Τεχνολογία Α! Τάξης. Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνολογία Α! Τάξης. Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ"

Transcript

1 Τεχνολογία Α! Τάξης Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ

2 Μελέτη Πριν από κάθε κατασκευή προηγούνται : 1. Μελέτη 2. Σχεδίαση *Τι σχήμα να τις δώσω; *Τι μέγεθος θα έχει (διαστάσεις); Σχεδίαση * Ποιοι είναι οι κανόνες σχεδίασης; *Τι μας δείχνει το χαρτί του σχεδίου; Κατασκευή *Τι υλικό να χρησιμοποιήσω; *Τι εργαλεία θα χρειαστώ; *Ποια είναι η σειρά των εργασιών;

3 Τι προσπαθούμε να κάνουμε με το σχέδιο ; Στην καθημερινή του ζωή ο άνθρωπος, χρησιμοποιεί τον προφορικό και τον γραπτό λόγο σαν μέσο επικοινωνίας με τους ανθρώπους. Οι τεχνικοί έχουν τον δικό τους τρόπο επικοινωνίας μεταξύ τους, το σχέδιο. Από τους τεχνικούς άλλοι μελετούν τα τεχνικά έργα και άλλοι τα κατασκευάζουν. Για να μπορέσουν λοιπόν να συνεννοηθούν ο μελετητής ενός έργου με τον κατασκευαστή χρησιμοποιούν το σχέδιο. Με το σχέδιο λοιπόν προσπαθούμε να παρουσιάσουμε με μια γραφική παράσταση - που μας δείχνει με σαφήνεια και με λεπτομέρειες- την μορφή που θέλουμε να δώσουμε σε κάτι που πρόκειται να κατασκευάσουμε.

4 Μελέτησα το θέμα που διάλεξα και παρατηρώ ότι έχει μεγάλη ομοιότητα με το ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕΔΟ

5 Από τις τάξεις του Δημοτικού σχολείου θυμάμαι, ότι το ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕΔΟ είναι ένα στερεό σχήμα, που αποτελείται από 6 διαφορετικές επιφάνειες (έδρες) που όπως φαίνεται πιο κάτω είναι ανά 2 όμοιες. 4 εκ. 6 εκ. 3 εκ. 1 η έδρα 6εκ. Χ 4εκ. (μπροστινή έδρα) 2 η έδρα / 6εκ.Χ 3εκ (πάνω έδρα) 3εκ. Χ 4 εκ. Αριστερή { 3 η } έδρα 4 η έδρα 6εκ. Χ 4εκ. (πίσω έδρα) 5 η έδρα / 6εκ.Χ 3εκ (κάτω έδρα) 3εκ. Χ 4 εκ. Δεξιά { 6 η } έδρα

6 Παρατήρησα ότι, αν αυτές τις έδρες τις δημιουργήσω μ ένα οποιοδήποτε υλικό και τις συνδέσω μεταξύ τους, σύμφωνα με το παρακάτω σχήμα τότε θα έχω κατασκευάσει ένα ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕΔΟ. 4 η έδρα 6εκ. Χ 4εκ. (πίσω έδρα) 2 η έδρα / 6εκ.Χ 3εκ (πάνω έδρα) 3εκ. Χ 4 εκ. Δεξιά { 6 η } έδρα 5 η έδρα / 6εκ.Χ 3εκ (κάτω έδρα) 3εκ. Χ 4 εκ. Αριστερή { 3 η } έδρα 1 η έδρα 6εκ. Χ 4εκ. (μπροστινή έδρα)

7 Πρακτικά όμως σε τεχνικές κατασκευές οι ονομασίες των 6 εδρών αλλάζουν και χαρακτηρίζονται από την θέση που βλέπω το αντικείμενο π.χ. αν θεωρήσω ότι στέκομαι στην μπροστινή έδρα αυτή θεωρείται ως πρόοψη, η πάνω πλευρά ως κάτοψη και αντίστοιχα οι υπόλοιπες 4 αριστερή πλάγια όψη,άνοψη, πίσω όψη και δεξιά πλάγια όψη. Κάτοψη Δεξιά Πλάγια όψη Πίσω όψη Πρόοψη Αριστερή Πλάγια όψη Άνοψη

8 Για να το καταλάβουμε καλύτερα ας δούμε ένα σχήμα λίγο δυσκολότερο

9 Για να κατανοήσουμε ακόμη καλύτερα τις 6 διαφορετικές θέσεις ας δούμε ένα παράδειγμα μ ένα σταθερό τηλέφωνο.

10 Εδώ φαίνεται το σχέδιο κάθε 1 όψης του σταθερού τηλεφώνου

11 Όπως παρατηρούμε οι όψεις ανά ζεύγη έχουν τις ίδιες διαστάσεις και έτσι έχει αποφασιστεί ότι αρκεί να σχεδιάζουμε τις 3 αντί των 6.Συγκεκριμμένα τις Πρόοψη κάτοψη και αριστερή πλάγια όψη, στις θέσεις που φαίνονται πιο κάτω. Πρόοψη Αριστερή πλάγια όψη Κάτοψη

12 Παράδειγμα τοποθέτησης όψεων αυτοκινήτου

13 Παράδειγμα τοποθέτησης όψεων αεροπλάνου

14 4,5 εκ. Αν έχω επιλέξει ένα θέμα με κυλινδρική μορφή (φάρος-ανεμόμυλος-πύραυλος) αλλάζει κάτι με την σχεδίαση των όψεων; Η πρόοψη με την αριστερή πλάγια όψη είναι κοινές. Πρέπει όμως να σχεδιάσουμε απαραίτητα στοιχεία όπως ο μύλος-η πόρτα εισόδου παράθυρα κ.ά. 6 εκ. 4,5 εκ. 6 εκ. 4,5 εκ.

