ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται
|
|
- Φιλοκράτης Νικολάκος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ, γ) Λ, δ) Λ, ε) Λ ΘΕΜΑ Β Β. α τρόπος: Αν z= yi,, y R, η σχέση () γράφεται ( ) yi ( ) yi = 4 ( ) y ( ) y = 4 y =. Άρα ο γεωµετρικός τόπος των εικόνων των µιγαδικών αριθµών z στο επίπεδο είναι κύκλος µε κέντρο την αρχή των αξόνων και ακτίνα ρ =. β τρόπος: Η σχέση () γράφεται: ( z ) ( z ) ( z ) ( z ) = 4 ( z ) ( z ) ( z ) ( z ) = 4 z z z z z z z z = 4 z z = z z = z = z =. Άρα ο γεωµετρικός τόπος των εικόνων των µιγαδικών αριθµών z στο επίπεδο είναι κύκλος µε κέντρο την αρχή των αξόνων και ακτίνα ρ =. Β. Έστω z z = k, k 0. Τότε Β3. ( )( ) z z = z z = z z z z = ( z z )( z z ) ( ) = zz z z z z zz = z z zz zz = (α) ( )( ) z z = z z = z z z z = ( ) ( z z ) z z = z z z z z z z z = ( ) = (β). z z z z z z z z = k. Προσθέτοντας τις (α), (β) κατά µέλη έχουµε: ( ) Όµως z=, z= οπότε προκύπτει k k k = 4 = =, αφού k ( w 5 w) ( w 5 w) 44 w w = w w = = ww w w ww = w 5( w w ) 5w = 44 6w 5( w w ) = 44 (3) Έστω w = yi,, y R τότε η σχέση (3) γίνεται:
2 6( y ) 5 ( yi) ( yi) = 44 6( y ) 5( y yi y yi) = y 5( y ) = y 0 0y = y = 44 y y 4 9y = 36 = = Άρα ο γεωµετρικός τόπος των εικόνων του w είναι η παραπάνω έλλειψη µε µήκος µεγάλου ηµιάξονα a = 3 και µήκος µικρού ηµιάξοναβ=. Είναι όµως γνωστό (µαθ. κατεύθυνσης Β Λυκείου, σελίδα 04) ότι για οποιοδήποτε σηµείο Μ της έλλειψης ισχύει ότι β ΟΜ α ή β ΟΜ α. Αν Α, Α, Β, Β οι κορυφές της έλλειψης, τότε: Α ( 3,0), Α(3, 0), Β (0, ), Β(0, ). Έτσι w = ( OA) = ( OA') = 3 και w = ( OB) = ( OB ') =. ma min Α 0 Α O Παρατήρηση : Το παραπάνω σχήµα είναι επιβοηθητικό της κατανόησης από τους µαθητές και δεν είναι απαραίτητο για τη λύση του ερωτήµατος. Β4. Με βάση την τριγωνική ανισότητα και επειδή z w = w z έχουµε: w z w z w z w w z w (4) Όµως λόγω του Β 3 είναι w 3, άρα: w και w 4. Τότε όµως η (4) γράφεται: w z 4. Β Β w M
3 Α 0 Α O Η παραπάνω ανίσωση είναι η αλγεβρική έκφραση της (ΛΜ) 3, µε (ΟΛ) = z, ΟΜ = w και (ΛΜ) = z w η οποία προκύπτει από το παραπάνω σχήµα. Παρατήρηση : Το σχήµα και εδώ δεν είναι απαραίτητο. Θα µπορούσε όµως πιθανώς και µια τέτοια «γεωµετρική λύση», αν και όχι τόσο αυστηρή όσο η αλγεβρική, να γίνει κατά ένα ποσοστό µονάδων βαθµολογίας αποδεκτή ανεξάρτητη λύση, καθόσον αναδεικνύει κατανόηση της έννοιας της µετρικής στο µιγαδικό επίπεδο. Παρατήρηση 3: Τα δύο πρώτα ερωτήµατα του δεύτερου θέµατος θα µπορούσαν να απαντηθούν χρησιµοποιώντας την άσκηση Α9 του σχολ. Βιβλίου σελ. 0, γνωστή ως κανόνα του παραλληλογράµµου (αφού πρώτα αποδειχθεί) : Για κάθε z, z C ισχύει ότι Απόδειξη: Β Β Λ M z z z z = z z z z z z = ( z z )( z z ) ( z z )( z z ) = zz zz zz z z zz zz zz z z = zz z z = z z B. γ τρόπος: για z = z και z = έχουµε : z z = z 4 = z z = z = z = Άρα ο γεωµετρικός τόπος των εικόνων του z είναι κύκλος µε κέντρο την αρχή των αξόνων Ο και ακτίνα ρ =. Β. β τρόπος: Από τον κανόνα του παραλληλογράµµου έχουµε ότι z z z z = z z ( ) z z = z z = z z = 3
4 ΘΕΜΑ Γ Γ. Η f είναι συνεχής στο (0, ) ως αποτέλεσµα πράξεων µεταξύ συνεχών συναρτήσεων και παραγωγίσιµη µε f '( ) = ln = ln, (0 ). Όταν (0, ) είναι < και επειδή η συνάρτηση ln είναι γνησίως αύξουσα έχουµε ln < ln ln < 0. Επίσης < 0 και > 0 άρα < 0. Έτσι ln < 0 για κάθε (0, ), άρα η f είναι γν. φθίνουσα στο (0, ]. Όταν (, ) είναι > και επειδή ln γνησίως αύξουσα είναι ln > ln ln > 0. Επίσης είναι > 0 για κάθε (, ), οπότε ln > 0 για κάθε (, ). ηλαδή f () > 0 για κάθε (, ). Έτσι όµως η f είναι γνησίως αύξουσα στο [, ). Από τα προηγούµενα προκύπτει ο επόµενος πίνακας µεταβλητών για την f: 0 f min (-) Επειδή f γνησίως φθίνουσα στο (0, ] είναι f( (0,]) = f ( ), lim f ( ) ) 0 Όµως lim f ( ) = lim [( ) ln ] =. 0 0 f (0,] = [, ) (). Άρα ( ) Επίσης επειδή η f είναι γνησίως αύξουσα στο [, ) είναι f [, = f (), lim f ( ). ( ) ) Όµως lim f ( ) lim [( ) ln ] Άρα ( ) = =. f [, ) = [, ) (). Από (), () προκύπτει ότι το σύνολο τιµών της f είναι το [, ). Παρατήρηση: Η µονοτονία της f στα διαστήµατα (0, ] και [, ) µπορεί να προκύψει και από το πρόσηµο της δεύτερης παραγώγου: f ( ) = 0 = >, για κάθε > 0. Άρα η f είναι γνησίως αύξουσα στο (0, ) και επειδή f () = 0 η = είναι µοναδική ρίζα της f () = 0. Ακόµη, είναι:. 4
5 0 < < f ( ) < f () f ( ) < 0 άρα η f είναι γν. φθίνουσα στο (0, ]. > f ( ) > f () f ( ) > 0, άρα η f είναι γν. αύξουσα στο [, ). Η f παρουσιάζει (ολικό) ελάχιστο στο = το f () = ( ). ln =. Γ. Η εξίσωση = 03 (επειδή η συνάρτηση y = ln είναι γνησίως αύξουσα και άρα ) γράφεται ισοδύναµα: 03 ln( ) = ln( ) ( ) ln = 03 ( ) ln = 0 f ( ) 0 = 0. Από το Γ ερώτηµα είναι: f (0,] = [, ) άρα υπάρχει (0, ] ώστε f( ) = 0 και επειδή η f α) ( ) είναι γνησίως φθίνουσα είναι και, άρα η τιµή είναι µοναδική στο διάστηµα (0,]. f [, ] = [, ), άρα υπάρχει [, ) ώστε f ( ) = 0 και β) ( ) επειδή η f είναι γνησίως αύξουσα είναι και, άρα η τιµή είναι µοναδική στο διάστηµα [, ). Από α) και β) προκύπτει ότι η δοσµένη εξίσωση έχει ακριβώς θετικές ρίζες. Γ3. Θεωρούµε τη συνάρτηση h() = f () 0. µε (0, ). Η h είναι συνεχής στο [, ] ως αποτέλεσµα πράξεων συνεχών συναρτήσεων. Η h είναι παραγωγίσιµη στο (, ) ως αποτέλεσµα πράξεων παραγωγίσιµων συναρτήσεων µε ( ) h ( ) = f ( ) f ( ) 0. h f ( ) = ( ) 0 = 0 0 = 0 h( ) = f ( ) 0 = 0 0 = 0 Άρα ισχύουν οι προϋποθέσεις του Θ. Roll για την h στο [, ], οπότε υπάρχει 0 (, ), ώστε h ( 0 ) = ( f 0 f 0 ) f 0 f 0 B τρόπος ( ) ( ) 0 = 0 ( ) ( ) 0 = 0. Θεωρούµε τη συνάρτηση h( ) = f ( ) f ( ) 0 µε > 0. Η f είναι συνεχής στο (0, ) ως γινόµενο συνεχών. H f είναι συνεχής στο (0, ) ως άθροισµα συνεχών. Άρα η h είναι συνεχής στο (0, ) ως άθροισµα συνεχών. Άρα η h είναι συνεχής στο [, ]. Γ h( ) = f ( ) f ( ) 0 = f ( ) 0 0 = f ( ) < 0, αφού από το Γ για (0, ) είναι f ( ) < 0. Γ h( ) = f ( ) f ( ) 0 = f ( ) 0 0 = f ( ) > 0, αφού από το Γ για (0, ) είναι f ( ) > 0. ηλαδή είναι h( ) h( ) < 0. Από το Θεώρηµα Bolzano θα υπάρχει ένα τουλάχιστον 0 (, ) ώστε: h( ) = 0 f ( ) f ( ) 0 = 0 f ( ) f ( ) =
