TRIGONOMETRIC FUNCTIONS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TRIGONOMETRIC FUNCTIONS"

Transcript

1 Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of a revolving line with respect to a fixed line. If the rotation is in clockwise direction the angle is negative and it is positive if the rotation is in the anti-clockwise direction. Usually we follow two types of conventions for measuring angles, i.e., (i) Sexagesimal system (ii) Circular system. In sexagesimal system, the unit of measurement is degree. If the rotation from the initial to terminal side is th of a revolution, the angle is said to have a measure of 60. The classifications in this system are as follows: In circular system of measurement, the unit of measurement is radian. One radian is the angle subtended, at the centre of a circle, by an arc equal in length to the radius of the circle. The length s of an arc PQ of a circle of radius r is given by s rθ, where θ is the angle subtended by the arc PQ at the centre of the circle measured in terms of radians... Relation between degree and radian The circumference of a circle always bears a constant ratio to its diameter. This constant ratio is a number denoted by which is taken approximately as for all practical 7 purpose. The relationship between degree and radian measurements is as follows: right angle 80 radians radian (approx) radian radians (approx) 8/0/8

2 TRIGONOMETRIC FUNCTIONS.. Trigonometric functions Trigonometric ratios are defined for acute angles as the ratio of the sides of a right angled triangle. The extension of trigonometric ratios to any angle in terms of radian measure (real numbers) are called trigonometric functions. The signs of trigonometric functions in different quadrants have been given in the following table: I II III IV sin x + + cos x + + tan x + + cosec x + + sec x + + cot x Domain and range of trigonometric functions Functions Domain Range sine R [, ] cosine R [, ] tan R {(n + ) : n Z} R cot R {n : n Z} R sec R {(n + ) : n Z} R (, ) cosec R {n : n Z} R (, ).. Sine, cosine and tangent of some angles less than sine /0/8

3 6 EXEMPLAR PROBLEMS MATHEMATICS cosine tan 0 0 not defined n..6 Allied or related angles The angles ± θ are called allied or related angles and θ ± n 60 are called coterminal angles. For general reduction, we have the n following rules. The value of any trigonometric function for ( ± θ ) is numerically equal to (a) (b) the value of the same function if n is an even integer with algebaric sign of the function as per the quadrant in which angles lie. corresponding cofunction of θ if n is an odd integer with algebraic sign of the function for the quadrant in which it lies. Here sine and cosine; tan and cot; sec and cosec are cofunctions of each other...7 Functions of negative angles Let θ be any angle. Then sin ( θ) sin θ, cos ( θ) cos θ tan ( θ) tan θ, cot ( θ) cot θ sec ( θ) sec θ, cosec ( θ) cosec θ..8 Some formulae regarding compound angles An angle made up of the sum or differences of two or more angles is called a compound angle. The basic results in this direction are called trigonometric identies as given below: (i) (ii) (iii) (iv) sin (A + B) sin A cos B + cos A sin B sin (A B) sin A cos B cos A sin B cos (A + B) cos A cos B sin A sin B cos (A B) cos A cos B + sin A sin B tan A + tan B (v) tan (A + B) tan A tan B (vi) tan (A B) tan A tan B + tan A tan B 8/0/8

4 TRIGONOMETRIC FUNCTIONS 7 cot A cot B (vii) cot (A + B) cot A + cot B cot A cot B + (viii) cot (A B) cot B cot A tan A (ix) sin A sin A cos A + tan A (x) cos A cos A sin A sin A cos A tan A (xi) tan A tan A (xii) (xiii) sin A sin A sin A cos A cos A cos A (xiv) tan A tana tan A tan A tan A + tan A (xv) cos A + cos B (xvi) cos A cos B (xvii) sin A + sin B A + B A B cos cos A + B B A sin sin A + B A B sin cos (xviii) A B A B sin A sin B cos sin (xix) sin A cos B sin (A + B) + sin (A B) (xx) cos A sin B sin (A + B) sin (A B) (xxi) cos A cos B cos (A + B) + cos (A B) (xxii) sin A sin B cos (A B) cos (A + B) (xxiii) A + if lies in quadrants I or II A cos A sin ± A if lies in III or IV quadrants 8/0/8