15 Υπάρχουν και κάποιες κατασκευές που παραλείπεται ή κάτοψη γιατί είναι σημαντικότερες οι άλλες 2 όψεις. Σχεδίαση όψεων ανεμογεννήτριας

16 Το συμπέρασμα που έβγαλα είναι ότι αν μάθω να σχεδιάζω ικανοποιητικά τις όψεις-τις μεταφέρω σε κάποιο υλικό - και τις συνδέσω κατάλληλα μεταξύ τους μάλλον θα καταφέρω να φτιάξω αυτά που έχω σκεφτεί. Ας ξεκινήσω Με κατάλληλα εργαλεία δηλ. ένα μολύβι ΗΒ και αρκετά φύλλα χαρτιού τετραγωνισμένο καλύτερα θα σχεδιάζω αρχικά διάφορα απλά αντικείμενα π.χ. τις όψεις μιας τηλεόρασης ενός κινητού και σταδιακά θα προχωρήσω σε πιο σύνθετες σχεδιάσεις. Η σχεδίαση αρχικά θα γίνεται μα ελεύθερο χέρι και σταδιακά θα χρησιμοποιώ και τα κατάλληλα γεωμετρικά όργανα. Με λίγη εξάσκηση θα τα καταφέρω σίγουρα.

17 Παράδειγμα πρόχειρης σχεδίασης ((ΣΚΑΡΙΦΗΜΑ) των όψεων μίας τηλεόρασης σε χαρτί μιλιμετρέ (ή σε χαρτί με τετραγωνάκια καρέ ).

18 Πότε και πως θα χρησιμοποιήσω κλίμακα σχεδίασης ; Ο σχεδιασμός με κλίμακα μας επιτρέπει να αναπαραστήσουμε ένα αντικείμενο μεγάλο σε χαρτί μικρών διαστάσεων. Στα σχέδια πάντα αναγράφονται οι διαστάσεις που έχει το αντικείμενο στην πραγματικότητα. Στην πράξη, όταν λέμε σχεδιασμό υπό κλίμακα, εννοούμε τη σμίκρυνση ενός αντικειμένου ή τη διαίρεση όλων των διαστάσεών του με ένα συγκεκριμένο αριθμό. Αν θέλουμε π.χ. να σχεδιάσουμε μία καρέκλα, αρκεί να τη μικρύνουμε δύο φορές ή πέντε, δηλαδή να τη σχεδιάσουμε στην 1:2 ή στην 1:5 κλίμακα( η κλίμακα 1:1 είναι όταν ένα αντικείμενο σχεδιάζεται στις πραγματικές του διαστάσεις). Το 1:Χ κλίμακα σημαίνει ότι θα πρέπει να ξέρουμε όλες τις διαστάσεις του αντικειμένου και αυτές να τις διαιρέσουμε με το Χ (ο παρανομαστής στο κλάσμα της κλίμακας ). Όταν λοιπόν σχεδιάζουμε ένα αντικείμενο σε μία συγκεκριμένη κλίμακα, θα πρέπει να διαιρέσουμε όλες τις διαστάσεις του αντικειμένου με τον παρονομαστή της κλίμακας που διαλέξαμε σαν την πιο κατάλληλη για το χαρτί που εργαζόμαστε.

19 Παράδειγμα μετατροπής διαστάσεων αντικειμένου με κλίμακα 1:2 Οι διαστάσεις στο χαρτί σχεδίασης γράφουν τα πραγματικά μεγέθη, όμως οι διαστάσεις στο χαρτί έχουν τα μεγέθη που υπολογίζονται με την κλίμακα δηλ. στο παραπάνω παράδειγμα έχουν διαιρεθεί με το 2.

20 Ελπίζω οι λίγες αυτές πληροφορίες να σας βοηθήσουν να ανέβετε κάποια σκαλοπάτια στη γνώση της σχεδίασης. Με την δική σας προσπάθεια, είναι σίγουρο ότι θα ανέβετε όλη την σκάλα. ΚΑΛΗ ΕΠΙΤΥΧΙΑ!!!

Σ ΣΤ Σ Η Τ Μ Η ΑΤ Α Α Τ ΠΑΡΑ Ρ ΓΩΓ Ω ΗΣ Η Σ ΜΕ Η/Υ (CAD-CAM-CAE) Ι

Σ ΣΤ Σ Η Τ Μ Η ΑΤ Α Α Τ ΠΑΡΑ Ρ ΓΩΓ Ω ΗΣ Η Σ ΜΕ Η/Υ (CAD-CAM-CAE) Ι ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΜΕ Η/Υ (CAD-CAM-CAE) Ι ΤΕΧΝΙΚΟ / ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ Σύμβολα R: Radius-ακτίνα, Ø (Φι): Διάμετρος, κύκλου ή τόξου ΟΨΕΙΣ ΟΡΘΟΓΩΝΙΕΣ ΠΡΟΒΟΛΕΣ Βασικές όψεις: Ορθογώνιες προβολές στις έξι

Διαβάστε περισσότερα

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα)

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 20 1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 1.3.1 Ορισµός- Είδη - Χρήση Σκαρίφηµα καλείται η εικόνα ενός αντικειµένου ή εξαρτήµατος που µεταφέρεται σε χαρτί µε ελεύθερο χέρι (χωρίς όργανα σχεδίασης ή