6 Γ4. Είναι: g( ) = f ( ) = ( ) ln = ( ) ln > 0 για κάθε (0, ). Άρα: ΘΕΜΑ Ε( Ω ) = ( )ln d = ln d ln d ( ) ln d ( ) ln d = = = ln d [ ln ] d d [ ] = = 3 3 = = = = τ.µ Θεωρούµε τη συνάρτηση G( ) = f ( t) dt, (0, ). f( t) dt = Η( ), όπου Η() = ( ) f t dt. H f είναι συνεχής στο (0, ) άρα η Η() είναι παραγωγίσιµη στο στο (0, ). Επίσης η y = είναι παραγωγίσιµη στο (0, ) ως πολυωνυµική, άρα και η Η( ) είναι παραγωγίσιµη ως σύνθεση παραγωγίσιµων συναρτήσεων. Επίσης παραγωγίσιµη είναι και η ως πολυωνυµική. Έτσι η G είναι παραγωγίσιµη ως άθροισµα παραγωγίσιµων µε G ( ) = f ( )( ) ( ), για κάθε (0, ). Η δοσµένη σχέση f( t) dt επειδή G() = 0 γράφεται ισοδύναµα: f ( t) dt 0 G( ) G(), για κάθε (0, ). Η συνάρτηση G είναι συνεχής και παραγωγίσιµη στο (0, ) και παρουσιάζει τοπικό ελάχιστο για = που είναι εσωτερικό σηµείο του (0, ). Από το θεώρηµα Frmat προκύπτει τότε ότι G () = 0 f () =. Επειδή η f συνεχής στο (0, ) και f ( ) 0 για κάθε (0, ), η f διατηρεί σταθερό πρόσηµο στο (0, ) και επειδή f () = < 0, είναι f ( ) < 0, (0, ). Έτσι f( ) = f( ) και από τη δοσµένη σχέση προκύπτει ln t t ln = dt ( f ( ) ). f ( t) ln Για τη συνάρτηση ( ) t t h = dt ισχύει h( ) 0 για κάθε > 0, διότι αν f ( t) υπήρχε ξ (0, ) ώστε h(ξ) = 0 τότε θα ήταν ln ξ ξ = 0. Αυτό όµως είναι άτοπο επειδή για τη συνάρτηση φ() = ln ισχύει ϕ ( ) < 0 για κάθε (0, ) (σύµφωνα µε τη γνωστή εφαρµογή στη σελ.66 του σχολ. βιβλίου) αλλά 6
7 µπορεί και να αποδειχθεί: ϕ ( ) = = οπότε όπως προκύπτει από τον πίνακα µεταβολών της φ είναι ϕ ( ) < 0 για κάθε (0, ). 0 φ ( ) φ( ) ma φ() = - ln (*) Η συνάρτηση f ( ) = είναι παραγωγίσιµη ως πηλίκο ln t t dt f ( t) ln ln t t παραγωγίσιµων συναρτήσεων, ενώ προκύπτει = dt f ( ). f ( t) Οι συναρτήσεις και στα δύο µέλη είναι παραγωγίσιµες οπότε: ln ln t t ln ln = dt, f ( ) άρα =. f ( t) f ( ) f ( ) ln Αν θέσουµε g( ) = έχουµε g ( ) = g( ) για κάθε (0, ), οπότε f ( ) σύµφωνα µε την εφαρµογή της σελίδας 5 του σχολικού βιβλίου είναι: g( ) = c, δηλαδή ln = c. f ( ) Για = προκύπτει = c = c c =. f () Άρα τελικά f () = ln (ln ) =, (0, ). (*) Παρατήρηση: Από το σηµείο αυτό θα µπορούσε να ακολουθηθεί και η εξής πορεία: ln t t Για την συνάρτηση h() = dt έχουµε ότι είναι παραγωγίσιµη στο (0, ) f ( t) διότι η ln t t είναι συνεχής ως πηλίκο συνεχών. Είναι h () = f ( t ln, οπότε από ) f ( ) ln t t την σχέση ln = dt ( f ( ) ) προκύπτει ln = h() f() f ( t) ln = h() h () = h(), (0, ). Τότε όµως είναι h() = c. f ( ) Επειδή h() = προκύπτει c =, άρα h() =. 7
8 . Είναι: ηλαδή ln f ( ) Άρα 0 lim 0 0 = f() = (ln ), (0, ). = =, lim ln =, lim ( ) = 0. 0 lim (ln ) =. 0 Τότε όµως lim = 0. 0 f ( ) Αν θέσουµε u f ( ) = έχουµε u < 0 και 0 0 ηµ u u συν u lim f ( )ηµ f ( ) lim ηµ u lim lim ( ) 0 f ( ) = u 0 u u = = = u 0 u u 0 u συν u = lim ( ) = 0 = 0. u 0 u 3. Η F είναι δύο φορές παραγωγίσιµη στο (0, ) µε F ( ) = f( ) και F ( ) = f ( ) = (ln ) ( ) = ( ln ). Επειδή ln 0 και > 0, για κάθε >0 είναι ( ) 0 F >, για κάθε >0. Άρα η F είναι κυρτή στο (0, ). Η σχέση τώρα F( ) F(3 ) > F( ), >0 γράφεται: F(3 ) F( ) F( ) F( ) F(3 ) F( ) > F( ) F( ), > 0 >, > 0. 3 Από Θ.Μ.Τ. για την F στα διαστήµατα [, ] και [, 3] αντίστοιχα υπάρχουν F( ) F( ) F(3 ) F( ) ξ (, ) και ξ (, 3) ώστε F ( ξ) = και F ( ξ) =, 3 οπότε αρκεί να δειχθεί ότι F ( ξ) > F ( ξ) µε < ξ < < ξ < 3. Η τελευταία είναι αληθής διότι η F είναι κυρτή και άρα η F γνησίως αύξουσα στο (0, ). 4. Θεωρούµε τη συνάρτηση h() = F() F(β) F(3β), [β, β]. Η F είναι συνεχής και παραγωγίσιµη στο (0, ) άρα και η h. h(β) = F(β) F(3β) h(β) = F(β) F(β) F(3β). Επειδή F () = f() < 0 για κάθε (0, ) η F είναι γνησίως φθίνουσα στο (0, ). Έτσι από β < 3β έπεται: F(β) > F(3β) F(β) F(3β) > 0 h(β) > 0. Λόγω τώρα του 3 είναι h(β) = F( β) F( β) F(3 β) < 0. Άρα h( β) h( β) < 0, οπότε λόγω του θεωρ. Bolzano προκύπτει ότι υπάρχει ξ ( β, β) ώστε h( ξ ) = 0 F( β) F(3 β) = F( ξ ). Η τιµή ξ είναι µοναδική διότι η συνάρτηση h είναι γνησίως φθίνουσα και άρα, αφού h () = F () = f() < 0, για κάθε (0, ). 8
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία, σελ 53, σχολικού βιβλίου Α Θεωρία, σελ 9, σχολικού βιβλίου Α3 Θεωρία, σελ 58, σχολικού βιβλίου Α4 α) Σ, β) Σ, γ) Λ, δ) Λ,
ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑ.Λ. (ΟΜΑ Α Β ) 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιµη στο σηµείο αυτό,
ΜΑΘΗΜΑ 23 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΣΚΗΣΕΙΣ. Συνέχεια του µαθήµατος 22 Ασκήσεις. 3 η ενότητα 17.
ΑΣΚΗΣΕΙΣ 3 η ενότητα 7. ΜΑΘΗΜΑ 3.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Συνέχεια του µαθήµατος Ασκήσεις ίνεται συνάρτηση f : R R, για την οποία ισχύουν : α) Είναι συνεχής β) 3 f () + f () = + +, για κάθε R Να αποδείξετε
Ε ΡΑ : Τ/ρχη Κωστάκη 1 451 10 Ιωάννινα Αριθµός Μητρώου Α.Ε. 10490/42Β/86/1
. Ε ΡΑ : Τ/ρχη Κωστάκη 1 451 10 Ιωάννινα Αριθµός Μητρώου Α.Ε. 10490/42Β/86/1 ΕΤΗΣΙΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΣΥΜΦΩΝΑ ΜΕ ΤΑ ΙΕΘΝΗ ΠΡΟΤΥΠΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΠΟΥ ΕΧΟΥΝ ΥΙΟΘΕΤΗΘΕΙ ΑΠΟ ΤΗΝ ΕΥΡΩΠΑΪΚΗ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕ ΡΙΑΣΗ Ν. Πέµπτη 28 Ιανουαρίου 2010
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕ ΡΙΑΣΗ Ν Πέµπτη 28 Ιανουαρίου 2010 ΘΕΜΑΤΑ Α. ΕΙ ΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 2917,2977 2. Αδεια απουσίας του Βουλευτή κ. Κ. Μητσοτάκη, σελ. 2961 3. Ανακοινώνεται ότι
β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ
Η ευσέβεια, η αξιοπιστία και η ακεραιότητα του Αγησιλάου (1 διδακτική ώρα)
