; λ Λ V =f λ M U λ ; λ Λ λ, μ Λ 2 I := {λ, μ Λ2 ; U λ U μ } f μ f λ OU λ U μ f M Ω λ Λ f f λ OU λ λ, μ Λ I f λμ := f μ f λ OU λ U μ f λμ = f μ f λ = f λ f μ = f μλ, f λμ + f μν + f νλ =f μ f λ +f ν f μ +f λ f ν =0 f λμ ;λ, μ Λ I g λ OU λ ; λ Λ λ, μ Λ 2 I U λ U μ f λμ = g μ g λ λ, μ Λ 2 I U λ U μ f μ f λ = g μ g λ OU λ U μ U λ U μ f μ g μ = f λ g λ M U λ U μ λ Λ U λ f U λ := f λ g λ f M Ω f f λ = g λ OU λ X V F V U V U, V ι V U : F V F U 17

18 S0 U ι U U : F U F U U V W U, V, W ι W V : F W F V, ι V U : F V F U, ι W U : F W F U compatibility condition ι V U ι W V F = F V, ι V U X presheaf of vector spaces on X X presheaf on X X F X Ω U =U λ ; λ Λ { F U λ := f :Λ } F U λ ; λ Λ, fλ F U λ λ Λ λ Λ = ι W U f =f λ ; λ Λ λ Λ F U λ f λ ; λ Λ + g λ ; λ Λ := f λ + g λ ; λ Λ af λ ; λ Λ := af λ ; λ Λ λ Λ F U λ Λ 2 I := {λ, μ Λ2 ; U λ U μ } F U λμ := f :Λ2 I F U λμ ; λ, μ Λ 2 I,fλ, μ F U λμ λ,μ Λ 2 I λ,μ Λ 2 I f =f λμ ;λ, μ Λ 2 I U λμ := U λ U μ F U λμ λ,μ Λ 2 I fλμ ;λ, μ Λ 2 I + gλμ ;λ, μ Λ 2 I := fλμ + g λμ ;λ, μ ΛI 2 a f λμ ;λ, μ ΛI 2 := afλμ ;λ, μ Λ 2 I F U λμ λ,μ Λ 2 I f F Ω λ Λ ι Ω U λ f F U λ εf := ι Ω U λ f; λ Λ εf λ Λ F U λ f,g F Ω εf + g = ι Ω U λ f + g; λ Λ = ι Ω U λ f+ι Ω U λ g; λ Λ = ι Ω U λ f; λ Λ + ι Ω U λ g; λ Λ = εf+εg, εaf = ι Ω U λ af; λ Λ = aι Ω U λ f; λ Λ = a ι Ω U λ f; λ Λ = aεf 18

19 ε : F Ω f εf λ Λ F U λ f λ ; λ Λ F U λ λ, μ Λ 2 I λ Λ ι U λ f λ F δ f λ ; λ Λ := δ f λ ; λ Λ F U λμ λ,μ Λ 2 I f λ ; λ Λ, g λ ; λ Λ λ Λ F U λ ιuμ f μ ι Uμ f μ ι U λ f λ ; λ, μ Λ 2 I δ f λ ; λ Λ + g λ ; λ Λ = δ f λ + g λ ; λ Λ = ι Uμ f μ + g μ ι U λ f λ + g λ ; λ, μ Λ 2 I = ι Uμ f μ ι U λ f λ + ι Uμ g μ ι U λ g λ ;λ, μ Λ 2 I = ι Uμ f μ ι U λ f λ ; λ, μ Λ 2 I + ι Uμ g μ ι U λ g λ ; λ, μ Λ 2 I = δ f λ ; λ Λ + δ g λ ; λ Λ, δ af λ ; λ Λ = δ af λ ; λ Λ = ι Uμ af μ ι U λ af λ ; λ, μ Λ 2 I = a ι Uμ f μ ι U λ f λ ;λ, μ Λ 2 I = a ι Uμ f μ ι U λ f λ ; λ, μ Λ 2 I = aδ f λ ; λ Λ δ : λ Λ F U λ f λ ; λ Λ δ f λ ; λ Λ F U λμ λ,μ Λ 2 I 0 F Ω ε F U λ δ F U λμ 4.1 λ Λ λ,μ Λ 2 I 0 {0} 0 F Ω f F Ω S0 δ εf =δ ι Ω U λ f; λ Λ = ι Uμ ι Ω U μ f ι U λ ι Ω Uλ f ;λ, μ Λ 2 I = ι Ω f ι Ω f; λ, μ Λ 2 I = 0; λ, μ Λ 2 I =0 19