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΜΕ Η/Υ (CAD-CAM-CAE) Ι

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΜΕ Η/Υ (CAD-CAM-CAE) Ι ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΜΕ Η/Υ (CAD-CAM-CAE) Ι ΤΕΧΝΙΚΟ / ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ Σύμβολα R: ακτίνα κύκλου ή τόξου Ø (Φ): Διάμετρος κύκλου ή τόξου 1 ΟΨΕΙΣ ΟΡΘΟΓΩΝΙΕΣ ΠΡΟΒΟΛΕΣ Βασικές όψεις: Ορθογώνιες προβολές

Διαβάστε περισσότερα

1.4 Κλίµακες σχεδίασης και κανόνες τοποθέτησης διαστάσεων

1.4 Κλίµακες σχεδίασης και κανόνες τοποθέτησης διαστάσεων 1.4 Κλίµακες σχεδίασης και κανόνες τοποθέτησης διαστάσεων 1.4.1 Κλίµακες σχεδίασης Στο µηχανολογικό σχέδιο είναι επιθυµητό να σχεδιάζεται ένα αντικείµενο σε φυσικό µέγεθος, γιατί έτσι παρουσιάζεται η αληθινή

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Τεχνικό Σχέδιο Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Διάλεξη 2η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ

Διαβάστε περισσότερα

Εργαστήριο 1: Σχέδια από την οικοδομική άδεια ενός κτηνοτροφικού κτηρίου

Εργαστήριο 1: Σχέδια από την οικοδομική άδεια ενός κτηνοτροφικού κτηρίου Εργαστήριο 1: Σχέδια από την οικοδομική άδεια ενός κτηνοτροφικού κτηρίου Περιεχόμενα 1. Στόχος του εργαστηρίου... 3 2. ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ... 3 2.1 Εξοπλισμός σχεδίασης... 3 2.1.1 Μολύβια... 3 2.1.2. Επιφάνεια

Διαβάστε περισσότερα

1.2 Στοιχεία Μηχανολογικού Σχεδίου

1.2 Στοιχεία Μηχανολογικού Σχεδίου 1.2 Στοιχεία Μηχανολογικού Σχεδίου Τα µηχανολογικά σχέδια, ανάλογα µε τον τρόπο σχεδίασης διακρίνονται στις παρακάτω κατηγορίες: Σκαριφήµατα Κανονικά µηχανολογικά σχέδια Προοπτικά σχέδια Σχηµατικές παραστάσεις.

Διαβάστε περισσότερα

1 ο Εξάμηνο. αποτύπωση. Εισαγωγικές έννοιες στην και τεκμηρίωση αντικειμένων

1 ο Εξάμηνο. αποτύπωση. Εισαγωγικές έννοιες στην και τεκμηρίωση αντικειμένων 1 ο Εξάμηνο 2015-2016 Εισαγωγικές έννοιες στην αποτύπωση και τεκμηρίωση αντικειμένων Μάθημα 2ο Τζώρτζια Πλατυπόδη Αρχιτέκτων Μηχανικός Ε.Μ.Π. MSc Διαχείριση Μνημείων Ε.Κ.Π.Α. Κλίμακες σχεδίασης Οι Κλίμακες

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών).

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών). ΣΤΕΡΕΟΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.6 Ονομάζουν, περιγράφουν και ταξινομούν τρισδιάστατα σχήματα (κύβο, ορθογώνιο παραλληλεπίπεδο, πυραμίδα, σφαίρα, κύλινδρο, κώνο),

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Σενάριο 13: Προγραμματίζοντας ένα Ρομπότ

Σενάριο 13: Προγραμματίζοντας ένα Ρομπότ Σενάριο 13: Προγραμματίζοντας ένα Ρομπότ Φύλλο Εργασίας Τίτλος: Προγραμματίζοντας ένα Ρομπότ Γνωστικό Αντικείμενο: Πληροφορική Διδακτική Ενότητα: Ελέγχω-Προγραμματίζω τον Υπολογιστή Τάξη: Γ Γυμνασίου Διάρκεια:

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

13ο Μάθημα ΠΙΕΣΗ ΠΟΥ ΑΣΚΟΥΝ ΤΑ ΣΤΕΡΕΑ

13ο Μάθημα ΠΙΕΣΗ ΠΟΥ ΑΣΚΟΥΝ ΤΑ ΣΤΕΡΕΑ 13ο Μάθημα ΠΙΕΣΗ ΠΟΥ ΑΣΚΟΥΝ ΤΑ ΣΤΕΡΕΑ Η δύναμη μπορεί να είναι μεγάλη, αλλά η πίεση μικρή Με το μάθημα αυτό, αρχίζουμε τη μελέτη μιας σημαντικής έννοιας, της πίεσης, που υπεισέρχεται σε πάρα πολλές περιπτώσεις

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

Σχεδιασμός αρχιτεκτονικών σχεδίων

Σχεδιασμός αρχιτεκτονικών σχεδίων 4. Σχεδιασμός αρχιτεκτονικών σχεδίων ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΕΙΣ Σαμίρ Μπαγιούκ Για να κάνουμε αντιληπτό ένα αντικείμενο στον χώρο, μπορούμε να χρησιμοποιήσουμε τη φωτογράφιση με πολλαπλές λήψεις από διάφορες

Διαβάστε περισσότερα

1. Σχεδιασμός - Γραφική Επικοινωνία

1. Σχεδιασμός - Γραφική Επικοινωνία 1. Σχεδιασμός - Γραφική Επικοινωνία 1.1 Εισαγωγή Πολλές φορές, όταν μιλάμε για την τεχνολογία, το μυαλό μας πηγαίνει στα τελευταία και πιο εντυπωσιακά της επιτεύγματα, όπως αυτά της μικροηλεκτρονικής και