Κεφάλαιο 3 4 (από µετάφραση) Η ευσέβεια, η αξιοπιστία και η ακεραιότητα του Αγησιλάου (1 διδακτική ώρα) Ενδεικτικοί διδακτικοί στόχοι 1. Να γνωρίσουν το µέγεθος της αξιοπιστίας του Αγησιλάου και να κατανοήσουν
ΕΝΕΡΓΕΙΑΚΑ ΦΥΤΑ. Ευκαιρία για την ελληνική γεωργία ; Γ. Ν. Σκαράκης Γεωπονικό Πανεπιστήµιο Αθηνών
ΕΝΕΡΓΕΙΑΚΑ ΦΥΤΑ Ευκαιρία για την ελληνική γεωργία ; Γ. Ν. Σκαράκης Γεωπονικό Πανεπιστήµιο Αθηνών ιηµερίδα ΤΕΕ/ΤΚΜ Θεσσαλονίκη, Νοέµβριος 2006 Βιοκαύσιµα: η σκοπιµότητα Επιτακτική ανάγκη αποτελεσµατικής
«Αναδιάρθρωση της καλλιέργειας του καπνού µε άλλες ανταγωνιστικές καλλιέργειες»
«Αναδιάρθρωση της καλλιέργειας του καπνού µε άλλες ανταγωνιστικές καλλιέργειες» Έρευνα καταναλωτικών συνηθειών Νοµού Ξάνθης Υπεύθυνος έργου: Χρήστος Φωτόπουλος, Καθηγητής Πανεπιστηµίου Ιωαννίνων www.agribusiness.uoi.gr
14PROC002511086 2014-12-30
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Έδεσσα 30.12.2014 3 η ΥΓΕΙΟΝΟΜΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΜΑΚΕ ΟΝΙΑΣ Α.Π.: 14462 ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΠΕΛΛΑΣ ΤΜΗΜΑ ΠΡΟΜΗΘΕΙΩΝ ΠΛΗΡΟΦΟΡΙΕΣ: ΓΚΕΝΤΖΗΣ. Τηλ. 23813 50184 FAX : 23810 22418 Ι Α Κ Η Ρ Υ Ξ
Ο ΠΡΟΕ ΡΟΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΗΜΟΚΡΑΤΙΑΣ Εκδίδοµε τον ακόλουθο νόµο που ψήφισε η Βουλή:
ΝΟΜΟΣ ΥΠ' ΑΡΙΘ.3084 (ΦΕΚ.318/Α /16-12-2002) Κύρωση της Σύµβασης µεταξύ της Ελληνικής ηµοκρατίας και της ηµοκρατίας της Σλοβενίας για την αποφυγή της διπλής φορολογίας αναφορικά µε τους φόρους εισοδήµατος
ΘΕΜΑ : Κώδικας Ορθής Γεωργικής Πρακτικής για την Προστασία των Νερών από τη Νιτρορύπανση Γεωργικής Προέλευσης.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΡΑΓΩΓΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ, ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΕΝΕΡΓΕΙΑΣ ΓΕΝ. Δ/ΝΣΗ ΒΙΩΣΙΜΗΣ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Δ/ΝΣΗ ΧΩΡΟΤΑΞΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ Τμήμα Προστασίας Φυσικών
4 ο ΛΥΚΕΙΟ ΛΑΜΙΑΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΚΟΙΝΩΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΚΡΙΣΗΣ ΕΚΘΕΣΗ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΜΕ ΘΕΜΑ. Ε ιµέλεια Εργασίας :Τµήµα Α4
4 ο ΛΥΚΕΙΟ ΛΑΜΙΑΣ ΕΚΘΕΣΗ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΜΕ ΘΕΜΑ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΚΟΙΝΩΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΚΡΙΣΗΣ Ε ιµέλεια Εργασίας :Τµήµα Α4 Ε ιβλέ ων Καθηγητής :Φράγκος Κων/νος Σχολικό Έτος : 2013-2014
ΤΟ ΣΥΝΤΑΓΜΑ ΤΟΥ 1844. Εξώφυλλο του Συντάγµατος του 1844 (Βιβλιοθήκη Βουλής των
ΤΟ ΣΥΝΤΑΓΜΑ ΤΟΥ 1844 Το Σύνταγµα του 1844 αποτελείται από 107 άρθρα, κατανεµηµένα στα εξής δώδεκα µέρη: Περί Θρησκείας, Περί του δηµοσίου δικαίου των Ελλήνων, Περί συντάξεως της πολιτείας, Περί του Βασιλέως,
ΝΕΟ ΛΥΚΕΙΟ 2014 ΕΦΑΡΜΟΓΗ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Α ΤΑΞΗΣ ΛΥΚΕΙΟΥ (ΣΧΟΛΙΚΟ ΈΤΟΣ: 2013-2014)
ΝΕΟ ΛΥΚΕΙΟ 2014 ΕΦΑΡΜΟΓΗ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Α ΤΑΞΗΣ ΛΥΚΕΙΟΥ (ΣΧΟΛΙΚΟ ΈΤΟΣ: 2013-2014) Α Λ Υ Κ Ε Ι Ο Υ Η Α' τάξη Ημερησίου Γενικού Λυκείου αποτελεί τάξη γενικής παιδείας 35 συνολικά ωρών εβδομαδιαίως
ΕΘΝΙΚΗ ΣΥΝΟΜΟΣΠΟΝΔΙΑ ΕΛΛΗΝΙΚΟΥ ΕΜΠΟΡΙΟΥ ΜΗΤΡΟΠΟΛΕΩΣ 42, 105 63 ΑΘΗΝΑ
ΕΘΝΙΚΗ ΣΥΝΟΜΟΣΠΟΝΔΙΑ ΕΛΛΗΝΙΚΟΥ ΕΜΠΟΡΙΟΥ ΜΗΤΡΟΠΟΛΕΩΣ 42, 105 63 ΑΘΗΝΑ ΙΝΣΤΙΤΟΥΤΟ ΕΜΠΟΡΙΟΥ & ΥΠΗΡΕΣΙΩΝ ΠΕΤΡΑΚΗ 16 Τ.Κ. 105 63 ΑΘΗΝΑ ΤΗΛ: 210. 32.59.197 FAX 32.59.229 8 Σεπτεμβρίου 2011 ΑΠΟΤΕΛΕΣΜΑΤΑ ΝΕΑΣ
Σχηματισμός Υποτακτικής Παρακειμένου Ενεργητικής Φωνής. Ο Παρακείμενος σχηματίζει την Υποτακτική έγκλιση με δύο τρόπους:
Σχηματισμός Υποτακτικής Παρακειμένου Ενεργητικής Φωνής Ο Παρακείμενος σχηματίζει την Υποτακτική έγκλιση με δύο τρόπους: α. περιφραστικά (δηλ. χρησιμοποιώντας δύο λέξεις περιφραστικός ρηματικός τύπος στα
ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ Εκλογικών
ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ Εκλογικών Χρήσιμο Β Ο Η Θ Η Μ Α Ο Δ Η Γ Ο Σ του Αντιπροσώπου της Δικαστικής Αρχής (Περιέχονται σχέδια και έντυπα για διευκόλυνση του έργου των Αντιπροσώπων της Δικαστικής Αρχής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΩΝ ΥΠΗΡΕΣΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΩΝ ΥΠΗΡΕΣΙΩΝ Η ΙΣΤΟΡΙΑ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΑΛΙΕΙΑΣ ΚΑΤΑ ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΔΕΚΑΕΤΙΑ ΤΟΥ 20ουΑΙΩΝΑ Διπλωματική Εργασία για το Προπτυχιακό
ΠΑΡΑΡΤΗΜΑ Β ΔΙΑΚΗΡΥΞΗ ΑΝΟΙΧΤΗΣ ΔΙΑΔΙΚΑΣΙΑΣ. (Τύπος Β) Για έργα που δεν εμπίπτουν στο πεδίο εφαρμογής των Οδηγιών 2004/18/ΕΚ και 2004/17/ΕΚ
ΠΑΡΑΡΤΗΜΑ Β ΔΙΑΚΗΡΥΞΗ ΑΝΟΙΧΤΗΣ ΔΙΑΔΙΚΑΣΙΑΣ (Τύπος Β) Για έργα που δεν εμπίπτουν στο πεδίο εφαρμογής των Οδηγιών 2004/18/ΕΚ και 2004/17/ΕΚ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΔΗΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ
Μ Ε Λ Ε Τ Η ΠΡΟΜΗΘΕΙΑ ΠΕΤΡΕΛΑΙΟΥ ΘΕΡΜΑΝΣΗΣ ΓΙΑ ΤΙΣ ΣΧΟΛΙΚΕΣ ΜΟΝΑ ΕΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ. Προϋπολογισµού: 43.998,82 σε ΕΥΡΩ
ΕΛΛΗΝΙΙΚΗ ΗΜΟΚΡΑΤΙΙΑ ΝΟΜΟΣ ΗΡΑΚΛΕΙΙΟΥ ΗΜΟΣ ΑΡΧΑΝΩΝ -- ΑΣΤΕΡΟΥΣΙΙΩΝ /ΝΣΗ ΗΜΟΤΙΙΚΩΝ ΥΠΗΡΕΣΙΙΩΝ ΤΜΗΜΑ ΕΡΓΩΝ ΗΜΟΣ: Αρχανών - Αστερουσίων ΤΙΤΛΟΣ: ΠΡΟΜΗΘΕΙΑ ΠΕΤΡΕΛΑΙΟΥ ΘΕΡΜΑΝΣΗΣ ΓΙΑ ΤΙΣ ΣΧΟΛΙΚΕΣ ΜΟΝΑ ΕΣ ΠΡΩΤΟΒΑΘΜΙΑΣ
Π Ι Ν Α Κ Α Σ Α Μ Ο Ι Β Ω Ν Ε Π Ι Δ Ο Σ Ε Ω Ν
Π Ι Ν Α Κ Α Σ Α Μ Ο Ι Β Ω Ν Ε Π Ι Δ Ο Σ Ε Ω Ν ΔΙΚΑΣΤΙΚΩΝ ΕΠΙΜΕΛΗΤΩΝ ΕΦΕΤΕΙΩΝ ΑΘΗΝΩΝ & ΠΕΙΡΑΙΩΣ ΔΙΟΡΙΣΜΕΝΩΝ ΣΤΑ ΠΡΩΤΟΔΙΚΕΙΑ ΑΘΗΝΩΝ & ΠΕΙΡΑΙΩΣ ΜΕ ΕΔΡΑ ΤΗΝ ΑΘΗΝΑ Η χιλιομετρική απόσταση υπολογίσθηκε με σημείο
15PROC002704906 2015-04-14
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Έδεσσα 14.04.2015 3 η ΥΓΕΙΟΝΟΜΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΜΑΚΕ ΟΝΙΑΣ Α.Π.: 3317 ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΠΕΛΛΑΣ ΝΟΣΟΚΟΜΕΙΑΚΗ ΜΟΝΑ Α Ε ΕΣΣΑΣ ΤΜΗΜΑ ΠΡΟΜΗΘΕΙΩΝ ΠΛΗΡΟΦΟΡΙΕΣ: ΚΟΥΠΕΛΟΓΛΟΥ Κ. Τηλ. 23813 50335,
ΚΑΤΑΣΤΑΤΙΚΟ. Του σωµατείου µε την επωνυµία «ΚΥΝΟΦΙΛΙΚΟΣ ΟΜΙΛΟΣ. ΙΩΑΝΝΙΝΩΝ», που εδρεύει στα Ιωάννινα, νόµιµα εκπροσωπούµενο.