20 δ ε =0 Im ε Ker δ ε : F Ω λ Λ F U λ Ker ε =0 S1 S1 f F Ω λ Λ ι Ω U λ f =0 f =0 Im ε Ker δ Im ε = Ker δ S2 S2 f λ ; λ Λ λ Λ F U λ λ, μ Λ 2 I ι U λ f λ =ι Uμ f μ f F Ω λ λ ι Ω U λ f =f λ X F Ω U S1S2 Ω U 4.1 exact sequence X sheaf on X F X p Z 0 U F p alternating p-cochain module { C p U, F := f = f λ0 λ p ;λ 0,,λ p Λ p+1 I F U λ0 λ p ; λ 0,,λ p Λ p+1 I f λσ0 λ σp =sgnσf λ0 λ p σ S p+1 } U λ0 λ p := p j=0 U λj Λ p+1 I := { λ 0,,λ p Λ p+1 ; U λ0 λ p } S p+1 {0,,p} p +1sgnσ σ p =0 C 0 U, F = λ Λ F U λ f C p U, F λ 0,,λ p Λ p+1 I p+1 δf λ0 λ p+1 := 1 k ι Uλ 0 λ k λ p+1 U λ0 λ p+1 f λ0 λ k λ p+1 λ k λ k 20

21 δf λ0 λ p+1 F U λ0 λ p+1 σ S p+2 p+1 δf λσ0 λ σp+1 = 1 k ι Uλ σ0 λ k λ σp+1 p+1 = p+1 = U λσ0 λ σp+1 f λσ0 λ k λ σp+1 1 k ι Uλ σ0 λ k λ σp+1 U λσ0 λ σp+1 sgnσf λ0 λ k λ p+1 1 k sgnσι Uλ σ0 λ k λ σp+1 U λσ0 λ σp+1 f λ0 λ k λ p+1 p+1 =sgnσ 1 k ι Uλ σ0 λ k λ σp+1 U λσ0 λ f σp+1 λ0 λ k λ p+1 =sgnσδf λ0 λ σp+1 δf C p+1 U, F U V ι V U δ : Cp U, F f δf C p+1 U, F δ p f C p U, F δ p+1 δ p f =δ p+1 δ p f p+2 = 1 k ι Uλ 0 λ k λ p+2 δ p f λ0 λ k λ p+2 p+2 = U λ0 λ p+2 1 k ι Uλ 0 λ k λ p+2 U λ0 λ p+2 j<k 1 j ι Uλ 0 λ j λ k λ p+2 U f λ0 λ λ0 λ k λ p+2 j λ k λ p+2 + j>k 1 j 1 ι Uλ 0 λ k λ j λ p+2 U f λ0 λ λ0 λ k λ p+2 k λ j λ p+2 p+2 = 1 k 1 j ι Uλ 0 λ j λ k λ p+2 U λ0 λ f p+2 λ0 λ j λ k λ p+2 j<k p+2 1 k 1 j ι Uλ 0 λ k λ j λ p+2 U λ0 λ f p+2 λ0 λ k λ j λ p+2 j>k p+2 = 1 j+k ι Uλ 0 λ j λ k λ p+2 f λ0 λ j λ k λ p+2 j<k U λ0 λ p+2 p+2 1 j+k ι Uλ 0 λ k λ j λ p+2 j=0 k<j U λ0 λ p+2 p+2 = 1 j+k ι Uλ 0 λ j λ k λ p+2 =0 j<k U λ0 λ p+2 p+2 1 k+j ι Uλ 0 λ j λ k λ p+2 j<k U λ0 λ p+2 f λ0 λ k λ j λ p+2 f λ0 λ j λ k λ p+2 f λ0 λ j λ k λ p+2 21

22 δ p+1 δ p =0 C p U, F δ p δ p 1 Z p U, F := Ker δ p B p U, F :=Imδ p 1 p p-cocycle module p p-coboundary module B 0 U, F =0 δ p+1 δ p =0 B p U, F Z p U, F H p U, F :=Z p U, F /B p U, F H p U, F U F p cohomology module of order k p =0 H 0 U, F =FΩ iii Ω U =U λ ; λ Λ OΩ f λμ ; λ, μ Λ 2 I OΩ U U OΩ U V ι V U : F V f f U OU f λμ Z 1 U, OΩ f λμ B 1 U, OΩ Ω C U OΩ p 1 H p U, OΩ = 0,,,,,, F. Haslinger, Complex Analysis, De Gruyter 22

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0 u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ

Διαβάστε περισσότερα

f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z)

f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z) Ω f: Ω C l C z Ω f f(w) f(z) z a w z = h 0,h C f(z + h) f(z) h = l. z f l = f (z) Ω f Ω f Ω H(Ω) n N C f(z) = z n h h 0 h z + h z h = h h C f(z) = z f (z) = f( z) f f: Ω C Ω = { z; z Ω} z, a Ω f (z) f