Διαβάστε περισσότερα

Πώς να λύσετε τον κύβο του Rubik

Πώς να λύσετε τον κύβο του Rubik Πώς να λύσετε τον κύβο του Rubik από τον Έλτον 1 Σκόντι, Β Λυκείου 1 ο ΓΕ.Λ. Ελευσίνας σχολικό έτος 2008-9 ΒΗΜΑ 1 Ο : Φτιάχνουμε έναν σταυρό σε όποιο χρώμα θέλουμε. Δηλαδή: Αν π.χ. θέλουμε να φτιάξουμε

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ. ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου

Διαβάστε περισσότερα

1 ο Εξάμηνο. αποτύπωση. Εισαγωγικές έννοιες στην και τεκμηρίωση αντικειμένων. Αποτυπώσεις Τεκμηρίωση Αντικειμένων

1 ο Εξάμηνο. αποτύπωση. Εισαγωγικές έννοιες στην και τεκμηρίωση αντικειμένων. Αποτυπώσεις Τεκμηρίωση Αντικειμένων 1 ο Εξάμηνο 2015-2016 Εισαγωγικές έννοιες στην αποτύπωση και τεκμηρίωση αντικειμένων Αποτυπώσεις Τεκμηρίωση Αντικειμένων Μάθημα 1ο Τζώρτζια Πλατυπόδη Αρχιτέκτων Μηχανικός Ε.Μ.Π. MSc Διαχείριση Μνημείων

Διαβάστε περισσότερα

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Εκτελώντας το πρόγραμμα παίρνουμε ένα παράθυρο εργασίας Γεωμετρικών εφαρμογών. Τα βασικά κουμπιά και τα μενού έχουν την παρακάτω

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν; ΜΕΡΟΣ Β. ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ-ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 05. ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΗΣ ΕΠΙΦΑΝΕΙΑΣ Ορισμός Το εμβαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, που εκφράζει την έκταση που καταλαμβάνει η επιφάνεια

Διαβάστε περισσότερα

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΑΡΧΙΤΕΚΤΟΝΙΚΟ ΚΑΙ ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

Κεφάλαιο 7 Γεωμετρικές Κατασκευές

Κεφάλαιο 7 Γεωμετρικές Κατασκευές Κεφάλαιο 7 Γεωμετρικές Κατασκευές Συντομεύσεις Ακρωνύμια... 2 Σύνοψη... 3 Προαπαιτούμενη γνώση... 3 7.1. Κατασκευή ευθύγραμμων τμημάτων... 3 7.2. Κατασκευή γωνιών... 8 7.3. Κατασκευή πολυγώνων... 11 7.4.

Διαβάστε περισσότερα

ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΗ ΘΕΑΤΡΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΗ ΘΕΑΤΡΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΗ ΘΕΑΤΡΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: «ΕΠΙΔΑΠΕΔΙΟ ΠΑΙΧΝΙΔΙ» Δράσεις που υλοποιήθηκαν με τη Β Τάξη του 3 ου Διαπολιτισμικού Δημοτικού Σχολείου Μενεμένης. Σχολικό έτος 2011-2012 Συντελεστές

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΥ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ

ΣΧΕ ΙΑΣΜΟΥ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΚΛΙΜΑΚΙΟ ΣΧΕ ΙΑΣΜΟΥ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ στο Σχεδιασμό και Τεχνολογία Α Β ΠΕΡΙΕΡΓΑ...... ΜΑΤΑΚΙΑ Εισαγωγή: Αφόρμηση Πρόβλημα Στόχοι Πορεία ραστηριότητες Ιδέες Λύσεις Επέκταση Φύλλα εργασίας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια

ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια Μάθημα 2.6 Τρισδιάστατη στερεά μοντελοποίηση εξαρτημάτων ημιουργία ενός τρισδιάστατου μοντέλου από ένα σχέδιο δύο διαστάσεων. Ορθές προβολές (Top, Bottom,

Διαβάστε περισσότερα

Επαγγελματικές κάρτες

Επαγγελματικές κάρτες Επαγγελματικές κάρτες Αφροδίτη Οικονόμου Νηπιαγωγός afoikon@uth.gr Η παρουσίαση αναπτύχθηκε για την πλατφόρμα Ταξίδι στον γραμματισμό Θεματική: Τα επαγγέλματα των γονιών της τάξης μας ΤΙΤΛΟΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ:

Διαβάστε περισσότερα

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι 21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB Αλγόριθμος Διαδικασία Παράμετροι Τι είναι Αλγόριθμος; Οι οδηγίες που δίνουμε με λογική σειρά, ώστε να εκτελέσουμε μια διαδικασία ή να επιλύσουμε ένα

Διαβάστε περισσότερα

Διδακτική των Μαθηματικών

Διδακτική των Μαθηματικών Διδακτική των Μαθηματικών Ονοματεπώνυμο : Μαμτζέλλη Χρυσούλα Τάξη : Γ Δημοτικού Κεφάλαιο 43 : Η συμμετρία Πρόκειται για ένα εισαγωγικό μάθημα στην αξονική συμμετρία. Οι μαθητές θα μάθουν πότε δύο σχήματα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Λεμονιά Αμυγδάλου, Ε.Τ.Ε.Π. ΤΜΟΔ (Ειδικό Τεχνικό Εργαστηριακό Προσωπικό) email αποστολής εργασιών: idaegean@gmail.com ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή στην Τεχνική Σχεδίαση