ΚΑΤΑΣΤΑΤΙΚΟ Του σωµατείου µε την επωνυµία «ΚΥΝΟΦΙΛΙΚΟΣ ΟΜΙΛΟΣ ΙΩΑΝΝΙΝΩΝ», που εδρεύει στα Ιωάννινα, νόµιµα εκπροσωπούµενο. Άρθρο1 Ίδρυση-Επωνυµία-Έδρα-Σκοπός-Μέσα 1. Ιδρύεται στα Ιωάννινα νόµιµα µη κερδοσκοπικό
Ε Λ Λ Η Ν Ι Κ Η ΔΗΜΟΚΡΑΤΙΑ
Ε Λ Λ Η Ν Ι Κ Η ΔΗΜΟΚΡΑΤΙΑ Αναρτητέα στο διαδίκτυο: Α.Δ.Α.: Ε Λ Λ Η Ν Ι Κ Η ΑΣΤΥΝΟΜΙΑ ΓΕΝΙΚΗ ΑΣΤΥΝ.Δ/ΝΣΗ ΠΕΡΙΦΕΡΕΙΑΣ ΠΕΛΟΠΟΝΝΗΣΟΥ ΝΑΥΠΛΙΟ 13 Νοεμβρίου 2013 ΑΣΤΥΝΟΜΙΚΗ ΔΙΕΥΘΥΝΣΗ ΑΡΓΟΛΙΔΑΣ ΓΡΑΦΕΙΟ ΜΕΡΙΚΗΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία και ώρα εξέτασης: Τρίτη, 27 Μαΐου
ΣΧΕΔΙΟ ΕΚΤΑΚΤΗΣ ΑΝΑΓΚΗΣ ΓΙΑ ΤΗΝ ΑΝΤΙΣΕΙΣΜΙΚΗ ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΛΥΚΕΙΟΥ
ΓΕΝΙΚ ΛΥΚΕΙ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΣΧΕΔΙ ΕΚΤΑΚΤΗΣ ΑΝΑΓΚΗΣ ΓΙΑ ΤΗΝ ΑΝΤΙΣΕΙΣΜΙΚΗ ΠΡΣΤΑΣΙΑ ΤΥ ΛΥΚΕΙΥ ΚΑΣΤΕΛΛΑΝΙ ΜΕΣΗΣ ΙΑΝΥΑΡΙΣ 2014 ΣΥΝΤΑΚΤΗΣ ΣΧΕΔΙΥ: ΣΥΜΕΩΝ ΣΥΡΒΙΝΣ ΠΕ02 ΕΝΕΡΓΕΙΕΣ ΠΥ ΠΡΕΠΕΙ ΝΑ ΓΙΝΥΝ Α. ΠΡΙΝ Τ
Α Π Ο Σ Π Α Σ Μ Α από το πρακτικό της υπ' αριθµ. 53 ης /2015 Συνεδρίασης της Οικονοµικής Επιτροπής
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΗΜΟΣ ΧΑΛΑΝ ΡΙΟΥ /ΝΣΗ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΑΝΘΡΩΠΙΝΟΥ ΥΝΑΜΙΚΟΥ ΤΜΗΜΑ ΥΠΟΣΤΗΡΙΞΗΣ ΗΜΟΤΙΚΩΝ ΟΡΓΑΝΩΝ ΑΡΜΟ ΙΑ: Κα ΣΟΦΙΑ ΗΛΙΑΚΟΠΟΥΛΟΥ ΤΗΛ.: 2132023905-908 Α Π Ο Σ Π Α Σ Μ
Μαθηματικά Προσανατολισμού Γ Λυκείου Β Κύκλος (2015-2016) προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. δείξτε ότι για κάθε αριθμό μεταξύ των f
Μαθηματικά Προσανατολισμού Γ Λυκείου Β Κύκλος (2015-2016) Σύγχρονο www.fasma.fro.gr ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. ΦΑΣΜΑ Group Μαθητικό Φροντιστήριο Οι λύσεις θα αναρτηθούν μετά το πέρας
ΔΗΜΟΣ ΔΙΟΝΥΣΟΥ ΚΑΝΟΝΙΣΜΟΣ ΥΔΡΕΥΣΗΣ
ΔΗΜΟΣ ΔΙΟΝΥΣΟΥ ΚΑΝΟΝΙΣΜΟΣ ΥΔΡΕΥΣΗΣ ΔΙΟΝΥΣΟΣ 2012 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ Α ΓΕΝΙΚΟΙ ΟΡΟΙ Άρθρο 1 Σκοπός, ειδικές χρήσεις νερού 7 Άρθρο 2 Τεχνικά χαρακτηριστικά παροχής δικαιώματα..7 Άρθρο 3 Σχέση του Δήμου
62 η ΣΥΝΟΔΟΣ ΠΡΥΤΑΝΕΩΝ & ΠΡΟΕΔΡΩΝ Δ.Ε. ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΩΝ
62 η ΣΥΝΟΔΟΣ ΠΡΥΤΑΝΕΩΝ & ΠΡΟΕΔΡΩΝ Δ.Ε. ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΩΝ Τεχνολογικό Πολιτιστικό Πάρκο Λαυρίου του Ε.Μ.Π. 11 & 12 Δεκεµβρίου 2009, Λαύριο ΕΙΣΗΓΗΣΗ ΓΙΑ ΤΟ ΣΥΣΤΗΜΑ ΠΡΟΣΒΑΣΗΣ ΣΤΗΝ ΤΡΙΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ
Γ49/59 ΕΞ. ΕΠΕΙΓΟΝ Π Ρ Ο Σ :
Αθήνα, 30-5-2012 Δ Ι Ο Ι Κ Η Σ Η ΓΕΝΙΚΗ Δ/ΝΣΗ ΔΙΟΙΚ/ΚΩΝ ΥΠΗΡΕΣΙΩΝ Δ/ΝΣΗ ΔΙΟΙΚΗΤΙΚΟΥ ΠΡΟΣΩΠΙΚΟΥ ΤΜΗΜΑ : ΕΡΓΑΣΙΑΚΩΝ ΣΧΕΣΕΩΝ Ταχ. Δ/νση : Αγ. Κωνσταντίνου 8 Ταχ. Κώδικας: 102 41 ΑΘΗΝΑ Τηλέφωνο : 210-215289,290,291,292
ΙΣΤΟΡΙΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 30 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ ÁÍÉÁ
ΘΕΜΑ Α1. ΙΣΤΟΡΙΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 30 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ α. «Φεντερασιόν»: σελίδα 46: «Η κατάσταση αυτή ιδεολογίας στη χώρα.» β. «Πεδινοί»: σελίδα 77: «Οι πεδινοί είχαν και
«Αναδιάρθρωση της καλλιέργειας του καπνού µε άλλες ανταγωνιστικές καλλιέργειες»
«Αναδιάρθρωση της καλλιέργειας του καπνού µε άλλες ανταγωνιστικές καλλιέργειες» Έρευνα καταναλωτικών συνηθειών Νοµού Φθιώτιδας Υπεύθυνος έργου: Χρήστος Φωτόπουλος, Καθηγητής Πανεπιστηµίου Ιωαννίνων Εισηγητής:
Ο ΔΗΜΟΣ ΧΑΝΙΩΝ. ε π α ν α π ρ ο κ η ρ ύ σ ε ι. την με ανοικτό δημόσιο μειοδοτικό διαγωνισμό επιλογή αναδόχου για την υπηρεσία:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΧΑΝΙΩΝ ΔΗΜΟΣ ΧΑΝΙΩΝ Δ/ΝΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΡΑΣΙΝΟΥ & ΚΑΘΑΡΙΟΤΗΤΑΣ Κυδωνίας 29, Χανιά Κρήτης, Τ.Κ. 73 135 Τηλ.: 28213 41777-8, site :www.chania.gr, e-mail: d-pervallon@chania.gr
Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Ε Φ Υ Μ Ν Ι O N. Παρατίθενται γνώµες και απόψεις. σχετικές µε το έργο του Πρωτοψάλτη, οράρχη και κδότη βιβλίων. κκλησιαστικής ουσικής
1 Ε Φ Υ Μ Ν Ι O N Παρατίθενται γνώµες και απόψεις σχετικές µε το έργο του Πρωτοψάλτη, οράρχη και κδότη βιβλίων κκλησιαστικής ουσικής Φ ώ τ η Θ ε ο δ ω ρ α κ ό π ο υ λ ο υ Εκδοτικός Οίκος «Μυρίπνοον» 2
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ Ο ΗΜΑΡΧΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ /ΝΣΗ ΟΙΚΟΝΟΜΙΚΗΣ & ΤΑΜΕΙΑΚΗΣ ΙΑΧΕΙΡΙΣΗΣ ΤΜΗΜΑ ΠΡΟΚΗΡΥΞΕΩΝ & ΗΜΟΠΡΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ /ΝΣΗ ΟΙΚΟΝΟΜΙΚΗΣ & ΤΑΜΕΙΑΚΗΣ ΙΑΧΕΙΡΙΣΗΣ ΤΜΗΜΑ ΠΡΟΚΗΡΥΞΕΩΝ & ΗΜΟΠΡΑΣΙΩΝ Προµήθεια παιχνιδιών για την κάλυψη των αναγκών των ηµοτικών Παιδικών Σταθµών
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΙΣΤ. Πέµπτη 31 Ιανουαρίου 2013
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΙΣΤ Πέµπτη 31 Ιανουαρίου 2013 ΘΕΜΑΤΑ Α. ΕΙΔΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 7055, 7129 2. Ανακοινώνεται ότι τη συνεδρίαση παρακολουθούν µαθητές από το 1ο Γυµνάσιο
οικισµών του ήµου Φαιστού
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΗΜΟΣ ΦΑΙΣΤΟΥ /ΝΣΗ ΠΟΛΕΟ ΟΜΙΑΣ & ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΗΜΟΣ: Φαιστού ΤΙΤΛΟΣ: Αποκοµιδή απορριµµάτων σε 34 οικισµούς του ήµου και καθαρισµός των κοινόχρηστων χώρων στο σύνολο
ΚΟΙΝΟΠΟΙΗΣΗ : Ως συν/νος πίνακας ΘΕΜΑ : «Καταβολή Δωροσήμου Χριστουγέννων 2015 σε εργατοτεχνίτες οικοδόμους»
Αθήνα 7/12/2015 Δ Ι Ο Ι Κ Η Σ Η ΓΕΝ.Δ/ΝΣΕΙΣ : ΑΣΦΑΛΙΣΤΙΚΩΝ ΥΠΗΡΕΣΙΩΝ : ΟΙΚΟΝΟΜΟΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ : ΠΛΗΡΟΦΟΡΙΚΗΣ Δ/ΝΣΕΙΣ : ΑΣΦΑΛΙΣΗΣ ΕΣΟΔΩΝ : ΟΙΚΟΝΟΜΙΚΩΝ ΥΠΗΡΕΣΙΩΝ : ΕΦΑΡΜΟΓΩΝ Ταχ. Δ/νση : Αγ. Κων/νου
ΚΑΤΑΣΤΑΤΙΚΟ ΚΕΝΤΡΟΥ ΝΕΟΤΗΤΑΣ. ΙΔΡΥΣΗ Ιδρύεται Κέντρο Νεότητας µε την επωνυµία «Κέντρο Νεότητας... µε έδρα...