5 8 EXEMPLAR PROBLEMS MATHEMATICS (xxiv) (xxv) A + if lies in I or IV quadrants A + cos A cos ± A if lies in II or III quadrants A + if lies in I or III quadrants A cos A tan ± + cos A A if lies in II or IV quadrants Trigonometric functions of an angle of 8 Let θ 8. Then θ 90 θ Therefore, sin θ sin (90 θ) cos θ or sin θ cos θ cos θ Since, cos θ 0, we get sin θ cos θ sin θ or sin θ + sin θ 0. Hence, ± + 6 ± sin θ 8 Since, θ 8, sin θ > 0, therefore, sin Also, cos8 sin 8 6 Now, we can easily find cos 6 and sin 6 as follows: Hence, cos 6 6 cos 6 sin Also, sin 6 cos Trigonometric equations 0 Equations involving trigonometric functions of a variables are called trigonometric equations. Equations are called identities, if they are satisfied by all values of the 8/0/8

6 TRIGONOMETRIC FUNCTIONS 9 unknown angles for which the functions are defined. The solutions of a trigonometric equations for which 0 θ < are called principal solutions. The expression involving integer n which gives all solutions of a trigonometric equation is called the general solution. General Solution of Trigonometric Equations (i) (ii) (iii) If sin θ sin α for some angle α, then θ n + ( ) n α for n Z, gives general solution of the given equation If cos θ cos α for some angle α, then θ n ± α, n Z, gives general solution of the given equation If tan θ tan α or cot θ cot α, then θ n + α, n Z, gives general solution for both equations (iv) The general value of θ satisfying any of the equations sin θ sin α, cos θ cos α and (v) (vi) tan θ tan α is given by θ n ± α The general value of θ satisfying equations sin θ sin α and cos θ cos α simultaneously is given by θ n + α, n Z. To find the solution of an equation of the form a cosθ + b sinθ c, we put a r cosα and b r sinα, so that r a + b and tan α b a. Thus we find a cosθ + b sinθ c changed into the form r (cos θ cos α + sin θ sin α) c or r cos (θ α) c and hence cos (θ α) c. This gives the solution of the given r equation. Maximum and Minimum values of the expression Acos θ + B sin θ are A + B and A + B respectively, where A and B are constants.. Solved Examples Short Answer Type Example A circular wire of radius cm is cut and bent so as to lie along the circumference of a hoop whose radius is 8 cm. Find the angle in degrees which is subtended at the centre of hoop. 8/0/8

7 0 EXEMPLAR PROBLEMS MATHEMATICS Solution Given that circular wire is of radius cm, so when it is cut then its length 6 cm. Again, it is being placed along a circular hoop of radius 8 cm. Here, s 6 cm is the length of arc and r 8 cm is the radius of the circle. Therefore, the angle θ, in radian, subtended by the arc at the centre of the circle is given by θ Arc 6.. Radius 8 8 Example If A cos θ + sin θ for all values of θ, then prove that A. Solution We have A cos θ + sin θ cos θ + sin θ sin θ cos θ + sin θ Therefore, A Also, A cos θ + sin θ ( sin θ) + sin θ sin θ + sin θ + Hence, A. Example Find the value of cosec 0 sec 0 Solution We have cosec 0 sec 0 sin 0 cos 0 cos 0 sin 0 sin 0 cos 0 cos 0 sin 0 sin 0 cos 0 sin 60 cos 0 cos60 sin 0 sin 0 sin (60 0 ) sin 0 8/0/8