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Επαναληπτικό Φυλλάδιο Μαθηματικών Α Γυμνασίου uiopasdfghjklzxcvbnmqwertyui 3 η έκδοση 29/04/15

Διαβάστε περισσότερα

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο)

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο) ΤΕΙ ΛΑΡΙΣΑΣ - Παράρτημα Καρδίτσας ΤΜΗΜΑ ΣΧΕΔΙΑΣΜΟΥ & ΤΕΧΝΟΛΟΓΙΑΣ ΞΥΛΟΥ ΕΠΙΠΛΟΥ ΣΗΜΕΙΩΣΕΙΣ ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ ΙΙ (Μέρος πρώτο) - ΠΛΑΓΙΑ ΠΡΟΒΟΛΗ - ΑΞΟΝΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ - ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ ΚΟΛΛΑΤΟΣ ΓΕΩΡΓΙΟΣ

Διαβάστε περισσότερα

Movie Maker (Δημιουργία βίντεο)

Movie Maker (Δημιουργία βίντεο) Movie Maker (Δημιουργία βίντεο) - Με πόσους τρόπους μπορούμε να διηγηθούμε μια ιστορία; - Μπορούμε να την πούμε ο ένας στον άλλο. - Μπορούμε να την γράψουμε. - Μπορούμε να τη ζωγραφίσουμε κομμάτι-κομμάτι.

Διαβάστε περισσότερα

Ο μαθητής (σχεδιαστής) πρέπει να αναπτύξει την ικανότητα επικοινωνίας, με τη βοήθεια σχεδίων ή σκίτσων.

Ο μαθητής (σχεδιαστής) πρέπει να αναπτύξει την ικανότητα επικοινωνίας, με τη βοήθεια σχεδίων ή σκίτσων. ΓΡΑΦΙΚΗ ΕΠΙΚΟΙΝΩΝΙΑ Η Γραφική Επικοινωνία αναφέρεται στις γραφικές δεξιότητες και τεχνικές που χρησιμοποιούνται στην Τεχνολογία. Περιλαμβάνει σχέδιο, χρήση χρωμάτων, καταχώρηση πληροφοριών και παρουσίαση

Διαβάστε περισσότερα

Ορθογωνούλης Αμβλυγωνούλης Οξυγωνούλης

Ορθογωνούλης Αμβλυγωνούλης Οξυγωνούλης Ορθογωνούλης Αμβλυγωνούλης Οξυγωνούλης Μια φορά και έναν καιρό στην τριγωνογειτονιά ζούσαν 3 φίλοι: ο Αµβλυγωνούλης, ο Oξυγωνούλης και ο Oρθογωνούλης. Κάθε ένας ζούσε σε ένα σπιτάκι ανάλογο µε το σχήµα

Διαβάστε περισσότερα

Ερωτηματολόγιο αυτοαξιολόγησης μαθησιακού τύπου (προφίλ)

Ερωτηματολόγιο αυτοαξιολόγησης μαθησιακού τύπου (προφίλ) VAK Learning Styles Self-Assessment Questionnaire Ερωτηματολόγιο αυτοαξιολόγησης μαθησιακού τύπου (προφίλ) Κυκλώστε ή επιλέξτε την απάντηση που αντιπροσωπεύει καλύτερα τη γενικότερη συμπεριφορά σας. Θυμηθείτε

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα ΕΝΤΟΛΕΣ χρησιμοποιηθούν παρακάτω στα παραδείγματα Βάζοντας την εντολή αυτή σε οποιοδήποτε χαρακτήρα μπορούμε να αλλάζουμε όψεις

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Δ ΔΗΜΟΤΙΚΟΥ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Δ ΔΗΜΟΤΙΚΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2010 Χρόνος: 60 λεπτά Δ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Ποια από τις ακόλουθες παραστάσεις έχει το ίδιο αποτέλεσμα με (15-5) + 6 ; Α) (15-6)

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΑΡΧΙΤΕΚΤΟΝΙΚΟ ΚΑΙ ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ

Διαβάστε περισσότερα

2ο video (επίλυση ανίσωσης 1 ου βαθμού)

2ο video (επίλυση ανίσωσης 1 ου βαθμού) 2ο video (επίλυση ανίσωσης 1 ου βαθμού) 1 Γεια σας και πάλι! Συγχαρητήρια για την επιτυχία σας στην πρώτη ενότητα! 2 Σε αυτό το video θα θυμηθούμε τη διαδικασία επίλυσης πρωτοβάθμιας ανίσωσης, δηλαδή όλα

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Το διαστημόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί

Διαβάστε περισσότερα

Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ

Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ ΤΕΙ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ ΕΡΓΑΣΤΗΡΙΩΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ & ΟΙΚΟΔΟΜΙΚΗΣ Σύνταξη κειμένου: Μαρία Ν. Δανιήλ, Αρχιτέκτων

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 015 ΒΑΘΜΟΣ : ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Αριθμητικά.. ΗΜΕΡΟΜΗΝΙΑ: 1/6/015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Α Ολογράφως:... ΧΡΟΝΟΣ: ώρες

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 2: Απόδειξη Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Η ΔΙΑΧΥΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΕΜΒΑΔΟΥ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 3: Μηχανολογικό Σχέδιο Τομή, Ημιτομή