Διαβάστε περισσότερα

X t m X t Y t Z t Y t l Z t k X t h x Z t h z Z t Y t h y z X t Y t Z t E. G γ. F θ. z Θ Γ. γ F θ

X t m X t Y t Z t Y t l Z t k X t h x Z t h z Z t Y t h y z X t Y t Z t E. G γ. F θ. z Θ Γ. γ F θ R X t m X t Y t Z t Y t l Z t k X t hxz t hzz t Y t hy z X t Y t Z t E F { f( y z; θ); θ Θ R p } θ G { g( y z; γ); γ Γ R q } γ ΘΓ z ΘΓ F θ θ γ F θ G γ G γ E [] = () h( y, z) dydz h( z) () h( y z) dydz

Διαβάστε περισσότερα

To Je rhma tou Mergelyan

To Je rhma tou Mergelyan Diplwmatik ErgasÐa To Je rhma tou Mergelyan gia omoiìmorfh sôgklish poluwnômwn se sumpag uposônola tou migadikoô epipèdou. Ν. Παττακός Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Άνοιξη 008 Την Επιτροπή Εξέτασης

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, εαρινό εξάμηνο Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3.

Συναρτησιακή Ανάλυση, εαρινό εξάμηνο Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3. Συναρτησιακή Ανάλυση, εαρινό εξάμηνο 2016-17. Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3. 1. Αν ο X είναι χώρος Bnch, αποδείξτε ότι ο X είναι αυτοπαθής

Διαβάστε περισσότερα

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -

Διαβάστε περισσότερα

?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 2008)

ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 2008) ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 008) Για τον Γεωμετρικό Τόπο των Ριζών της συνάρτησης μεταφοράς as + s + 9 G(s) s(s 5)(s + b) με Κ>0 δίδεται ότι η τομή των ασυμπτώτων είναι το σημείο σ -(0+Ν 0 ) όπου Ν 0 το τελευταίο

Διαβάστε περισσότερα

Τριμελής εξεταστική επιτροπή: Επίκουρος Καθηγητής Πέτρος Γαλανόπουλος Καθηγητής Δημήτριος Μπετσάκος (επιβλέπων) Λέκτορας Ανέστης Φωτιάδης iii

Τριμελής εξεταστική επιτροπή: Επίκουρος Καθηγητής Πέτρος Γαλανόπουλος Καθηγητής Δημήτριος Μπετσάκος (επιβλέπων) Λέκτορας Ανέστης Φωτιάδης iii Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμα Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σύμμορφα αναλλοίωτες ποσότητες στο μιγαδικό επίπεδο και σχέσεις μεταξύ τους Διπλωματική Εργασία Χριστίνα Καραφυλλιά

Διαβάστε περισσότερα

f p = lim (1 a n ) < n=0

f p = lim (1 a n ) < n=0 Πανειστήμιο Κρήτης Τμήμα Μαθηματικών Συντελεστές Taylor συναρτήσεων σε χώρους Hardy Καλλιόη Παολίνα Κουτσάκη Ειβλέων Καθηγητής: Μιχαήλ Πααδημητράκης Ειτροή: Μιχαήλ Κολουντζάκης, Θεμιστοκλής Μήτσης και

Διαβάστε περισσότερα

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³

Διαβάστε περισσότερα

o-r sub ff i-d m e s o o t h-e i-l mtsetisequa tob t-h-colon sub t e b x c u t-n n g dmenson.. ndp a

o-r sub ff i-d m e s o o t h-e i-l mtsetisequa tob t-h-colon sub t e b x c u t-n n g dmenson.. ndp a M M - - - - q -- x - K - W q - - x x - M q j x j x K W D M K q 6 W x x A j ˆ K ė j x ˆ D M [ 6 C ˆ j ˆ ˆ ˆ ˆ j M ˆ x ˆ A - D ˆ ˆ D M ˆ ˆ K x [ 6 ˆ C + M D ˆ ˆ + + D ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ + x 9 M S C : 4 R 9

Διαβάστε περισσότερα

, 犔 γ. ρ 狌 2 犕 犆. ρ 狌 犆 犇 ( 犚 犇 ( 犚 + 犚犖

, 犔 γ. ρ 狌 2 犕 犆. ρ 狌 犆 犇 ( 犚 犇 ( 犚 + 犚犖 5 5 9 ( ) JournalofXiamenUniversity(NaturalScience) Vol.5 No.5 Sep.!"#$% ( 365) &':!"#$%&' " %()*./ 3456789:; 犔 < = >?@AB. :C)D E E ; ; ;/ (): O75 *.: A */): 438 479 ()5 87 6 ' FGH I)JK " %()*. / [ ] 狋