8 TRIGONOMETRIC FUNCTIONS Example If θ lies in the second quadrant, then show that Solution We have sin θ + sin θ + sec θ + sin θ sin θ sin θ + sin θ + + sin θ sin θ sin θ + sin θ + sin θ sin θ cos θ (Since α cos θ α for every real number α) Given that θ lies in the second quadrant so cos θ cos θ (since cos θ < 0). Hence, the required value of the expression is secθ cos θ Example Find the value of tan 9 tan 7 tan 6 + tan 8 Solution We have tan 9 tan 7 tan 6 + tan 8 tan 9 + tan 8 tan 7 tan 6 tan 9 + tan (90 9 ) tan 7 tan (90 7 ) tan 9 + cot 9 (tan 7 + cot 7 ) () Also tan 9 + cot 9 Similarly, tan 7 + cot 7 Using () and () in (), we get tan 9 tan 7 tan 6 + tan 8 sin 9 cos 9 sin8 sin 7 cos 7 sin cos6 sin 8 cos6 + () () Example 6 Prove that sec8 θ tan8 θ sec θ tan θ Solution We have sec8 θ sec θ ( cos8 θ) cos θ cos8 θ ( cos θ) sin θ cos θ cos8 θ sin θ 8/0/8

9 EXEMPLAR PROBLEMS MATHEMATICS sin θ ( sin θ cos θ) cos8 θ sin θ sin θ sin8 θ cos8 θ sin θ sin θ cos θ sin8 θ cos8 θ sin θ tan8 θ tan θ Example 7 Solve the equation sin θ + sin θ + sin θ 0 Solution We have sin θ + sin θ + sin θ 0 or (sin θ + sin θ) + sin θ 0 or sin θ cos θ + sin θ 0 or sin θ ( cos θ + ) 0 or sin θ 0 or cos θ When sin θ 0, then θ n or θ n When cos θ cos, then θ n ± which gives θ (n + ) or θ (n ) or θ n ± All these values of θ are contained in θ is given by {θ : θ n, n Z} Example 8 Solve tan x + sec x for 0 x Solution Here, tan x + sec x which gives tan x ± n, n Z. Hence, the required solution set 8/0/8

10 TRIGONOMETRIC FUNCTIONS If we take tan x, then x 7 or 6 6 Again, if we take tan x, then x or 6 6 Therefore, the possible solutions of above equations are 7 x,, and where 0 x Long Answer Type Example 9 Find the value of 7 + cos + cos + cos + cos Solution Write 7 + cos + cos + cos + cos cos + cos + cos + cos cos cos 8 8 sin sin 8 8 cos cos cos + cos cos 8 Example 0 If x cos θ y cos (θ + ) z cos ( θ + ), then find the value of xy + yz + zx. 8/0/8

11 EXEMPLAR PROBLEMS MATHEMATICS Solution Note that xy + yz + zx xyz + + x y z. If we put x cos θ y cos (θ + ) z cos θ + k (say). Then k x cos θ, y k cos θ + and z k cos θ + so that + + cos cos cos θ + θ + + θ + x y z k [cos cos cos sin sin θ + θ θ k + cos θ cos sin θ sin ] [cos θ + cos θ ( ) k sin θ cos θ + sin θ ] 0 0 k Hence, xy + yz + zx 0 Example If α and β are the solutions of the equation a tan θ + b sec θ c, ac then show that tan (α + β) a c Solution Given that atanθ + bsecθ c or asinθ + b c cos θ Using the identities,. sin θ θ θ tan tan and cos θ θ θ + tan + tan 8/0/8

12 TRIGONOMETRIC FUNCTIONS We have, θ θ a tan c tan + b θ θ + tan + tan or (b + c) tan θ + a tan θ + b c 0 Above equation is quadratic in tan θ and hence tan α and tan β are the roots of this equation. Therefore, tan α + tan β a b + c α β b c and tan tan b + c α β α β tan + tan Using the identity tan + α β tan tan α β We have, tan + Again, using another identity a b + c b c b + c a a... () c c tan α + β α + β tan, α + β tan a c tan α + β a c We have ( ) Alternatively, given that a tanθ + b secθ c ac a c [From ()] 8/0/8