Τεχνικό Σχέδιο. Ενότητα 3: Μηχανολογικό Σχέδιο Τομή, Ημιτομή Τεχνικό Σχέδιο Ενότητα 3: Μηχανολογικό Σχέδιο Τομή, Ημιτομή Διάλεξη 3η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΟΜΩΝ Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2014 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΕΞΙ (6) ΘΕΜΑ: «ΜΙΚΡΗ ΕΞΟΧΙΚΗ ΚΑΤΟΙΚΙΑ» ΠΕΡΙΓΡΑΦΗ: Το κτήριο

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

Α Φάση ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ

Α Φάση ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Μέτρηση µήκους Γ Δημοτικού Δ Δημοτικού Ε Δημοτικού Μ2. Μετρούν και Μ2. Υπολογίζουν την συγκρίνουν την περίμετρο περίμετρο σχημάτων πολυγωνικών σχημάτων χρησιμοποιώντας και επιλύουν

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα ΕΝΤΟΛΕΣ χρησιμοποιηθούν παρακάτω στα παραδείγματα Βάζοντας την εντολή αυτή σε οποιοδήποτε αντικείμενο μπορούμε να αλλάζουμε

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

Δύναμη ελατηρίου και θετικές φορές

Δύναμη ελατηρίου και θετικές φορές Δύναμη ελατηρίου και θετικές φορές Α. Ας ξεκινήσουμε με κάτι απλό και γνώριμο Στο σχήμα τα δυο σώματα συγκρούονται πλαστικά. Να βρεθεί η κοινή ταχύτητα. Δίνεται m 1 =m, m 2 =3m και υ 1 =3 m/s, υ 2 =2 m/s.

Διαβάστε περισσότερα

Τεχνολογικό περιβάλλον. Ορισμοί της Τεχνολογίας. Σχέση Τεχνολογίας και Επιστήμης. Επιπτώσεις της Τεχνολογίας. ΕΙΣΑΓΩΓΗ στην ΤΕΧΝΟΛΟΓΙΑ

Τεχνολογικό περιβάλλον. Ορισμοί της Τεχνολογίας. Σχέση Τεχνολογίας και Επιστήμης. Επιπτώσεις της Τεχνολογίας. ΕΙΣΑΓΩΓΗ στην ΤΕΧΝΟΛΟΓΙΑ Ορισμοί της Τεχνολογίας Τεχνολογικό περιβάλλον ΕΙΣΑΓΩΓΗ στην ΤΕΧΝΟΛΟΓΙΑ Σχέση Τεχνολογίας και Επιστήμης Επιπτώσεις της Τεχνολογίας Ορισμός σχολικού βιβλίου για την Τεχνολογία Με την ευρεία έννοια του όρου

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΣΧΕΔΙΩΝ. Το οικόπεδο μας ανήκει στον κύριο Νίκο Δαλιακόπουλο καθώς και το γειτονικό οικόπεδο.

ΠΕΡΙΓΡΑΦΗ ΣΧΕΔΙΩΝ. Το οικόπεδο μας ανήκει στον κύριο Νίκο Δαλιακόπουλο καθώς και το γειτονικό οικόπεδο. - 99 - ΠΕΡΙΓΡΑΦΗ ΣΧΕΔΙΩΝ 1. Τοπογραφικό Διάγραμμα : To τοπογραφικό διάγραμμα της δεύτερης αρχιτεκτονικής μελέτης ταυτίζεται με αυτό της πρώτης αρχιτεκτονικής μελέτης εφόσον και οι δυο μελέτες εχουν γίνει

Διαβάστε περισσότερα

Εισαγωγή στην επανάληψη

Εισαγωγή στην επανάληψη Εισαγωγή στην επανάληψη Στο κεφάλαιο αυτό ήρθε η ώρα να μελετήσουμε την επανάληψη στον προγραμματισμό λίγο πιο διεξοδικά! Έχετε ήδη χρησιμοποιήσει, χωρίς πολλές επεξηγήσεις, σε προηγούμενα κεφάλαια τις

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

ΣΔΕ ΘΕΣ/ΝΙΚΗΣ. Συμμετρία και Τέχνη

ΣΔΕ ΘΕΣ/ΝΙΚΗΣ. Συμμετρία και Τέχνη Συμμετρία και Τέχνη Διεπιστημονική προσέγγιση αριθμητικού και οπτικού γραμματισμού Εκπαιδευτικοί: Αθανασοπούλου Ζαφειρία (οπτικός γραμματισμός) Σαρακινίδου Σοφία (αριθμητικός γραμματισμός) (Αξονική και

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3 Σύμβολα και σχεδιαστικά στοιχεία Μάθημα 3 Τα αρχιτεκτονικά σύμβολα αποτελούν μια διεθνή, συγκεκριμένη και απλή γλώσσα. Είναι προορισμένα να γίνονται κατανοητά από τον καθένα, ακόμα και από μη ειδικούς.

Διαβάστε περισσότερα

ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΜΣ «ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΚΑΙ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ» Παραδείγματα Variation Μεταπτυχιακός Φοιτητής:

Διαβάστε περισσότερα

Οδηγίες για τη συγγραφή γραπτής εργασίας Α Γυμνασίου

Οδηγίες για τη συγγραφή γραπτής εργασίας Α Γυμνασίου Οδηγίες για τη συγγραφή γραπτής εργασίας Α Γυμνασίου Για τη συγγραφή της εργασίας θα χρειαστεί να συλλέξετε πληροφορίες σχετικές με το αντικείμενο που έχετε επιλέξει από τις διαθέσιμες πηγές όπως τις εγκυκλοπαίδειες,

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

Κανόνες συμπεριφοράς καθημερινής επικοινωνίας με άτομα με αναπηρία

Κανόνες συμπεριφοράς καθημερινής επικοινωνίας με άτομα με αναπηρία Κανόνες συμπεριφοράς καθημερινής επικοινωνίας με άτομα με αναπηρία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΠΙΚΟΙΝΩΝΙΑΣ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΝΗΜΕΡΩΣΗΣ 2 Η Γενική Γραμματεία Επικοινωνίας Γενική Γραμματεία Ενημέρωσης,

Διαβάστε περισσότερα

β. Πιο κάτω από τη βάση τοποθετούμε το εστιακό σημείο του παρατηρητή, σε κάτοψη.