Διαβάστε περισσότερα

Differential forms and the de Rham cohomology - Part I

Differential forms and the de Rham cohomology - Part I Differential forms and the de Rham cohomology - Part I Paul Harrison University of Toronto October 30, 2009 I. Review Triangulation of Manifolds M = smooth, compact, oriented n-manifold. Can triangulate

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Σωστός σχεδιασµός C ( z ) οδηγεί σε u() t = uc(), t t = kt, k =,,... Για το σχεδιασµό και υλοποίηση της C ( z) απαιτείται βασικά γνώση του µετασχηµατισµού z Ορισµός µετασχηµατισµού z Ζ [ ] ( ) = i f ()

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpeCueWae hp://cw.m.eu 6.13/ESD.13J Elecmagec a pplca, Fall 5 Pleae ue he llwg ca ma: Maku Zah, Ech Ippe, a Dav Sael, 6.13/ESD.13J Elecmagec a pplca, Fall 5. (Maachue Iue Techlgy: MIT OpeCueWae). hp://cw.m.eu

Διαβάστε περισσότερα

CONNECTIVE STRUCTURES ON GERBES AND TWO-VECTOR BUNDLES. Notes by John Rognes. March 6th 2009

CONNECTIVE STRUCTURES ON GERBES AND TWO-VECTOR BUNDLES. Notes by John Rognes. March 6th 2009 CONNECTIVE STRUCTURES ON GERBES AND TWO-VECTOR BUNDLES Notes by John Rognes March 6th 2009 Gerbes and 2-vector bundles Let V be a bipermutative groupoid of finite-dimensional complex vector spaces, under

Διαβάστε περισσότερα

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! #!! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! # % & (! ) & (! (! + & (!, % (! +.! / 0 1 0 2 3 4 1 0 5 6 % 7 8!, %! + 0! # % 0 1 9. 2! 1. 2 8 2 5 : ; 0 % &! & ( ) ; < =2 8 0 ; 0/ =2 8 0 8 2 8 & 8 2 0 8

Διαβάστε περισσότερα

ITU-R SA (2010/01)! " # $% & '( ) * +,

ITU-R SA (2010/01)!  # $% & '( ) * +, (010/01)! " # $% & '( ) * +, SA ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA S RS SA SF SM SNG TF V

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Η Ομάδα SL(2,C) και οι αναπαραστάσεις της

Η Ομάδα SL(2,C) και οι αναπαραστάσεις της SL(2, C) SO(3, 1) D : Λ D(Λ) SO(3, 1) 2 1 D : ±A D(π(±A)) SL(2, C) SL(2, C) SO(3, 1) SL(2, C) SO(3, 1) ξ i (, ) K i x µ p µ J µν T µν A µ ψ α J i = J i, () K i = K i, ( ) K i M 0i = (iξ i K i ) A i = 1

Διαβάστε περισσότερα

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库 ß¼ 0384 9200852727 UDC Î ± À» An Integral Equation Problem With Shift of Several Complex Variables Û Ò ÖÞ Ô ²» Ý Õ Ø ³ÇÀ ¼ 2 0 º 4 Ñ ³ÇÙÐ 2 0 º Ñ Ä ¼ 2 0 º Ñ ÄÞ Ê Ã Ö 20 5  Š¾ º ½ É É Ç ¹ ¹Ý É ½ ÚÓÉ

Διαβάστε περισσότερα

a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k

a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k !" #$%% $&$'$ # %( $)%*&%' '+ &'&% ! " " # $ " " % " & ' # () *+ (, *,-.$ / " " " * $ 0 * " # " $ * $ 0 # % " & ', # ' * # " & #! " # %& *%& $ % & ' " ( z D log! ) * (% % (+, ) " " -. // 0 ', % 0 ', %

Διαβάστε περισσότερα

Microscopie photothermique et endommagement laser

Microscopie photothermique et endommagement laser Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université

Διαβάστε περισσότερα

f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr

f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr - - - * k ˆ v ˆ k ˆ ˆ E x ˆ ˆ [ v ˆ ˆ ˆ ˆ ˆ E x ˆ ˆ ˆ ˆ v ˆ Ex U U ˆ ˆ ˆ ˆ ˆ ˆ v ˆ M v ˆ v M v ˆ ˆ I U ˆ I 9 70 k k ˆ ˆ - I I 9ˆ 70 ˆ [ ˆ - v - - v k k k ˆ - ˆ k ˆ k [ ˆ ˆ D M ˆ k k 0 D M k [ 0 M v M ˆ

Διαβάστε περισσότερα

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014 38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0

Διαβάστε περισσότερα

V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,

Διαβάστε περισσότερα

I = 1. cos z. dz = = 1 z 2 cos z + 2z sin z + 2 cos z 2. z(z π) 3 dz. f(re iθ. f(z)