13 6 EXEMPLAR PROBLEMS MATHEMATICS (a tanθ c) b ( + tan θ) a tan θ ac tanθ + c b + b tan θ (a b ) tan θ ac tanθ + c b 0... () Since α and β are the roots of the equation (), so ac tanα + tanβ a b and tanα tanβ c a b b Therefore, tan (α + β) tan α + tanβ tan α tanβ ac a b c a b b ac a c Example Show that sin β + cos (α + β) sin α sin β + cos (α + β) cos α Solution LHS sin β + cos (α + β) sin α sin β + cos (α + β) sin β + (cos α cos β sin α sin β) sin α sin β + (cos α cos β sin α sin β) sin β + sin α cos α sin β cos β sin α sin β + cos α cos β sin α sin β sin β + sin α sin β sin α sin β + cos α cos β sin α sin β ( cos β) ( sin α) ( sin β) + cos α cos β ( cos β) ( cos α) ( cos β) + cos α cos β cos α Example If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and φ is their difference, then show that sin θ k + k sin φ Solution Let θ α + β. Then tan α k tan β 8/0/8

14 TRIGONOMETRIC FUNCTIONS 7 tan α or tanβ k Applying componendo and dividendo, we have tan α + tanβ tan α tanβ k + k sin α cosβ + cosα sinβ or sin α cosβ cosα sinβ k + k i.e., sin ( α + β) sin ( α β ) k + k Given that α β φ and α + β θ. Therefore, sin θ sin φ k + k or sin θ k + k sin φ Example Solve cos θ + sin θ Solution Divide the given equation by to get cos θ + sin θ or cos cosθ + sin sin θ cos 6 6 or cos cos or cos θ θ cos 6 6 Thus, the solution are given by, i.e., θ m ± + 6 Hence, the solution are θ m + + and m +, i.e., θ m and θ m Objective Type Questions Choose the correct answer from the given four options against each of the Examples to 9 Example If tan θ, then sinθ is 8/0/8

15 8 EXEMPLAR PROBLEMS MATHEMATICS (C) but not (B) or but not (D) None of these Solution Correct choice is B. Since tan θ is negative, θ lies either in second quadrant or in fourth quadrant. Thus sin θ if θ lies in the second quadrant or sin θ, if θ lies in the fourth quadrant. Example 6 If sin θ and cos θ are the roots of the equation ax bx + c 0, then a, b and c satisfy the relation. a + b + ac 0 (B) a b + ac 0 (C) a + c + ab 0 (D) a b ac 0 Solution The correct choice is (B). Given that sin θ and cos θ are the roots of the equation ax bx + c 0, so sin θ + cos θ b a and sin θ cos θ c a Using the identity (sinθ + cos θ) sin θ + cos θ + sin θ cos θ, we have b c a + a or a b + ac 0 Example 7 The greatest value of sin x cos x is (B) (C) (D) Solution (D) is the correct choice, since sinx cosx sin x, since sin x. Eaxmple 8 The value of sin 0 sin 0 sin 60 sin 80 is (B) (C) (D) 6 8/0/8

16 TRIGONOMETRIC FUNCTIONS 9 Solution Correct choice is (C). Indeed sin 0 sin 0 sin 60 sin 80. sin 0 sin (60 0 ) sin ( ) (since sin 60 ) sin 0 [sin 60 sin 0 ] sin 0 [ sin 0 ] [sin 0 sin 0 ] (sin 60 ) 6 8 Example 9 The value of cos cos cos cos is (B) 0 (C) 6 Solution (D) is the correct answer. We have 8 cos cos cos cos 8 sin cos cos cos cos sin 8 (D) 6 8 sin cos cos cos sin 8 sin cos cos sin 8/0/8