β. Πιο κάτω από τη βάση τοποθετούμε το εστιακό σημείο του παρατηρητή, σε κάτοψη. Προβολές σε άλλα επίπεδα - Προοπτικές απεικονίσεις Μπορεί να γίνει προβολή ως προς σημείο το οποίο μπορεί να είναι το ανθρώπινο μάτι, ή ακριβέστερα το εστιακό σημείο του ανθρώπινου ματιού: Η απεικόνιση

Διαβάστε περισσότερα

2.1 Δραστηριότητα: Εισαγωγή στο όριο συνάρτησης σε σημείο

2.1 Δραστηριότητα: Εισαγωγή στο όριο συνάρτησης σε σημείο 2.1 Δραστηριότητα: Εισαγωγή στο όριο συνάρτησης σε σημείο Θέμα της δραστηριότητας Η δραστηριότητα αυτή, με αφορμή τον υπολογισμό της στιγμιαίας ταχύτητας, εισάγει στο όριο συνάρτησης σε σημείο. Στόχοι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 8 ΠΡΑΞΕΙΣ ΚΛΑΣΜΑΤΩΝ ΚΑΙ ΜΙΚΤΩΝ, ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ, ΣΤΕΡΕΑ

ΕΝΟΤΗΤΑ 8 ΠΡΑΞΕΙΣ ΚΛΑΣΜΑΤΩΝ ΚΑΙ ΜΙΚΤΩΝ, ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ, ΣΤΕΡΕΑ ΠΡΑΞΕΙΣ ΚΛΑΣΜΑΤΩΝ ΚΑΙ ΜΙΚΤΩΝ, ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ, ΣΤΕΡΕΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ3.15 Εκτελούν πράξεις πολλαπλασιασμού, όταν ένας παράγοντας είναι ακέραιος

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 9 ο, Τμήμα Α Γιατί νομίζετε ότι η άλγεβρα είναι το πιο σημαντικό εργαλείο που έχουμε στα μαθηματικά; Είναι ένα από τα λίγα εργαλεία των μαθηματικών που το χρησιμοποιούνε

Διαβάστε περισσότερα

1 ο ΕΠΑΛ ΓΛΥΦΑΔΑΣ ΤΟΜΕΑΣ: ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΙΔΙΚΟΤΗΤΑ : ΣΧΕΔΙΑΣΤΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

1 ο ΕΠΑΛ ΓΛΥΦΑΔΑΣ ΤΟΜΕΑΣ: ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΙΔΙΚΟΤΗΤΑ : ΣΧΕΔΙΑΣΤΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ 1 ο ΕΠΑΛ ΓΛΥΦΑΔΑΣ ΤΟΜΕΑΣ: ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΙΔΙΚΟΤΗΤΑ : ΣΧΕΔΙΑΣΤΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ Σχεδίαση για τη Ζωή Ο τομέας αυτός έχει σκοπό να εξοπλίσει τους μαθητές με τις κατάλληλες θεωρητικές και

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 5: ΑΝΑΚΛΑΣΗ (συνέχεια)

ΜΑΘΗΜΑ 5: ΑΝΑΚΛΑΣΗ (συνέχεια) ΜΑΘΗΜΑ 5: ΑΝΑΚΛΑΣΗ (συνέχεια) Δραστηριότητα 1 Εξερευνώντας τις παραμέτρους της ανάκλασης. 1. Να επιλέξεις το λογισμικό Μαθαίνω Γεωμετρία και Μετρώ. 2. Από το μενού δραστηριοτήτων, να επιλέξεις το «Συμμετρία».

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Λεμονιά Αμυγδάλου, Ε.Τ.Ε.Π. ΤΜΟΔ (Ειδικό Τεχνικό Εργαστηριακό Προσωπικό) email αποστολής εργασιών: idaegean@gmail.com ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή στην Τεχνική Σχεδίαση

Διαβάστε περισσότερα

Εισαγωγή. Μηχανολογικό Σχέδιο

Εισαγωγή. Μηχανολογικό Σχέδιο Εισαγωγή Σχέδιο: Γραφική παράσταση αντικειμένου. Η φωτογραφία είναι ανεπαρκής γιατί αποτελεί την προοπτική αναπαράσταση των αντικειμένων, δηλαδή δεν έχει πραγματικές διαστάσεις και γιατί δεν αποκαλύπτει

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

ΟΔΗΓΊΕΣ Μακρυά τα παιδιά από τέτοιες εργασίες!!!!!.