I = 1. cos z. dz = = 1 z 2 cos z + 2z sin z + 2 cos z 2. z(z π) 3 dz. f(re iθ. f(z) ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση. Χρησιμοποιώντας τους ολοκληρωτικούς τύπους Cauchy υπολογίστε το ολοκλήρωμα I = πi z(z π) 3 dz,

Διαβάστε περισσότερα

March 14, ( ) March 14, / 52

March 14, ( ) March 14, / 52 March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

[Note] Geodesic equation for scalar, vector and tensor perturbations

[Note] Geodesic equation for scalar, vector and tensor perturbations [Note] Geodesic equation for scalar, vector and tensor perturbations Toshiya Namikawa 212 1 Curl mode induced by vector and tensor perturbation 1.1 Metric Perturbation and Affine Connection The line element

Διαβάστε περισσότερα

Μετασχηματισμός Jοukowski κυκλικού κυλίνδρου σε ομοιόμορφη ροή

Μετασχηματισμός Jοukowski κυκλικού κυλίνδρου σε ομοιόμορφη ροή Μετασχηματισμός Jοukowski κυκλικού κυλίνδρου σε ομοιόμορφη ροή Κυκλικός κύλινδρος (ακτίνας r ) βρίσκεται εντός επίπεδης, άτριβης, δυναμικής ροής. Η γωνία πρόσπτωσης της αδιατάρακτης (επ άπειρον) ροής είναι

Διαβάστε περισσότερα

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10] 3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]

Διαβάστε περισσότερα

Conditions aux bords dans des theories conformes non unitaires

Conditions aux bords dans des theories conformes non unitaires Conditions aux bords dans des theories conformes non unitaires Jerome Dubail To cite this version: Jerome Dubail. Conditions aux bords dans des theories conformes non unitaires. Physique mathématique [math-ph].

Διαβάστε περισσότερα

Μεταπτυχιακή Μιγαδική Ανάλυση. Έβδομο φυλλάδιο ασκήσεων, Παραδώστε λυμένες τις 4, 9, 15, 19, 24 και 28 μέχρι

Μεταπτυχιακή Μιγαδική Ανάλυση. Έβδομο φυλλάδιο ασκήσεων, Παραδώστε λυμένες τις 4, 9, 15, 19, 24 και 28 μέχρι Μεταπτυχιακή Μιαδική Ανάλυση Έβδομο φυλλάδιο ασκήσεων, 5--20. Παραδώστε λυμένες τις 4, 9, 5, 9, 24 και 28 μέχρι 22--20.. Θεωρούμε τις καμπύλες (t) = t + it sin t και 2 (t) = t + it 2 sin t ια t (0, ] και

Διαβάστε περισσότερα

Gradient Descent for Optimization Problems With Sparse Solutions

Gradient Descent for Optimization Problems With Sparse Solutions Gradient Descent for Optimization Problems With Sparse Solutions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Chen,

Διαβάστε περισσότερα

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3/5/016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Παραδείγματα Κεραιών Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Δίπολο Hetz L d

Διαβάστε περισσότερα

Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions

Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions ΘΕΩΡΗΜΑΤΑ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΥΞΗΤΙΚΟΤΗΤΑΣ-ΠΑΡΑΛΛΑΓΕΣ ΤΟΥ ΛΗΜΜΑΤΟΣ SCHWARZ ΓΙΑ ΟΛΟΜΟΡΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Γαλάτεια Κλεάνθους Υποστήριξη διδακτορικής διατριβής 25/02/2014 Monotonicity theorems for analytic functions

Διαβάστε περισσότερα

u(x, y) =f(x, y) Ω=(0, 1) (0, 1)

u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω

Διαβάστε περισσότερα

! " # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+

!  # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+ ! " # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+ &) + ) &) $, - &+ $ " % +$ ". # " " (% +/ ". 0 + 0 1 +! 1 $ 2 1 &3 # 2 45 &.6#4 2 7$ 2 2 2! $/, # 8 ! "#" $% & '( %! %! # '%! % " "#" $% % )% * #!!% '

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R)

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R) Α Δ Ι Α - Φ 8 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 20 Δεκεμβρίου

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase

Διαβάστε περισσότερα

Β Χ! Χ ( # %! Δ % ) %

Β Χ! Χ ( # %! Δ % ) % ! # % & ( ) #! % +,. /!, 0. 1 2 (( / 4 5 / 6 5 78 8 / #. 9. : ;. ( 1.< < =. 9 > :? 9 : Α Β Χ! Χ ( # %! Δ % ) % )! & %! Χ! Δ! Ε Χ % Ε &! Β & =! ) Χ Δ!! Δ ) % # # ( ) Δ Β Φ Α :? ) 9:? Γ Η Φ Α :? Ι 9: ϑ,.

Διαβάστε περισσότερα

l dmin dmin p k δ i = m p (p l ) p l µ p BCH µ WB t (q+) l l i m h(x) A B C = A B k SNR rec. db k SNR rec. db SNR rec. db p = p = p = SNR rec. db p = k = q = t k σ p(k;{a i} n i= ) n σ p(n;{a i} n i= )

Διαβάστε περισσότερα

! # %& # () & +( (!,+!,. / #! (!

! # %& # () & +( (!,+!,. / #! (! ! # %& # () & +( (!,+!,. / #! (! 0 1 12!, ( #& 34!5 6( )+(, 7889 / # 4 & #! # %& , & ( () & :;( 4#! /! # # +! % # #!& ( &6& +!, ( %4,!! ( 4!!! #& /

Διαβάστε περισσότερα

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu

Διαβάστε περισσότερα

W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max

Διαβάστε περισσότερα

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø

Διαβάστε περισσότερα

de Rham Theorem May 10, 2016

de Rham Theorem May 10, 2016 de Rham Theorem May 10, 2016 Stokes formula and the integration morphism: Let M = σ Σ σ be a smooth triangulated manifold. Fact: Stokes formula σ ω = σ dω holds, e.g. for simplices. It can be used to define

Διαβάστε περισσότερα

1. Τριγωνοµετρικές ταυτότητες.

1. Τριγωνοµετρικές ταυτότητες. . Τριγωνοµετρικές ταυτότητες. co( y co( co( y i( i( y i( y i( co( y co( i( y ± m (. ± ± (. π m (. 3 co ± i( i ± π ± co( (. co( co ( i ( (. 5 i( i( co( (. 6 j j co( + (. 7 j j j i ( (. 8 ( ( y ( y + ( +

Διαβάστε περισσότερα

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2 AΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Βλ σχολ βιβλίο σελ 5 Α Βλ σχολ βιβλίο σελ Α Σ Σ Σ 4 Σ 5 - Λ ΘΕΜΑ Β Β Η εξίσωση () z ισοδυναμεί με την z z που είναι τριώνυμο με διακρίνουσα 4 διότι 4 Άρα οι ρίζες είναι συζυγείς μιγαδικές

Διαβάστε περισσότερα

Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach. A. Kατάβολος

Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach. A. Kατάβολος Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach A. Kατάβολος Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 1999 Μερική Αναθεώρηση, 2017 Περιεχόμενα 1 Πρώτοι ορισμοί 2 2 Παραδείγματα 3 2.1...................................

Διαβάστε περισσότερα

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6 # % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν

Διαβάστε περισσότερα

6< 7 4) ==4>)? ) >) ) Α< = > 6< 7<)Β Χ< Α< = > ) = ) 6 >) 7<)Ε > 7 ) ) ) ; + ; # % & () & :,% 3 + ;; 7 8 )+, ( ! # % & % ( )! +, % & &.

6< 7 4) ==4>)? ) >) ) Α< = > 6< 7<)Β Χ< Α< = > ) = ) 6 >) 7<)Ε > 7 ) ) ) ; + ; # % & () & :,% 3 + ;; 7 8 )+, ( ! # % & % ( )! +, % & &. 6< 7 4) ==4>)? ) >) )Α< = > 6< 7 )= )6 >) 7 7 ) ) ) ; + ; # % & () 4 5 6 & 7 8 9 & :,% 3+ ;;7 8 )+, (! # % & % ( )! +, % & &. /0 121, 3 &./012 34,51 65 57.8,57 9,(% #85% :;

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 9 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του. Αν η f παρουσιάζει τοπικό

Διαβάστε περισσότερα

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2 Mehanikateoretičnavprašanjainodgovori 1/12 Newtonovamehanika 1. Določiravninogibanjatočkevpoljucentralnesile. Ravninagibanjagreskozicentersileinimanormalovsmerivrtilne količine 2. Zapišiperiodogibanjapremočrtnegagibanjapodvplivompotenciala

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

%78 (!*+$&%,+$&*+$&%,-. /0$12*343556

%78 (!*+$&%,+$&*+$&%,-. /0$12*343556 ! %78 ( 9 :: "#$% $&'"(" )!*$&%,$&*$&%,-. /$*343556 $ $& %$&.;$& $(# $"*("$# $ "$?, !* $&,#$"&::> $&( &$#, #$&# $"#&"& @($&%%>A!" #$ % µ & ' (#$ )! ) * ' "!)!,-./.' ) " $ &

Διαβάστε περισσότερα

Παράδειγμα/πρόβλημα ( ) = y 1. O x. V = y 2. Να βρεθούν οι συντεταγμένες (x,y) συναρτήσει των ( x, y ) του περιστρεφόμενου συστήματος συντεταγμένων Y

Παράδειγμα/πρόβλημα ( ) = y 1. O x. V = y 2. Να βρεθούν οι συντεταγμένες (x,y) συναρτήσει των ( x, y ) του περιστρεφόμενου συστήματος συντεταγμένων Y y Διανύσματα R y V y ĵ î R V î ( 1,0 ) ĵ ( 0,1) R + V (R + V )î + (R y + V y ) ĵ R + V H κατεύυνση του διανύσματος (( R + V ) 2 + ( R y + V y ) 2 ) R + V ϕ rc(tnϕ) rc Ανάλογες σχέσεις ισχύουν και για 3

Διαβάστε περισσότερα

cz+d d (ac + cd )z + bc + dd c z + d

cz+d d (ac + cd )z + bc + dd c z + d T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα

Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα Μιχάλης Παπαδημητράκης Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα 1 Παράγωγος στο. Ας θυμηθούμε ότι μια μιγαδική συνάρτηση f ορισμένη σε ένα υποσύνολο του μιγαδικού επιπέδου λέμε ότι είναι

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach. A. Kατάβολος

Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach. A. Kατάβολος Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach A. Kατάβολος Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 1999 Αναθεώρηση, 2019 Περιεχόμενα 1 Πρώτοι ορισμοί 2 2 Παραδείγματα 3 2.1...................................

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός.

ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός. ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός. gxkarras@gmail.com 2 2 o ΛΥΚΕΙΟ ΓΕΡΑΚΑ- ΚΑΡΡΑΣ 1. Να αποδειχθεί ότι a +

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

MÉTHODES ET EXERCICES

MÉTHODES ET EXERCICES J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com

Διαβάστε περισσότερα

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Α. α) Έστω η συνάρτηση ( ) στο R και ισχύει: f '( ) ηµ f = συν. Να αποδείξετε ότι η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)

Διαβάστε περισσότερα

Επίλυση Προβληµάτων Αρχικών / Συνοριακών Τιµών Μεταδόσεως Θερµότητας

Επίλυση Προβληµάτων Αρχικών / Συνοριακών Τιµών Μεταδόσεως Θερµότητας Επίλυση Προβληµάτων Αρχικών / Συνοριακών Τιµών Μεταδόσεως Θερµότητας Τα προβλήµατα µεταδόσεως θερµότητας (ή θερµικής αγωγιµότητας heat conduction), µε την υπόθεση ισχύος του νόµου Fourier, διέπονται από

Διαβάστε περισσότερα

(a) (3a + 14β) + (2a β)i = 7 i (β) a(1 + i) + β(1 i) = 5 i) (1 + i)2 3 i. a + βi =

(a) (3a + 14β) + (2a β)i = 7 i (β) a(1 + i) + β(1 i) = 5 i) (1 + i)2 3 i. a + βi = ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ-ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ ΕΠΙΜΕΛΕΙΑ: Καρράς Ιωάννης Μαθηματικός Ο μὲν κάλος ὄσσον ἴδην πέλεται κάλος ὀ δὲ κἄγαθος αὔτικα κὔστερον ἔσσεται. gxkarras@gmail.com 1. Να βρείτε τους αριθμούς

Διαβάστε περισσότερα

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α # & ( ) ) +,. /, 1 /. 23 / 4 (& 5 6 7 8 8 9, :;< = 6 > < 6? ;< Β Γ Η. Ι 8 &ϑ Ε ; < 1 Χ6 Β 3 / Κ ;Χ 6 = ; Λ 4 ϑ < 6 Χ ; < = = Χ = Μ < = Φ ; ϑ =

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -

Διαβάστε περισσότερα

On the Einstein-Euler Equations

On the Einstein-Euler Equations On the Einstein-Euler Equations Tetu Makino (Yamaguchi U, Japan) November 10, 2015 / Int l Workshop on the Multi-Phase Flow at Waseda U 1 1 Introduction. Einstein-Euler equations: (A. Einstein, Nov. 25,

Διαβάστε περισσότερα

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018 ΝΙΚΟΛΑΟΣ M. ΣΤΑΥΡΑΚΑΚΗΣ: «Μερικές Διαφορικές Εξισώσεις & Μιγαδικές Συναρτήσεις: Θεωρία και Εφαρμογές» η Έκδοση, Αυτοέκδοση) Αθήνα, ΜΑΡΤΙΟΣ 06, Εξώφυλλο: ΜΑΛΑΚΟ, ΕΥΔΟΞΟΣ: 5084750, ISBN: 978-960-93-7366-

Διαβάστε περισσότερα

z k z + n N f(z n ) + K z n = z n 1 2N

z k z + n N f(z n ) + K z n = z n 1 2N Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά 6..5 Λύσεις Σειράς Ασκήσεων Άσκηση (α) Έστω z το όριο της ακολουθίας z n, δηλ. για κάθε ɛ > υπάρχει N(ɛ) ώστε z n z < ɛ για n > N. Για n > N(ɛ), είναι z n

Διαβάστε περισσότερα

Σύμφωνα με την ισχύουσα ευρωπαϊκή νομοθεσία ( EK 1169/2011) τα συστατικά που δύναται να προκαλέσουν αλλεργίες είναι τα παρακάτω:

Σύμφωνα με την ισχύουσα ευρωπαϊκή νομοθεσία ( EK 1169/2011) τα συστατικά που δύναται να προκαλέσουν αλλεργίες είναι τα παρακάτω: ΛΛΓΓΝ Για ενημέρωση των πελατών που επισκέπτονται καθημερινά τα καταστήματά μας για την προστασία του καταναλωτή που αντιμετωπίζει αλλεργίες, παραθέτουμε πίνακα με τα μας, επισημαίνοντας το είδος των αλλεργιογόνων

Διαβάστε περισσότερα

t ts P ALEPlot t t P rt P ts r P ts t r P ts

t ts P ALEPlot t t P rt P ts r P ts t r P ts t ts P ALEPlot 2 2 2 t t P rt P ts r P ts t r P ts t t r 1 t2 1 s r s r s r 1 1 tr s r t r s s rt t r s 2 s t t r r r t s s r t r t 2 t t r r t t2 t s s t t t s t t st 2 t t r t r t r s s t t r t s r t

Διαβάστε περισσότερα

Ακτινοβολία Hawking. Πιέρρος Ντελής. Εθνικό Μετσόβιο Πολυτεχνείο Σ.Ε.Μ.Φ.Ε. July 3, / 29. Πιέρρος Ντελής Ακτινοβολία Hawking 1/29

Ακτινοβολία Hawking. Πιέρρος Ντελής. Εθνικό Μετσόβιο Πολυτεχνείο Σ.Ε.Μ.Φ.Ε. July 3, / 29. Πιέρρος Ντελής Ακτινοβολία Hawking 1/29 Ακτινοβολία Hawking Πιέρρος Ντελής Εθνικό Μετσόβιο Πολυτεχνείο ΣΕΜΦΕ July 3, 2013 1 / 29 Πιέρρος Ντελής Ακτινοβολία Hawking 1/29 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία

Διαβάστε περισσότερα

ECE 222b Applied Electromagnetics Notes Set 4c

ECE 222b Applied Electromagnetics Notes Set 4c ECE 222b Applied Electromgnetics Notes Set 4c Instructor: Prof. Vitliy Lomkin Deprtment of Electricl nd Computer Engineering University of Cliforni, Sn Diego 1 Cylindricl Wve Functions (1) Helmoholt eqution:

Διαβάστε περισσότερα

Errata 18/05/2018. Chapter 1. Chapter 2

Errata 18/05/2018. Chapter 1. Chapter 2 Errata 8/05/08 Fundamentals of Neutrino Physics and Astrophysics C. Giunti and C.W. Kim Oxford University Press publication date: 5 March 007; 78 pages ± Lines are calculated before or after + the Anchor.

Διαβάστε περισσότερα

f RF f LO f RF ±f LO Ιδανικός μείκτης RF Είσοδος f RF f RF ± f LO IF Έξοδος f LO LO Είσοδος f RF f LO (ω RF t) (ω LO t) = 1 2 [(ω RF + ω LO )t + (ω RF ω LO )t] RF LO IF f RF ± f LO 0 180 +1 RF IF 1 LO

Διαβάστε περισσότερα

!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*

!! # $ % & ' ( !  # '' # $ # #  %( *++* !"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"

Διαβάστε περισσότερα

Τυπολογίο Μαθηµατικών Μεθόδων Φυσικής ΙΙ

Τυπολογίο Μαθηµατικών Μεθόδων Φυσικής ΙΙ . Μέθοδος Frobenius Τυπολογίο Μαθηµατικών Μεθόδων Φυσικής ΙΙ d w Γενική µορφή της γραµµικής.ε. ης τάξης: dz + P (z)dw + Q(z)w = dz Μορφή της.ε. όταν το σηµείο z = z είναι κανονικό ανώµαλο σηµείο d w dz

Διαβάστε περισσότερα

Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1

Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1 Ο αναλυτικός δείκτης και η χαρακτηριστική του Euler 1 Ιάκωβος Ανδρουλιδάκης users.uoa.gr/ iandroul iandroul@math.uoa.gr Πανεπιστήμιο Αθηνών, Τμήμα Μαθηματικών, Τομέας Άλγεβρας-Γεωμετρίας Περίληψη Στη διάλεξη

Διαβάστε περισσότερα