17 0 EXEMPLAR PROBLEMS MATHEMATICS 8 8 sin cos 8sin 6 sin 6sin sin + 6 sin sin 6sin 6 Fill in the blank : Example 0 If tan (θ ) tan (θ + ), 0 < θ < 90, then θ Solution Given that tan (θ ) tan (θ + ) which can be rewritten as tan( θ + ). tan( θ ) Applying componendo and Dividendo; we get tan ( θ + ) + tan ( θ ) tan ( θ + ) tan ( θ ) sin ( θ + ) cos ( θ ) + sin ( θ ) cos ( θ + ) sin ( θ + ) cos ( θ ) sin ( θ ) cos ( θ + ) sin θ sin 0 i.e., sin θ giving θ State whether the following statement is True or False. Justify your answer Example The inequality sinθ + cosθ holds for all real values of θ 8/0/8

18 TRIGONOMETRIC FUNCTIONS Solution True. Since sinθ and cosθ are positive real numbers, so A.M. (Arithmetic Mean) of these two numbers is greater or equal to their G.M. (Geometric Mean) and hence sinθ + cosθ sinθ cosθ sin θ + cos θ sin θ + cos θ sin + θ Since, sin +θ, we have sinθ+ cos θ sin θ + cos θ sin θ cos θ + Match each item given under the column C to its correct answer given under column C Example C C Solution (a) (b) (c) (d) cos x sin x + cos x cos x + cos x sin x (i) (ii) cot cot x x (iii) cos x + sin x x + sin x (iv) tan (a) cos x sin x x sin x tan x x. sin cos Hence (a) matches with (iv) denoted by (a) (iv) 8/0/8

19 EXEMPLAR PROBLEMS MATHEMATICS (b) + cos x cos x x sin cot x sin x. Hence (b) matches with (i) i.e., (b) (i) (c) (d) + cos x sin x x cos x cot x x. sin cos Hence (c) matches with (ii) i.e., (c) (ii) + sin x sin x + cos x + sin x cos x (sin x + cos x) ( sin x cos x) +. Hence (d) matches with (iii), i.e., (d) (iii). EXERCISE Short Answer Type tan A + sec A + sin A. Prove that tan A sec A + cos A. If sin α y, then prove that + cos α + sin α cos α + sin α + sin α is also equal to y. cos α + sin α cos α + sin α + cos α + sin α Hint:Express. + sin α + sin α + cos α + sin α. If m sin θ n sin (θ + α), then prove that tan (θ + α) cot α m + n m n [Hint: Express sin ( θ + α ) m sin θ n and apply componendo and dividendo]. If cos (α + β) and sin (α β), where α lie between 0 and, find the value of tanα [Hint: Express tan α as tan (α + β + α β] 8/0/8

20 TRIGONOMETRIC FUNCTIONS. If tan x b a + b a b a, then find the value of + a b a + b 6. Prove that cosθ cos θ cosθ 9 cos θ sin 7θ sin 8θ. [Hint: Express L.H.S. [cosθ cos θ 9θ cosθ cos ] 7. If a cos θ + b sin θ m and a sin θ b cos θ n, then show that a + b m + n 8. Find the value of tan 0. [Hint: Let θ, use θ θ θ sin sin cos θ sin θ tan θ θ + cos θ ] cos cos 9. Prove that sin A sina cos A cosa sin A. 0. If tanθ + sinθ m and tanθ sinθ n, then prove that m n sinθ tanθ [Hint: m + n tanθ, m n sinθ, then use m n (m + n) (m n)] p + q. If tan (A + B) p, tan (A B) q, then show that tan A pq [Hint: Use A (A + B) + (A B)]. If cosα + cosβ 0 sinα + sinβ, then prove that cos α + cos β cos (α + β). [Hint: (cosα + cosβ) (sinα + sinβ) 0]. If sin ( x + y ) a + b sin ( x y) a b Dividendo].. If tanθ, then show that tan tan x a [Hint: Use Componendo and y b sin α cos α sin α + cos α, then show that sinα + cosα cosθ. [Hint: Express tanθ tan (α ) θ α ]. If sinθ + cosθ, then find the general value of θ. 6. Find the most general value of θ satisfying the equation tanθ and cosθ. 8/0/8