ΟΔΗΓΊΕΣ Μακρυά τα παιδιά από τέτοιες εργασίες!!!!!. ΟΔΗΓΊΕΣ Ξεκινώντας τα υλικά που θα χρειαστούμε είναι σανίδες από κρεβάτι οι οποίες έχουν πλάτος συνήθως 10 εκατοστά και πάχος περίπου 2 εκατοστά, επέλεξα αυτό το υλικό γιατί είναι εύκολο να το βρείτε καθώς

Διαβάστε περισσότερα

Α) Αν το τριώνυμο έχει δύο ρίζες x 1

Α) Αν το τριώνυμο έχει δύο ρίζες x 1 αν είναι θ < 0, τότε έχουμε πάλι ότι x!. Παράδειγμα 1. Για την ανίσωση x 3 4 έχουμε x 3 4 x 3 4 ή x 3 4 x 7 ή x 1 x (, 1] [7,+ ). Παράδειγμα. Για την ανίσωση x +1 3 έχουμε x +1 3 η x +1 3 x η x 1 η x (,

Διαβάστε περισσότερα

Εγκατάσταση του AutoCAD

Εγκατάσταση του AutoCAD Σχεδίαση Εγκαταστάσεων στον Η/Υ ΠΕΡΙΕΧΟΜΕΝΑ: Πώς να κατεβάσετε το AutoCAD. Εισαγωγή στο AutoCAD. Σχεδίαση στο AutoCAD. Εγκατάσταση του AutoCAD Γιατί το AutoCAD? Το AutoCAD είναι το πιο γνωστό σχεδιαστικό

Διαβάστε περισσότερα

2. τα ρωμαϊκά, που το λούκι έχει μετασχηματιστεί σε επίπεδο και έχει ενσωματωθεί στο καπάκι

2. τα ρωμαϊκά, που το λούκι έχει μετασχηματιστεί σε επίπεδο και έχει ενσωματωθεί στο καπάκι Οι αριθμοί αντιμετωπίζονται με τον ίδιο τρόπο, αλλά είναι σημαντικό να μελετήσουμε τον τρόπο που σημειώνονται οι αριθμοί που αποδίδουν στα σχέδια τις διαστάσεις του αντικειμένου. Οι γραμμές διαστάσεων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Λεμονιά Αμυγδάλου, Ε.Τ.Ε.Π. ΤΜΟΔ (Ειδικό Τεχνικό Εργαστηριακό Προσωπικό) (e-mail: lamygdalou@fme.aegean.gr) ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή στην Τεχνική Σχεδίαση Όψεις

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΕΙΔΙΚΟΤΗΤΑΣ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΣΧΕΔΙΟ ΕΙΔΙΚΟΤΗΤΑΣ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΣΧΕΔΙΟ ΕΙΔΙΚΟΤΗΤΑΣ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΑΡΧΙΤΕΚΤΟΝΙΚΟ ΣΧΕΔΙΟ ΗΜΕΡΟΜΗΝΙΑ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΣΤΑΣΕΙΣ - ΤΟΜΕΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΣΤΑΣΕΙΣ - ΤΟΜΕΣ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΣΤΑΣΕΙΣ - ΤΟΜΕΣ Διαστασιολόγηση Μια από τις σημαντικότερες εργασίες του σχεδιαστή, αλλά και η πιο δύσκολη και υπεύθυνη, είναι η σωστή τοποθέτηση διαστάσεων

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Y404. ΔΙΜΕΠΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΣΜΟΥ ΜΕ ΜΑΘΗΤΗ ΔΙΔΑΣΚΩΝ: ΧΑΡΑΛΑΜΠΟΣ ΛΕΜΟΝΙΔΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΔΗΜΗΤΡΙΑΔΗΣ ΗΡΑΚΛΗΣ ΑΕΜ: 3734 Περιεχόμενα

Διαβάστε περισσότερα

Επεξήγηση των εντολών που θα ΕΝΤΟΛΕΣ χρησιμοποιηθούν παρακάτω στα παραδείγματα < ενδυμασία1>

Επεξήγηση των εντολών που θα ΕΝΤΟΛΕΣ χρησιμοποιηθούν παρακάτω στα παραδείγματα < ενδυμασία1> ΕΝΤΟΛΕΣ Επεξήγηση των εντολών που θα χρησιμοποιηθούν παρακάτω στα παραδείγματα Βάζοντας την εντολή αυτή σε οποιοδήποτε χαρακτήρα μπορούμε να αλλάζουμε όψεις (δλδ ενδυμασία). Η εντολή αυτή κάνει ό,τι και

Διαβάστε περισσότερα

222 Διδακτική των γνωστικών αντικειμένων

222 Διδακτική των γνωστικών αντικειμένων 222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο. Στο εργαστήρι πληροφορικής. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:

ΚΕΦΑΛΑΙΟ 7 ο. Στο εργαστήρι πληροφορικής. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: ΚΕΦΑΛΑΙΟ 7 ο εκαδικά κλάσµατα δεκαδικοί αριθµοί Στο εργαστήρι πληροφορικής Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να διαβάζουµε, να γράφουµε και να συγκρίνουµε δεκαδικούς

Διαβάστε περισσότερα

Θυμάμαι σαν χθες (παρόλου που πέρασαν μερικά χρονάκια) τον Μαθηματικό μας, να μας λέει με δυνατή και σοβαρή φωνή:

Θυμάμαι σαν χθες (παρόλου που πέρασαν μερικά χρονάκια) τον Μαθηματικό μας, να μας λέει με δυνατή και σοβαρή φωνή: Τουρναβίτης Στέργιος Eπαναληπτικές ασκήσεις Γεωμετρίας Β Γυμνασίου Θυμάμαι σαν χθες (παρόλου που πέρασαν μερικά χρονάκια) τον Μαθηματικό μας, να μας λέει με δυνατή και σοβαρή φωνή: «Ένα καλό σχήμα σε άσκηση

Διαβάστε περισσότερα