ΚΑΤΑΣΤΑΤΙΚΟ ΚΕΝΤΡΟΥ ΝΕΟΤΗΤΑΣ ΑΡΘΡΟ 1 ΙΔΡΥΣΗ Ιδρύεται Κέντρο Νεότητας µε την επωνυµία «Κέντρο Νεότητας... µε έδρα... ΑΡΘΡΟ 2 Στο Καταστατικό αυτό «Κέντρο Νεότητας» σηµαίνει: «εθελοντική-κοινοτική οργάνωση
ΚΕΦΑΛΑΙΟ 9 ΑΞΙΟΛΟΓΗΣΗ ΕΦΑΡΜΟΓΗΣ «ΕΝΑ ΟΝΕΙΡΙΚΟ ΤΑΞΙΔΙ ΣΤΗΝ ΚΝΩΣΟ» - ΠΕΡΙΓΡΑΦΗ ΔΙΑΔΙΚΑΣΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 9 ΑΞΙΟΛΟΓΗΣΗ ΕΦΑΡΜΟΓΗΣ «ΕΝΑ ΟΝΕΙΡΙΚΟ ΤΑΞΙΔΙ ΣΤΗΝ ΚΝΩΣΟ» - ΠΕΡΙΓΡΑΦΗ ΔΙΑΔΙΚΑΣΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ 9.1 Επιλογή δείγµατος Το λογισµικό «Ένα ονειρικό ταξίδι στην Κνωσό» δοκιµάστηκε και αξιολογήθηκε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΒΟΙΩΤΙΑΣ ΔΗΜΟΣ ΟΡΧΟΜΕΝΟΥ Αρ.Πρωτ.: 10829/14-8-2015 Α Π Ο Σ Π Α Σ Μ Α
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΒΟΙΩΤΙΑΣ ΔΗΜΟΣ ΟΡΧΟΜΕΝΟΥ Αρ.Πρωτ.: 10829/14-8-2015 Α Π Ο Σ Π Α Σ Μ Α Από το πρακτικό της αριθ. 12 ης /2015 Συνεδρίασης του Δημοτικού Συμβουλίου Δήμου Ορχομενού. Αριθ. Απόφασης
ΣΧΕΔΙΑΣΜΟΣ ΥΔΡΑΥΛΙΚΩΝ ΑΝΕΛΚΥΣΤΗΡΩΝ Ε Γ ΧΕΙΡΙΔΙΟ Σ ΧΕΔΙΑΣΗΣ
Ε Γ ΧΕΙΡΙΔΙΟ Σ ΧΕΔΙΑΣΗΣ ΑΝΕΛΚ Υ Σ Τ Η ΡΩΝ ΜΟΝΑΔΑ ΙΣΧΥΟΣ ΣΧΕΔΙΑΣΜΟΣ ΜΗΧΑΝΟΣΤΑΣΙΩΝ ΦΡΕΑΤΙΟ ΥΔΡΑΥΛΙΚΩΝ ΑΝΕΛΚΥΣΤΗΡΩΝ min. 700 Απευθύνεται σε μελετητές: ΑΡΧΙΤΕΚΤΟΝΕΣ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΗΧΑΝΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ
Ενότητα 2. Γενικά Οργάνωση Ελέγχου (ΙΙ) Φύλλα Εργασίας Εκθέσεις Ελέγχων
Ενότητα 2 Γενικά Οργάνωση Ελέγχου (ΙΙ) Φύλλα Εργασίας Εκθέσεις Ελέγχων Φύλλα Εργασίας (Γενικά) Με τον όρο "φύλλα εργασίας" εννοούµε, το σύνολο των φύλλων που περιέχουν όλο το αποδεικτικό υλικό, το οποίο
ΤΜΗΜΑ ΣΥΝΤΗΡΗΣΗΣ ΗΜΟΤΙΚΩΝ αριθ. Πρωτ. Προκ: 54141 & ΣΧΟΛΙΚΩΝ ΚΤΙΡΙΩΝ Κ.Α. 30-7331.055 για το 2015
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 05/05/2015 ΗΜΟΣ ΗΡΑΚΛΕΙΟΥ «Προµήθεια Χρωµάτων» /ΝΣΗ ΣΥΝΤΗΡΗΣΗΣ & Έργο: Συντήρηση Σχολικών Κτιρίων ΑΥΤΕΠΙΣΤΑΣΙΑΣ A/θµιας & Β/θµιας Εκπαίδευσης. ΤΜΗΜΑ ΣΥΝΤΗΡΗΣΗΣ ΗΜΟΤΙΚΩΝ αριθ.
Άρθρο 2 -Καταχώρηση και τήρηση στοιχείων σε ηλεκτρονική µορφή
Π.Δ. 114/05 (ΦΕΚ 165 Α / 30-6-2005) : Yποχρεωτική ανασύσταση φακέλου, ο οποίος έχει απολεσθεί από υπαιτιότητα της υπηρεσίας. Ο ΠΡΟΕΔΡΟΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Έχοντας υπόψη: 1. Τις διατάξεις της παραγράφου
ΕΛΤΙΟ ΤΥΠΟΥ ΕΛΛΗΝΙΚΗ ΟΙΚΟΝΟΜΙΑ ΚΑΙ ΤΟΥΡΙΣΜΟΣ ΤΕΥΧΟΣ 21 ΜΑΪΟΣ 2006 I. ΤΟΥΡΙΣΤΙΚΗ ΟΙΚΟΝΟΜΙΑ
ΙΝΣΤΙΤΟΥΤΟ ΤΟΥΡΙΣΤΙΚΩΝ ΕΡΕΥΝΩΝ ΚΑΙ ΠΡΟΒΛΕΨΕΩΝ Σταδίου 24 105 64 Αθήνα Τηλ. 331 2253, 331 0022 Fax. 331 2033 Email: itep@otenet.gr Αθήνα, 10 Μαΐου 2006 ΕΛΤΙΟ ΤΥΠΟΥ ΕΛΛΗΝΙΚΗ ΟΙΚΟΝΟΜΙΑ ΚΑΙ ΤΟΥΡΙΣΜΟΣ ΤΕΥΧΟΣ
ΘΕΜΑ: «Καθιέρωση και έγκριση 24ωρης λειτουργίας των Υπηρεσιών της /νσης Παιδείας Πολιτισµού κ Αθλητισµού του ήµου Αγρινίου για το έτος 2012»
ΑΠΟΣΠΑΣΜΑ Από το πρακτικό της µε αριθ. 16ης/2011 Τακτικής Συνεδρίασης του ηµοτικού Συµβουλίου του ήµου Αγρινίου. Αριθ. Απόφασης 466/2011 ΘΕΜΑ: «Καθιέρωση και έγκριση 24ωρης λειτουργίας των Υπηρεσιών της
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΤΜΗΜΑ ΔΙΑΚΟΠΗΣ ΕΡΓΑΣΙΩΝ ΤΗΣ ΒΟΥΛΗΣ ΘΕΡΟΣ 2014 ΣΥΝΕΔΡΙΑΣΗ ΛΒ Πέµπτη 4 Σεπτεµβρίου 2014
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΤΜΗΜΑ ΔΙΑΚΟΠΗΣ ΕΡΓΑΣΙΩΝ ΤΗΣ ΒΟΥΛΗΣ ΘΕΡΟΣ 2014 ΣΥΝΕΔΡΙΑΣΗ ΛΒ Πέµπτη 4 Σεπτεµβρίου 2014 ΘΕΜΑΤΑ Α. ΕΙΔΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 2493, 2569 2. Επί διαδικαστικού θέµατος,
ΥΠ.Ε.Π.Θ. / ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ»
ΥΠ.Ε.Π.Θ. / ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ» Γ ΚΟΙΝΟΤΙΚΟ ΠΛΑΙΣΙΟ ΣΤΗΡΙΞΗΣ ΕΡΓO ΣΥΓΧΡΗΜΑΤΟ ΟΤΟΥΜΕΝO ΚΑΤΑ 80% ΑΠΟ ΤΟ ΕΚΤ ΚΑΙ ΚΑΤΑ 20% ΑΠΟ ΕΘΝΙΚΟΥΣ ΠΟΡΟΥΣ «Ολοκληρωµένη
ΑΔΑ: 64Υ9ΩΗΜ-ΑΗΙ ΑΔΑΜ: 15PROC003250014
Γούρνες 3-11-2015 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αριθμός πρωτ. 23428 ΔΗΜΟΣ ΧΕΡΣΟΝΗΣΟΥ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ ΤΙΤΛΟΣ: ΠΡΟΜΗΘΕΙΑ ΦΩΤΙΣΤΙΚΩΝ ΓΙΑ ΤΗ Δ.Ε. ΧΕΡΣΟΝΗΣΟΥ ΧΡΗΜΑΤΟΔΟΤΗΣΗ: ΕΣΟΔΑ ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ: 73.185,00 Ευρώ (µε
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ Ο. Τετάρτη 8 Ιουλίου 2015
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ Ο Τετάρτη 8 Ιουλίου 2015 ΘΕΜΑΤΑ Α. ΕΙΔΙΚΑ ΘΕΜΑΤΑ 1. Ανακοινώνεται ότι τη συνεδρίαση παρακολουθούν µαθητές από το 5ο και το 15ο Γυµνάσιο Περιστερίου, σελ. 4174 2. Η Ειδική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΟΜΟΚΟΣ 11-10-2011 ΠΕΡΙΦΕΡΕΙΑ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΑΡΙΘ. ΠΡΩΤ. 18340 ΔΗΜΟΣ ΔΟΜΟΚΟΥ Δ Ι Α Κ Η Ρ Υ Ξ Η Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΟΜΟΚΟΣ 11-10-2011 ΠΕΡΙΦΕΡΕΙΑ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΑΡΙΘ. ΠΡΩΤ. 18340 ΔΗΜΟΣ ΔΟΜΟΚΟΥ ΕΡΓΑΣΙΑ : ΕΠΙΣΚΕΥΗ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΩΝ ΟΧΗΜΑΤΩΝ ΤΟΥ ΔΗΜΟΥ ΕΤΟΥΣ 2011 ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ: 67.000,00 ΕΡΓΑΣΙΑ 56.000,00
ΘΕΜΑ: Κοινοποίηση ορισµένων διατάξεων του ν. 3427/27.12.2005 (ΦΕΚ 312Α ) που αφορούν στη φορολογία εισοδήµατος φυσικών και νοµικών προσώπων.
- 125 - * ΦΟΡΟΛΟΓΙΑ ΕΙΣΟ ΗΜΑΤΟΣ * Νο. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ & ΟΙΚΟΝΟΜΙΚΩΝ ΓΕΝΙΚΗ /ΝΣΗ ΦΟΡΟΛΟΓΙΑΣ /ΝΣΗ ΦΟΡΟΛΟΓΙΑΣ ΕΙΣΟ ΗΜΑΤΟΣ ( 12) ΤΜΗΜΑΤΑ: Α - Β Γ Αθήνα, 2 Μαρτίου 2006 Αριθµ.Πρωτ.:
Επίσηµη Εφηµερίδα της Ευρωπαϊκής Ένωσης
L 31/18 6.2.2003 Ο ΗΓΙΑ 2003/9/ΕΚ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ της 27ης Ιανουαρίου 2003 σχετικά µε τις ελάχιστες απαιτήσεις για την υποδοχή των αιτούντων άσυλο στα κράτη µέλη ΤΟ ΣΥΜΒΟΥΛΙΟ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΕΝΩΣΗΣ, Έχοντας
Οι Αγώνες θα διεξαχθούν τόσο στο Σύγχρονο Θέατρο όσο και στο Αρχαίο
ΚΥΠΡΙΑΚΗ ΗΜΟΚΡΑΤΙΑ Υ.Π.Π 24.09.1.8 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ιευθυντές/τριες Σχολείων Μέσης, Τεχνικής ηµόσιας και Ιδιωτικής Εκπαίδευσης 23 Σεπτεµβρίου 2013 Θέµα: Προκήρυξη
ΤΙΤΛΟΣ: ΠΡΟΜΗΘΕΙΑ ΑΛΑΤΙΟΥ ΓΙΑ ΤΗΝ ΧΕΙΜΕΡΙΝΗ ΠΕΡΙΟ Ο 2015-2016 Αρ. Μελ. : 50/2015
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΙΑ ΙΚΤΥΟ ΗΜΟΣ ΚΟΖΑΝΗΣ Κοζάνη, 5 Οκτωβρίου 2015 Ταχ. /νση : Πλ. Νίκης 1 Αριθµ. πρωτ. : 55.994 Ταχ. Κώδικας : 501 00 Κοζάνη Πληροφορίες : Γρηγοριάδης Ιωάννης Τηλέφωνο : 24613
Η ΩΡΑΙΑ ΗΜΕΡΑΣ ΤΗΣ ΖΟΖΕΦ ΚΕΣΕΛ. ... γ ι α τ ί ο έ ρ ω τ α ς κ ρ ύ β ε τ α ι σ τ ι ς λ έ ξ ε ι ς Λ Ο Γ Ο Τ Ε Χ Ν Ι Α
Κ... γ ι α τ ί ο έ ρ ω τ α ς κ ρ ύ β ε τ α ι σ τ ι ς λ έ ξ ε ι ς ΖΟΖΕΦ ΚΕΣΕΛ Η ΩΡΑΙΑ ΤΗΣ ΗΜΕΡΑΣ Ε Ρ Ω Τ Ι Η Λ Ο Γ Ο Τ Ε Χ Ν Ι Α Μ ε τ ά φ ρ α σ η : Ρ ί τ α Κ ο λ α ΐ τ η ΓΙΑ ΤΟ ΒΙΒΛΙΟ Η Ω Ρ Α Ι Α Τ Η Σ
ΚΕΦΑΛΑΙΟ 7 ΣΥΜΠΕΡΑΣΜΑΤΑ ΚΑΙ ΠΡΟΤΑΣΕΙΣ
ΚΕΦΑΛΑΙΟ 7 ΣΥΜΠΕΡΑΣΜΑΤΑ ΚΑΙ ΠΡΟΤΑΣΕΙΣ Με βάση το στόχο της εργασίας που ήταν να εντοπιστούν και να παρουσιαστούν οι ποσοτικές (διαφορές βαθµολογικής απόδοσης) και οι ποιοτικές διαφορές (που αφορούν στην
ΣΥΝΘΗΚΗ SCHENGEN (ΣΕΝΓΚΕΝ)
ΣΥΝΘΗΚΗ SCHENGEN (ΣΕΝΓΚΕΝ) ΣΥΜΒΑΣΗ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΥΜΦΩΝΙΑΣ ΤΟΥ ΣΕΝΓΚΕΝ της 14ης Ιουνίου 1985 μεταξύ των κυβερνήσεων των κρατών της Οικονομικής Ένωσης Μπενελούξ, της Ομοσπονδιακής Δημοκρατίας της Γερμανίας
ΤΙΤΛΟΣ I ΕΥΡΩΠΑΪΚΑ ΣΧΟΛΕΙΑ
ΣΥΜΒΑΣΗ ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΚΑΤΑΣΤΑΤΙΚΟ ΤΩΝ ΕΥΡΩΠΑΪΚΩΝ ΣΧΟΛΕΙΩΝ ΠΡΟΟΙΜΙΟ ΤΑ ΥΨΗΛΑ ΣΥΜΒΑΛΛΟΜΕΝΑ ΜΕΡΗ, ΜΕΛΗ ΤΩΝ ΕΥΡΩΠΑΪΚΩΝ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΟΙ ΕΥΡΩΠΑΪΚΕΣ ΚΟΙΝΟΤΗΤΕΣ, στο εξής αποκαλούµενα «τα συµβαλλόµενα µέρη»,
ΤΙΜΟΛΟΓΙΟ ΜΕΛΕΤΗΣ Τιµαριθµική 2012Γ
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΕΡΓΟ : "ΑΝΑΠΛΑΣΗ ΠΗΓΩΝ ΠΕΡΙΟΧΗΣ ΜΑΝΝΑΣ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡ/ΜΟΥ ΞΥΛΟΚΑΣΤΡΟΥ' ΥΠΟ ΟΜΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΡΟΥΠΟΛΟΓΙΣΜΟΣ: 50.000,00 ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ
Γ49/ 35 ΕΞ. ΕΠΕΙΓΟΝ Π Ρ Ο Σ :
Αθήνα, 19 / 5 / 2010 Δ Ι Ο Ι Κ Η Σ Η ΓΕΝΙΚΗ Δ/ΝΣΗ ΔΙΟΙΚ/ΚΩΝ ΥΠΗΡΕΣΙΩΝ Δ/ΝΣΗ ΔΙΟΙΚΗΤΙΚΟΥ ΠΡΟΣΩΠΙΚΟΥ ΤΜΗΜΑ : ΕΡΓΑΣΙΑΚΩΝ ΣΧΕΣΕΩΝ Ταχ. Δ/νση : Αγ. Κωνσταντίνου 8 Ταχ. Κώδικας: 102 41 ΑΘΗΝΑ Τηλέφωνο : 210-215292,289,290,294
Η ΚΟΙΝΩΝΙΚΗ ΔΙΑΣΤΑΣΗ ΤΟΥ ΔΗΜΟΣΙΟΥ ΧΩΡΟΥ: ΜΕΛΕΤΩΝΤΑΣ ΤΙΣ ΠΛΑΤΕΙΕΣ ΤΟΥ ΜΕΤΑΞΟΥΡΓΕΙΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΔΠΜΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΤΟΥ ΧΩΡΟΥ ei Β ΚΑΤΕΥΘΥΝΣΗ: ΠΟΛΕΟΔΟΜΙΑ ΧΩΡΟΤΑΞΙΑ ΑΚΑΔΗΜΑΪΚΟ ΈΤΟΣ 2011-2012, ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Μάθημα: Περιβαλλοντικές
ΑΡΙΘΜΟΣ 0540/2012 2013 ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΒΟΛΟΥ
ΑΡΙΘΜΟΣ 0540/2012 2013 ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΒΟΛΟΥ Στην Αθήνα, σήμερα, 13/12/2012, οι υπογράφοντες τη παρούσα: Αφενός το Ν.Π.Ι.Δ. με την επωνυμία
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΔΑΓΜΕΝΟ ΚΕΙΜΕΝΟ
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΔΑΓΜΕΝΟ ΚΕΙΜΕΝΟ A1. Με αυτά λοιπόν τα μέσα εφοδιασμένοι οι άνθρωποι κατοικούσαν στην αρχή διασκορπισμένοι, πόλεις όμως δεν υπήρχαν κατασπαράσσονταν λοιπόν από τα θηρία, γιατί ήταν από
ΘΕΣΣΑΛΙΑ2020 ΣΧΕΔΙΟ ΔΡΑΣΗΣ
ΘΕΣΣΑΛΙΑ2020 Περιφερειακή Στρατηγική Καινοτομίας Έξυπνης Εξειδίκευσης της Περιφέρειας Θεσσαλίας για την Προγραμματική Περίοδο 2014-2020 ΣΧΕΔΙΟ ΔΡΑΣΗΣ 1 η Έκδοση Προς Διαβούλευση 23 Δεκεμβρίου 2015 2 Εισαγωγή
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΕΥΒΟΙΑΣ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΜΟΝΑΔΩΝ Α ΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΡΓΑΣΙΑ:
ΕΡΓΑΣΙΑ: Αναγόμωση συντήρηση Αναγόμωση συντήρηση Μονάδες Α Βάθμιας εκπ/σης ΠΕΡΙΕΧΟΜΕΝΑ 1. Τεχνική περιγραφή 2. Ενδεικτικός Προϋπολογισμός 3. Συγγραφή υποχρεώσεων 1 ΕΡΓΑΣΙΑ: Αναγόμωση συντήρηση Τεχνική
επείγοντος για την κατανοµή των βαρών της υποδοχής και προσωρινής διαµονής των µετακινουµένων ατόµων ( 6 ). Έχοντας υπόψη:
L 212/12 EL Επίσηµη Εφηµερίδα των Ευρωπαϊκών Κοινοτήτων 7.8.2001 Ο ΗΓΙΑ 2001/55/ΕΚ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ της 20ής Ιουλίου 2001 σχετικά µε τις ελάχιστες προδιαγραφές παροχής προσωρινής προστασίας σε περίπτωση
Οι στρατηγικές πολιτικές (διπλωµατικές) αρετές του Αγησιλάου (3 διδακτικές ώρες)
Κεφάλαιο 1. 17-22 Οι στρατηγικές πολιτικές (διπλωµατικές) αρετές του Αγησιλάου (3 διδακτικές ώρες) Ενδεικτικοί διδακτικοί στόχοι 1. Να επισηµάνουν οι µαθητές τις στρατηγικές και πολιτικές ικανότητες του
ΙΚΑΙΟΛΟΓΗΤΙΚΑ ΓΙΑ ΤΗΝ ΜΕΤΕΓΓΡΑΦΗ ΕΛΛΗΝΑ ΠΟ ΟΣΦΑΙΡΙΣΤΗ
ΙΚΑΙΟΛΟΓΗΤΙΚΑ ΓΙΑ ΤΗΝ ΜΕΤΕΓΓΡΑΦΗ ΕΛΛΗΝΑ ΠΟ ΟΣΦΑΙΡΙΣΤΗ Π Ε Ρ Ι Ο Ο Ι Κ Α Τ Α Θ Ε Σ Η Σ : 1/7/2015 31/10/2015 & 1/01/2016-28/02/2016 1. ΕΛΤΙΟ ΑΘΛΗΤΙΚΗΣ Ι ΙΟΤΗΤΑΣ ΠΟ /ΣΤΗ - Αν δεν το έχει στην κατοχή του,
Αριθ. Πρωτ. 319 Κοµοτηνή 05/08/2015
ΕΝΩΣΗ ΚΑΛΑΘΟΣΦΑΙΡΙΚΩΝ ΣΩΜΑΤΕΙΩΝ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ & ΘΡΑΚΗΣ (Ε.ΚΑ.Σ.Α.ΜΑ.Θ.) ΒΕΝΙΖΕΛΟΥ 44 69100 ΚΟΜΟΤΗΝΗ ΤΗΛ. 2531035766 FAX 2531027466 Site: http://www.ekasamath.gr http://www.εκασαµαθ.gr e-mail: info@ekasamath.gr
ΗΜΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ Γάζι 8.04.2014 ΠΡΟΣΤΑΣΙΑΣ ΚΑΙ ΠΑΙ ΕΙΑΣ Αρ.πρωτ. 541 ΜΑΛΕΒΙΖΙΟΥ.Ο.Κ.Α.Π.ΠΑ.Μ. νση: Ν.Καζαντζάκη 11, Τ.Κ. 71414 Ηράκλειο Πληροφορίες : Σµαργιανάκη Γεωργία Τηλέφωνο
(ΜΕ ΤΑ ΔΥΟ ΜΕΙΟΝΕΚΤΗΜΑΤΑ)
1 ΤΟ ΒΙΒΛΙΟ ΤΩΝ ΠΟΝΩΝ ΤΟΥ ΣΩΜΑΤΟΣ (ΜΕ ΤΑ ΔΥΟ ΜΕΙΟΝΕΚΤΗΜΑΤΑ) Η πραγματικότητα ξεπερνά και την πιο τολμηρή φαντασία. Επίκτητος Σοφός δεν είναι όποιος ξέρει πολλά, αλλά όποιος ξέρει χρήσιμα. Ηράκλειτος Οι
ΕΤΟΣ 5ο ΑΡΙΘ.ΦΥΛΛΟΥ 252 ΓΡΑΦΕΙΑ: ΤΥΠΟΓΡΑΦΕΙΑ:ΕΙΡΗΝΗΣ 2 ΤΚ 51100 ΓΡΕΒΕΝΑ ΤΗΛ.24620/22.086 FAX:24620/22.087 ΤΡΙΤΗ 25 ΔΕΚΕΜΒΡΙΟΥ 2012 ΤΙΜΗ ΦΥΛ 0,30
ΘΑΡΣΕΙΝ Τ ΑΛΗΘH ΛΕΓΩΝ ΕΤΟΣ 5ο ΑΡΙΘ.ΦΥΛΛΟΥ 252 ΓΡΑΦΕΙΑ: ΤΥΠΟΓΡΑΦΕΙΑ:ΕΙΡΗΝΗΣ 2 ΤΚ 51100 ΓΡΕΒΕΝΑ ΤΗΛ.24620/22.086 FAX:24620/22.087 ΤΡΙΤΗ 25 ΔΕΚΕΜΒΡΙΟΥ 2012 ΤΙΜΗ ΦΥΛ 0,30 ΑΠΟΚΕΝΤΡΩΜΕΝΗ ΔΙΟΙΚΗΣΗ ΗΠΕΙΡΟΥ-ΔΥΤΙΚΗΣ
ΑΡΙΘΜΟΣ 0555/2012 2013 ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΕΝΙΑΙΑ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΧΙΟΥ
ΑΡΙΘΜΟΣ 0555/2012 2013 ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΕΝΙΑΙΑ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΧΙΟΥ Στην Αθήνα, σήμερα, 13/12/2012, οι υπογράφοντες τη παρούσα: Αφενός το Ν.Π.Ι.Δ. με
ΑΔΑ: ΒΙΡ3ΩΞ3-ΑΟΘ. Αναρτητέα στο διαδίκτυο ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΗΜΟΣ ΠΕΝΤΕΛΗΣ
Αναρτητέα στο διαδίκτυο ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΗΜΟΣ ΠΕΝΤΕΛΗΣ A Π Ο Σ Π Α Σ Μ Α Από τα πρακτικά της µε αριθµ. 01/2014 τακτικής συνεδρίασης του ηµοτικού Συµβουλίου Αριθµ.Απόφασης: 3/2014 Π Ε Ρ
Α Π Ο Φ Α Σ Η 4/459/27.12.2007. του ιοικητικού Συµβουλίου
Α Π Ο Φ Α Σ Η 4/459/27.12.2007 του ιοικητικού Συµβουλίου ΘΕΜΑ: «Υπολογισµός κεφαλαιακών απαιτήσεων των Επιχειρήσεων Παροχής Επενδυτικών Υπηρεσιών για τον κίνδυνο αγοράς» ΤΟ ΙΟΙΚΗΤΙΚΟ ΣΥΜΒΟΥΛΙΟ ΤΗΣ ΕΠΙΤΡΟΠΗΣ
ΕΡΓΟ: «ΕΦΑΡΜΟΓΕΣ ΕΙΚΟΝΙΚΗΣ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ ΣΤΗ ΒΟΙΩΤΙΑ: ΜΑΝΤΕΙΟ ΤΡΟΦΩΝΙΟΥ ΚΑΙ ΜΥΚΗΝΑΪΚΗ ΘΗΒΑ»
ΕΡΓΟ: «ΕΦΑΡΜΟΓΕΣ ΕΙΚΟΝΙΚΗΣ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ ΣΤΗ ΒΟΙΩΤΙΑ:» ΠΡΟΚΗΡΥΞΗ ΔΙΑΓΩΝΙΣΜΟΥ ΤΟΥ ΙΔΡΥΜΑΤΟΣ ΜΕΙΖΟΝΟΣ ΕΛΛΗΝΙΣΜΟΥ ΓΙΑ ΤΗΝ «ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΕΙΚΟΝΙΚΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗΣ ΜΝΗΜΕΙΩΝ ΒΟΙΩΤΙΑΣ, ΕΦΑΡΜΟΓΩΝ ΙΣΤΟΡΙΚΗΣ,
ΠΑΝΕΛΛΗΝΙΑ ΟΜΟΣΠΟΝΔΙΑ ΣΩΜΑΤΕΙΩΝ ΕΡΓΑΖΟΜΕΝΩΝ Υ.ΠΕ.ΧΩ.Δ.Ε.