21 EXEMPLAR PROBLEMS MATHEMATICS 7. If cotθ + tanθ cosecθ, then find the general value of θ. 8. If sin θ cosθ, where 0 θ, then find the value of θ. 9. If secx cosx + 0, where 0 < x, then find the value of x. Long Answer Type 0. If sin (θ + α) a and sin (θ + β) b, then prove that cos (α β) ab cos (α β) a b [Hint: Express cos (α β) cos ((θ + α) (θ + β))] m. If cos (θ + φ) m cos (θ φ), then prove that tan θ cot φ. + m [Hint: Express cos ( θ + φ ) m and apply Componendo and Dividendo] cos ( θ φ). Find the value of the expression [sin ( α ) + sin ( + α)] {sin 6 ( + α) + sin 6 ( α)]. If a cos θ + b sin θ c has α and β as its roots, then prove that tanα + tan β b a + c. tan θ [Hint: Use the identities cos θ + tan θ and sin θ tan θ + tan θ ].. If x sec φ tan φ and y cosec φ + cot φ then show that xy + x y + 0 [Hint: Find xy + and then show that x y (xy + )]. If θ lies in the first quadrant and cosθ 8, then find the value of 7 cos (0 + θ) + cos ( θ) + cos (0 θ) Find the value of the expression cos + cos + cos + cos [Hint: Simplify the expression to ( cos + cos ) 8 8 cos + cos cos cos /0/8

22 TRIGONOMETRIC FUNCTIONS 7. Find the general solution of the equation cos θ + 7sin θ Find the general solution of the equation sinx sinx + sinx cosx cosx + cosx 9. Find the general solution of the equation ( ) cosθ + ( + ) sinθ [Hint: Put r sinα, + r cosα which gives tanα tan ( 6 ) α ] Objective Type Questions Choose the correct answer from the given four options in the Exercises 0 to 9 (M.C.Q.). 0. If sin θ + cosec θ, then sin θ + cosec θ is equal to (B) (C) (D) None of these. If f(x) cos x + sec x, then f(x) < (B) f(x) (C) < f(x) < (D) f(x) [Hint: A.M G.M.]. If tan θ and tan φ, then the value of θ + φ is (B) (C) 0 (D) 6. Which of the following is not correct? sin θ (B) cos θ (C) sec θ (D) tan θ 0. The value of tan tan tan... tan 89 is 0 (B) (C) (D) Not defined 8/0/8

23 6 EXEMPLAR PROBLEMS MATHEMATICS. The value of tan + is tan (B) (C) 6. The value of cos cos cos... cos 79 is (D) (B) 0 (C) (D) 7. If tan θ and θ lies in third quadrant, then the value of sin θ is 0 (B) 0 8. The value of tan 7 cot 7 is equal to (B) + (C) (D) 9. Which of the following is correct? sin > sin (B) sin < sin (C) (C) sin sin (D) sin 8 sin 0 (D) 0 [Hint: radian If tan α approx] m m +, tan β, then α + β is equal to m + (B) (C). The minimum value of cosx + sinx + 8 is (B) 9 (C) 7 (D). The value of tan A tan A tan A is equal to (B) (C) (D) tan A tan A tan A tan A tan A tan A tan A tan A tan A tan A tan A tan A None of these 6 (D) 8/0/8

24 TRIGONOMETRIC FUNCTIONS 7. The value of sin ( + θ) cos ( θ) is cosθ (B) sinθ (C) (D) 0. The value of cot + θ cot θ is (B) 0 (C) (D) Not defined. cos θ cos φ + sin (θ φ) sin (θ + φ) is equal to sin (θ + φ) (B) cos (θ + φ) (C) sin (θ φ) (D) cos (θ φ) [Hint: Use sin A sin B sin (A + B) sin (A B)] 6. The value of cos + cos 8 + cos 6 + cos is (B) (C) (D) 8 7. If tan A, tan B, then tan (A + B) is equal to (B) (C) (D) 8. The value of sin sin is 0 0 (B) (C) (D) + [Hint: Use sin 8 and cos 6 ] 9. The value of sin 0 sin 70 + sin 0 is equal to (B) 0 (C) 0. If sin θ + cos θ, then the value of sin θ is equal to (D) (B) (C) 0 (D) 8/0/8