ΠΑΝΕΛΛΗΝΙΑ ΟΜΟΣΠΟΝΔΙΑ ΣΩΜΑΤΕΙΩΝ ΕΡΓΑΖΟΜΕΝΩΝ Υ.ΠΕ.ΧΩ.Δ.Ε. (Π.Ο.Σ.Ε. Υ.ΠΕ.ΧΩ.Δ.Ε.) Ιπποκράτους 196 198 114 71 ΑΘΗΝΑ Τηλ. : 210 6440873 FAX : 210 6454223 Site: www.poseypexode.gr Email:poseypexode@otenet.gr
Συµβουλεύοµαι το κρυπτογραφικό αλφάβητο της Φιλικής Εταιρείας και. Ελευθερία ή Θάνατος. γ35343 ωβη3οω3η
3 Συµβουλεύοµαι το κρυπτογραφικό αλφάβητο της Φιλικής Εταιρείας και Κρυπτογραφικό αλφάβητο της Φιλικής Εταιρείας α β γ δ ε ζ θ ι κ λ µ ν ξ ο π ρ σ τ φ χ ψ ω η ξ υ ψ ω 1 2 3 4 5 6 7 4α 8 9 ο α β γ δ 9α
Α Π Ο Σ Π Α Σ Μ Α Από το Πρακτικό της 03ης Τακτικής Συνεδρίασης του ηµοτικού Συµβουλίου Σκοπέλου
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΜΑΓΝΗΣΙΑΣ ΗΜΟΣ ΣΚΟΠΕΛΟΥ Πληροφορίες: Σπυριδούλα Καρβέλη Τηλέφωνο: 2424350103 E-mail: dstech@otenet.gr ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΙΑ ΙΚΤΥΟ ΑΡΙΘΜ. ΑΠΟΦ: 31 /2013 Α.Π. 1181 Α Π Ο Σ Π Α Σ Μ Α Από
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ Ρ. Τετάρτη 7 Μαρτίου 2012
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ Ρ Τετάρτη 7 Μαρτίου 2012 ΘΘΕΜΑΤΑ Α. ΕΙΔΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 6733 2. Ανακοινώνεται ότι τη συνεδρίαση παρακολουθούν µαθητές από το 1ο Γυµνάσιο Πειραιά,
ΝΟΜΟΣ ΑΤΤΙΚΗΣ Από το πρακτικό της µε αριθµ. 23/2015 ΗΜΟΣ ΠΕΝΤΕΛΗΣ τακτικής συνεδρίασης της Οικονοµικής Επιτροπής
ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΙΑ ΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ A Π Ο Σ Π Α Σ Μ Α ΝΟΜΟΣ ΑΤΤΙΚΗΣ Από το πρακτικό της µε αριθµ. 23/2015 ΗΜΟΣ ΠΕΝΤΕΛΗΣ τακτικής συνεδρίασης της Οικονοµικής Επιτροπής Αριθµ. Απόφασης: 234/2015 ΠΕΡΙΛΗΨΗ
ΤΜΗΜΑ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΣΧΕΔΙΟ ΑΣΦΑΛΕΙΑΣ ΚΑΙ ΥΓΕΙΑΣ (ΣAY) (Π.Δ. 305/96, άρθρο 3, παράγραφοι 3,4,5,6,8,9,10) ΤΜΗΜΑ Α
ΔΗΜΟΣ ΠΥΛΟΥ ΝΕΣΤΟΡΟΣ Δ/ΝΣΗ Π.-Δ. & Π.Ζ. ΕΡΓΟ: «ΚΑΤΑΣΚΕΥΗ ΓΗΠΕΔΟΥ ΑΝΤΙΣΦΑΙΡΙΣΗΣ ΣΤΗΝ Δ.Ε. ΠΥΛΟΥ» ΤΜΗΜΑ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΣΧΕΔΙΟ ΑΣΦΑΛΕΙΑΣ ΚΑΙ ΥΓΕΙΑΣ (ΣAY) (Π.Δ. 305/96, άρθρο 3, παράγραφοι 3,4,5,6,8,9,10)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Διακριτά Μαθηματικά και Μαθηματική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Σκοπός της παρούσας εργασίας είναι η περαιτέρω εξοικείωση με τις σημαντικότερες μεθόδους και ιδέες της Συνδυαστικής
Μαθηµατικά Α Γυµνασίου. Eρωτήσεις θεωρίας
Eρωτήσεις θεωρίας 1. Πως στρογγυλοποιούµε ένα φυσικό αριθµό; 2. Ποιες είναι οι ιδιότητες της πρόσθεσης; 3. Ποιες είναι οι ιδιότητες του πολλαπλασιασµού; 4. Τι ονοµάζουµε νιοστή δύναµη του άλφα; Ποια είναι
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 28 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης
Ελένη Σκούρτου Πανεπιστήµιο Αιγαίου. Από το σπίτι στο σχολείο: Οι οµιλητές και οι γλώσσες τους
Σκούρτου, Ε. (2002) Από το σπίτι στο σχολείο: Οι Οµιλητές και οι Γλώσσες τους. Υλικά Ηµερίδας: «Γλώσσες στο Σπίτι, Γλώσσες στην Κοινωνία», Ρόδος, Γενική Γραµµατεία Εκπαίδευσης Ενηλίκων, Πανεπιστήµιο Αιγαίου
ΗΜΟΣ: Αρχανών - Αστερουσίων ΕΡΓΟ: ΑΝΑΠΛΑΣΗ ΡΟΜΩΝ ΜΥΡΤΙΑΣ ΑΡ.ΜΕΛΕΤΗΣ: 39/2012 Μ Ε Λ Ε Τ Η ΑΝΑΠΛΑΣΗ ΡΟΜΩΝ ΜΥΡΤΙΑΣ. Προϋπολογισµού: 250.
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΗΜΟΣ ΑΡΧΑΝΩΝ - ΑΣΤΕΡΟΥΣΙΩΝ /ΝΣΗ ΗΜΟΤΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΤΜΗΜΑ ΕΡΓΩΝ ΥΠΟ ΟΜΗΣ ΗΜΟΣ: Αρχανών - Αστερουσίων ΕΡΓΟ: ΑΝΑΠΛΑΣΗ ΡΟΜΩΝ ΜΥΡΤΙΑΣ ΑΡ.ΜΕΛΕΤΗΣ: 39/2012 Μ Ε Λ Ε Τ Η ΑΝΑΠΛΑΣΗ
ΕΓΧΕΙΡΙ ΙΟ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΟΡΓΑΝΩΣΗΣ
ΕΓΧΕΙΡΙ ΙΟ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΕΓΧΕΙΡΙ ΙΟ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΟΡΓΑΝΩΣΗΣ i ΚΕΦΑΛΑΙΟ Α. ΙΟΙΚΗΣΗ 1 Αρµοδιότητες- Καθήκοντα Συµβούλια 1 Σύνθεση Προσωπικού 1 ιευθυντής Σχολής 1 Υποδιευθυντής
ΚΑΤΕΠΕΙΓΟΝ - ΕΚΛΟΓΙΚΟ
ΚΑΤΕΠΕΙΓΟΝ - ΕΚΛΟΓΙΚΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα 2 Σεπτεμβρίου 2015 ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ & Αριθ. Πρωτ.: 30474 ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΗΛΕΚΤΡΟΝΙΚΗΣ ΔΙΑΚΥΒΕΡΝΗΣΗΣ ΚΑΙ ΕΚΛΟΓΩΝ ΔΙΕΥΘΥΝΣΗ
/νση: ΧΑΡΑΚΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Μ. Αλεξάνδρου 49, 66100, ράµα Τηλ&φαξ: +2521021972, κιν.: + 6973585563 www.akademia.gr, e-mail: info@akademia.
ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ (Οδηγίες) Α. ΠΕΡΙΛΗΨΗ (25 µονάδες) ιαβάζουµε µια φορά προσεκτικά το κείµενο, κατανοούµε το περιεχόµενό του κι επισηµαίνουµε το θεµατικό του κέντρο. ουλεύουµε ανά παράγραφο. Υπογραµµίζουµε
ΕΓΚΥΚΛΙΟΣ 1/2005. ΘΕΜΑ: Κοινοποίηση των διατάξεων του άρθρου 9 Ν. 3302/04 (ΦΕΚ 267 τ.α 28-12-04) περί ρύθµισης οφειλών του Ι.Κ.Α Ε.Τ.Α.Μ.
ΙΕΥΘΥΝΣΗ ΑΣΦΑΛΙΣΗΣ ΕΣΟ ΩΝ ΕΓΚΥΚΛΙΟΣ 1/2005 ΘΕΜΑ: Κοινοποίηση των διατάξεων του άρθρου 9 Ν. 3302/04 (ΦΕΚ 267 τ.α 28-12-04) περί ρύθµισης οφειλών του Ι.Κ.Α Ε.Τ.Α.Μ. ΣΧΕΤ. : Εγκ. Ι.Κ.Α 52/99, 69/02, 20/04
Η ΑΓΩΓΗ ΥΓΕΙΑΣ ΣΤΗΝ ΠΑΙ ΙΚΗ ΛΟΓΟΤΕΧΝΙΑ ΚΑΙ ΣΤΑ ΝΕΑ ΣΧΟΛΙΚΑ ΒΙΒΛΙΑ
Η ΑΓΩΓΗ ΥΓΕΙΑΣ ΣΤΗΝ ΠΑΙ ΙΚΗ ΛΟΓΟΤΕΧΝΙΑ ΚΑΙ ΣΤΑ ΝΕΑ ΣΧΟΛΙΚΑ ΒΙΒΛΙΑ Α. ΠΑΙ ΙΚΗ ΛΟΓΟΤΕΧΝΙΑ ΚΑΙ ΑΓΩΓΗ ΥΓΕΙΑΣ 1. Εκδόσεις Άγκυρα: «Ο δάσκαλος µε βιολί και το αστέρι», Θ. Χορτιάτη (φιλία συντροφικότητα) 2. Εκδόσεις
ΔΙΑΚΗΡΥΞΗ ΑΝΟΙΧΤΗΣ ΔΗΜΟΠΡΑΣΙΑΣ
ΕΠ. ΕΝΙΣΧΥΣΗ ΠΡΟΣΠΕΛΑΣΙΜΟΤΗΤΑΣ 2007-2013 & ΤΑΜΕΙΟ ΣΥΝΟΧΗΣ 2000-2006 ΕΥΡΩΠΑΪΚΗ EΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΤΑΜΕΙΟ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΑΜΕΙΟ ΣΥΝΟΧΗΣ ΕΡΓΑ Ο.Σ.Ε. Α.Ε. ΔΙΕΥΘΥΝΣΗ ΣΥΜΒΑΣΕΩΝ ΚΑΙ ΠΡΟΜΗΘΕΙΩΝ ΕΡΓΟ : ΦΥΤΟΤΕΧΝΙKΕΣ
ΠΡΟΪΟΝΤΩΝ» Ποσοστό στη.. του Μέτρου. Ποσό (σε ΕΥΡΩ)
ΤΕΧΝΙΚΟ ΕΛΤΙΟ ΜΕΤΡΟΥ 7.12 : «EΠΕΝ ΥΣΕΙΣ ΓΙΑ ΤΗ ΒΕΛΤΙΩΣΗ ΤΗΣ ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΩΤΗΣ ΜΕΤΑΠΟΙΗΣΗΣ ΚΑΙ ΕΜΠΟΡΙΑΣ ΓΕΩΡΓΙΚΩΝ ΠΡΟΪΟΝΤΩΝ» Α. ΤΑΥΤΟΤΗΤΑ ΜΕΤΡΟΥ Κ.Π.Σ. 2000-2006 ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ
Η κοινωνία της Σπάρτης µέσα από το βιβλίο «Ο Ο πολεµιστής της Σπάρτης»
6 Ο Γυµνάσιο Νέας Ιωνίας Τάξη:A Τµήµα:3 Μάθηµα: Αρχαία Ιστορία ιδάσκουσα: Ελ.Σάρδη Η κοινωνία της Σπάρτης µέσα από το βιβλίο «Ο Ο πολεµιστής της Σπάρτης» Εργασία του µαθητή: Οδυσσέα Πέντα Μάιος2015 Στους