25 8 EXEMPLAR PROBLEMS MATHEMATICS. If α + β, then the value of ( + tan α) ( + tan β) is (B) (C) (D) Not defined θ. If sin θ and θ lies in third quadrant then the value of cos is (B) 0 (C) (D). Number of solutions of the equation tan x + sec x cosx lying in the interval [0, ] is 0 (B) (C) (D). The value of sin + sin + sin + sin is given by sin + sin (B) 8 9 (C) cos + cos (D) cos + sin If A lies in the second quadrant and tan A + 0, then the value of cota cos A + sin A is equal to (B) The value of cos 8 sin is (C) 7 0 (D) (B) (C) (D) [Hint: Use cos A sin B cos (A + B) cos (A B)] 8/0/8

26 TRIGONOMETRIC FUNCTIONS 9 7. If tan α 7, tan β, then cos α is equal to sin β (B) sin β (C) sin β (D) cos β 8. If tan θ a, then b cos θ + a sin θ is equal to b a (B) b (C) 9. If for real values of x, cos θ x +, then x θ is an acute angle (B) θ is right angle (C) θ is an obtuse angle (D) No value of θ is possible Fill in the blanks in Exercises 60 to 67 : a b (D) None 60. The value of sin 0 sin 0 is. 6. If k 7 sin sin sin, then the numerical value of k is If tan A cos B sin B 6. If sin x + cos x a, then (i) (ii) sin 6 x + cos 6 x sin x cos x., then tan A. 6. In a triangle ABC with C 90 the equation whose roots are tan A and tan B is. [Hint: A + B 90 tan A tan B and tan A + tan B sin A ] 6. (sin x cos x) + 6 (sin x + cos x) + (sin 6 x + cos 6 x). 66. Given x > 0, the values of f(x) cos + x + x lie in the interval. 8/0/8

27 60 EXEMPLAR PROBLEMS MATHEMATICS 67. The maximum distance of a point on the graph of the function y sin x + cos x from x-axis is. In each of the Exercises 68 to 7, state whether the statements is True or False? Also give justification. 68. If tan A cos B sin B, then tan A tan B 69. The equality sin A + sin A + sin A holds for some real value of A. 70. sin 0 is greater than cos cos cos cos cos 6 7. One value of θ which satisfies the equation sin θ sin θ lies between 0 and. 7. If cosec x + cot x then x n, n + n 7. If tan θ + tan θ + tan θ tan θ, then θ If tan ( cosθ) cot ( sinθ), then cos θ ± 76. In the following match each item given under the column C to its correct answer given under the column C : (a) sin (x + y) sin (x y) (i) cos x sin y (b) cos (x + y) cos (x y) (ii) (c) cot + θ (d) tan + θ (iii) (iv) tan θ + tan θ + tan θ tan θ sin x sin y 8/0/8

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS 1. INTRODUCTION 2. TRIGONOMETRIC FUNCTIONS (CIRCULAR FUNCTIONS)

7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS 1. INTRODUCTION 2. TRIGONOMETRIC FUNCTIONS (CIRCULAR FUNCTIONS) 7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS. INTRODUCTION The equations involving trigonometric functions of unknown angles are known as Trigonometric equations e.g. cos 0,cos cos,sin + sin cos sin..

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Principles of Mathematics 12 Answer Key, Contents 185

Principles of Mathematics 12 Answer Key, Contents 185 Principles of Mathematics Answer Ke, Contents 85 Module : Section Trigonometr Trigonometric Functions Lesson The Trigonometric Values for θ, 0 θ 60 86 Lesson Solving Trigonometric Equations for 0 θ 60

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα