Kεφ. 6 ΔΙΑMOΡΦΩΣΗ ΚΥΜΑΤΟΣ, ΚΥΜΑΤΟΠΑΚΕΤΑ,

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kεφ. 6 ΔΙΑMOΡΦΩΣΗ ΚΥΜΑΤΟΣ, ΚΥΜΑΤΟΠΑΚΕΤΑ,"

Transcript

1 Kεφ. 6 ΔΙΑMOΡΦΩΣΗ ΚΥΜΑΤΟΣ, ΚΥΜΑΤΟΠΑΚΕΤΑ, (part, pages -) Η μέχρι τώρα μελέτη μας αφορούσε κύματα ή ταλαντώσεις με μία μόνο συχνότητα. Στη συνέχεια θα μελετήσουμε την υπέρθεση πολλών κυμάτν που συνίστανται από πολλές συχνότητες. Το συνιστάμενο κύμα είναι ένα οδεύον κύμα που θα αναφέρεται σαν κυματοπακέτο ή κυματοομάδα (wave packet) (το κύμα αυτό, αν και μεταφέρει ενέργεια και ορμή, δεν διατηρεί το σχήμα του καθώς διαδίδεται). Παράδειγμα, 5-μελής ομάδα μπάσκετ που κινείται (παίζοντας) κατά μήκος ενός δρόμου. Φασική ταχύτητα: η ταχύτητα με την οποία κινούνται οι διάφοροι διακυμάνσεις μέσα στην ομάδα (δεν μεταφέρεται ενέργεια ή πληροφορία και μπορεί να είναι μεγαλύτερη του c). Ταχύτητα ομάδος (group velocity): η ταχύτητα με τη οποία κινείται η ομάδα σαν σύνολο. Διαμόρφση σήματος: Το αρμονικό (οδεύον) κύμα δεν μεταφέρει πληροφορία, ενώ το διαμορφμένο κύμα μεταφέρει (Διαμόρφση πλάτους ή διαμόρφση συχνότητος). Το διαμορφμένο (οδεύον) κύμα γενικά αναπαρίσταται από μιά πολύπλοκη κυματοσυνάρτηση ψ(t). Για παράδειγμα, η ψ(t) μπορεί να σχηματιστεί από

2 υπέρθεση (άθροισμα) αρμονικών συναρτήσεν της μορφής Α()cos(t+φ()) Για παράδειγμα, η υπέρθεση τν 7 αρμονικών κυμάτν της επόμενης εικόνας, έχει παράγει το κυματοπακέτο που είδαμε προηγουμένς. Πράγματι, δεδομένης της συνάρτησης ψ(t), μπορούμε να υπολογίσουμε τα πλάτη Α() και τις σταθερές φάσης φ() με μεθόδους της ανάλυσης Fourier. Παράδειγμα: Υπέρθεση αρμονικών ταλαντώσεν Eχουμε δει από το Κεφ. ότι η υπέρθεση τν αρμονικών ταλαντώσεν με συχνότητες και, αντίστοιχα, ψ(t) A cos( t+φ ) + A cos( t+φ ) () (για ευκολία μας πήραμε A A A) δίδει την συνιστάμενη διαταραχή, ψ(t) A mod (t) cos(t+φ) ()

3 3 όπου ( + )/ είναι η μέση συχνότητα (καλείται φέρουσα συχνότητα), φ(φ +φ )/ και Α mod (t) είναι το διαμορφμένο πλάτος, Α mod (t)αcos( mod t+δ) (3) Με mod ( - )/ (καλείται συχνότητα διαμόρφσης) και δ(φ -φ )/. Η ταλάντση () παριστάνει μια σχεδόν αρμονική ταλάντση με (αρμονικά) διαμορφμένο πλάτος με συχνότητα mod. Γενικά, τα πλάτος (3) θα μπορούσε να έχει πιό σύνθετη μορφή. Παράδειγμα: Υπέρθεση οδευόντν κυμάτν Εστ ότι ένας πομπός παράγει κύματα της μορφής () στη θέση x0, δηλ. A cos( t+φ ), A cos( t+φ ) Επειδή καθένα κύμα δίδει ένα οδεύον κύμα στη θέση x, της μορφής A cos(k x- t+φ ), A cos(k x- t+φ ) η υπέρθεση τν κυμάτν στη θέση x δίδει το συνιστάμενο κύμα, ψ(x,t) A cos(k x- t+φ ) + A cos(k x- t+φ ) (4)

4 4 απ όπου λαμβάνουμε το διαμορφμένο (κατά πλάτος) οδεύον κύμα ψ(t) A mod (x,t) cos(kx-t+φ) (5) όπου ( + )/, k(k +k )/, φ(φ +φ )/ και Α mod (x,t) είναι το διαμορφμένο πλάτος, Α mod (x,t)αcos(k mod x- mod t+δ) (6) με mod ( - )/, k mod (k -k )/ και δ(φ -φ )/. Ταχύτητα διαμόρφσης Από την (6), για να παρακολουθήσουμε μια συγκεκριμένη τιμή του πλάτους διαμόρφσης, θα πρέπει η φάση της συνάρτησης να είναι σταθερή, (k mod x- mod t+δ)σταθ. την οποίαν διαφορίζοντας έχουμε, k mod dx- mod dt 0, απ όπου έπεται η ταχύτητα διαμόρφσης, υ mod dx mod (7) dt kmod k k Είναι η ταχύτητα μιας συγκεκριμένης τιμής του πλάτους διαμόρφσης. Λόγ όμς τν σχέσεν διασποράς, (k ) και (k ), οι οποίες μπορούν να αναπτυχθούν κατά Taylor γύρ από τη μέση τιμή k όπου k(k +k )/, ή

5 5 συνεπώς, d ( k) + (k d ( k) + (k + d (k k) + d (k k) + k) + d (k k )... + k) d Αντικαθιστώντας στην (7) προκύπτει, υ mod ,... d Ταχύτητα ομάδας: υ g δηλ. η ομάδα δεν διαδίδεται με τη μέση ταχύτητα υ( + )/(k +k ), όπς θα περίμενε κανείς, αλλά με τη ταχύτητα υ g d/. (Εχομε δεί στο Κεφ.4 ότι η ταχύτητα υ/k καλείται φασική ταχύτητα). Παράδειγμα: Ραδιοφνικά κύματα ΑΜ H φέρουσα συχνότης [ ]KHz H διεγείρουσα τάση που εφαρμόζεται στη κεραία του στο πομπό έχει διαμορφμένο πλάτος της μορφής, Α mod (t)α ο + mod Α( mod ) cos( mod t+δ) όπου η διαφορά (Α mod (t)-α ο ) είναι ανάλογη της πίεσης ενός ηχητικού κύματος (λειτουργία μικροφώνου). Οι συχνότητες διαμόρφσης mod για ηχητικά κύματα βρίσκονται μέσα στην ακουστική περιοχή, [0-0000]Ηz.

6 6 Εύρος ζώνης Αν είναι η φέρουσα συχνότητα, τότε οι συχνότητες που ακτινοβολούνται ανήκουν στη ζώνη συχνοτήτν, [- mod, + mod ] ή [ν -ν mod, ν +ν mod ] Η διαφορά της ελαχίστης συχνότητος από την μεγίστη συχνότητα καλείται εύρος ζώνης. Το εύρος ζώνης για τους εμπορικούς ραδιοφνικούς σταθμούς ΑΜ είναι ίσο με 0ΚΗz. Παλμοί Παλμός είναι η υπέρθεση πολλών αρμονικών ταλαντώσεν με ίδιο πλάτος και με γειτονικές συχνότητες στη ζώνη [, ]. Εστ ότι οι συχνότητες ισοκατανέμονται στη ζώνη [, ] εύρους Δ( - ). Αν ( - )/(Ν-), η υπέρθεση γράφεται ψ(t) A cos t + A cos ( +)t + A cos ( +)t + + A cos t sin[n t] Αcos[ t + (Ν ) t] sin( t) Αcos( + sin(n t) t) sin( t)

7 7 Bλέπουμε λοιπόν ότι ο παλμός διατηρεί την αρχική μορφή της απλής ταλάντσης, ψ(t)a(t) cos(t) όπου ( + )/ είναι η μέση συχνότητα, όμς το πλάτος της συνισταμένης ταλάντσης Α (t) sin(n t) Α sin( t) έχει τη σύνθετη διαμόρφση τν διακροτημάτν. Για Ν, το πλάτος τείνει στο όριο: Α(t) NΑ (την οποία θα καλέσουμε Α(0), ς η τιμή για t0). Στο όριο Ν, με τη προϋπόθεση ότι το γινόμενο Ν Δ παραμένει σταθερό (που σημαίνει ότι 0), το πλάτος γράφεται Α(t) sin(n t) Α sin( t) sin(n t) Α(0) (Ν t) t Α(0) 0 Θα μελετήσουμε τη κυματοσυνάρτηση ψ(t) στο όριο Α(0) Α(0) 0. Αν λάβουμε υπόψιν ότι Α, Ν Δ η αρχική υπέρθεση γράφεται, ψ(t) Acos t+acos ( +)t +Acos ( +)t +

8 8 Α(0) [cos t + cos( + )t + cos( + )t +...] Δ ή Α(0) Δ cost d, ψ(t) Α(0) Δ cost d Η μορφή αυτή αποτελεί μιά συνεχή αναπαράσταση κατά Fourier της κυματοσυνάρτησης ψ(t). Γενικά, κάθε συνεχής περιοδική συνάρτηση ψ(t) μπορεί να αναπαρασταθεί κατά Fourier ς εξής, ψ(t) Α()sin t d + Β() cost d 0 όπου οι συναρτήσεις Α() και Β() καλούνται συνεχείς συντελεστές Fourier (ή μετασχηματισμοί Fourier) και προκύπτει από τον παραπάν ορισμό ότι Α() Β() π π + 0 ψ(t)sin t dt + ψ(t)cost dt Η κυματοσυνάρτηση ψ(t) είναι σημαντική μόνο μέσα στο χρονικό διάστημα Δt (λέγεται διάρκεια του παλμού), που ορίζεται από τη σχέση ΔΔtπ ή ΔνΔt

9 9 Στο παρακάτ σχήμα φαίνεται ένας παλμός ψ(t) Στο επόμενο σχήμα φαίνεται ο συντελεστής Fourier Β(). Παρατηρούμε ότι ο συντελεστής Β()Α(0)/Δ για [, ] και είναι μηδέν εκτός του διάστηματος.

10 0 Οδεύον κυματοπακέτο Εστ ότι ένας πομπός (στη θέση x0) εκπέμπει ένα παλμό ψ(t) της μορφής του παραπάν σχήματος. Το σήμα αυτό διαδίδεται στο χώρο σαν οδεύον κύμα, περιορισμένο σε έκταση στο χώρο (είναι δηλ. εντοπισμένο) και καλείται οδεύον κυματοπακέτο. Η ταχύτητα διάδοσης του είναι ίση με τη ταχύτητα της ομάδος υ g. Εφόσον μεταξύ -k υφίσταται η σχέση διασποράς, (k) ή kk(), η ύπαρξη ζώνης Δ στις συχνότητες συνεπάγεται την ύπαρξη αντίστοιχης ζώνης Δk και στους κυματαριθμούς, δηλ. Δ k k k k( ) k( ) ( ) d (ενδιάμεσα έχει γίνει ανάπτυξη κατά Taylor). ο Δ υ Από το παραπάν σχήμα παρατηρούμε ότι το μήκος του παλμού (ή το ανάπτυγμα του παλμού στο χώρο) ισούται χονδρικά με Δxυ g Δt, όπου Δt η διάρκειά του. Έπεται επομένς ΔxΔkΔΔtπ (στη πραγματικότητα το γινόμενο τν αβεβαιοτήτν είναι π, κατά την αρχή του Heisenberg). Το μήκος Δx του κυματοπακέτου μεγαλώνει (λέμε ότι απλώνει) καθώς διαδίδεται στο χώρο. g

11 Αυτό αιτιολογείται ς εξής: η ταχύτητα ομάδος υ g d/ εξαρτάται από το k, και για κάθε k που ανήκει στη ζώνη [k,k ] αντιστοιχεί και μια τιμή της ταχύτητας υ g, επομένς προκύπτει και μιά αντίστοιχη ζώνη Δυ g για τις ταχύτητες, Δυ g dυ g ο Δk d ο Δk Οπότε το μήκος (Δx) o του κυματοπακέτου μετά από χρόνο t θα έχει γίνει, (Δx)(Δx) o +(Δυ g )t

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το

Διαβάστε περισσότερα

H ΥΠΕΝΘΥΜΙΖΕΤΑΙ ΟΤΙ Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΕΙΝΑΙ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ

H ΥΠΕΝΘΥΜΙΖΕΤΑΙ ΟΤΙ Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΕΙΝΑΙ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ θ cot T H ΥΠΕΝΘΥΜΙΖΕΤΑΙ ΟΤΙ Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΕΙΝΑΙ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΑΝΑΦΕΡΕΤΑΙ ΣΤΟ ΤΟ ΑΡΜΟΝΙΚΟ ΚΥΜΑ ΠΟΥ ΕΙΝΑΙ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ! x t TO AΡMONIKO KYMA ΕΧΕΙ ΑΠΕΙΡΗ ΧΡΟΝΙΚΗ ΔΙΑΡΚΕΙΑ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Κύματα Εικόνα: Ναυαγοσώστες στην Αυστραλία εκπαιδεύονται στην αντιμετώπιση μεγάλων κυμάτων. Τα κύματα που κινούνται στην επιφάνεια του νερού αποτελούν ένα παράδειγμα μηχανικών κυμάτων.

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΑΠΛΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΑΠΛΩΝ ΣΥΣΤΗΜΑΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΑΠΛΩΝ ΣΥΣΤΗΜΑΤΩΝ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.poiras.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη users.auth.gr/~katsiki

ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη users.auth.gr/~katsiki ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/~katsiki Σχέση δύναμης - κίνησης Δύναμη σταθερή εφαρμόζεται σε σώμα Δύναμη ανάλογη της απομάκρυνσης (F-kx) εφαρμόζεται σε σώμα Το σώμα

Διαβάστε περισσότερα

HMY 333 Φωτονική Διάλεξη 06. Εισαγωγή στις ταλαντώσεις και κύματα. Απλοί αρμονικοί ταλαντωτές. Γιατί εξετάζουμε την απλή αρμονική κίνηση;

HMY 333 Φωτονική Διάλεξη 06. Εισαγωγή στις ταλαντώσεις και κύματα. Απλοί αρμονικοί ταλαντωτές. Γιατί εξετάζουμε την απλή αρμονική κίνηση; HMY 333 Φτονική Διάλεξη 6 Εισαγγή στις ταλαντώσεις και κύματα Απλοί αρμονικοί ταλανττές Μάζα-ελατήριο Mss-spring H. Chrisin, K.U.Ln(Wikipdi Εκκρεμές Pndlm U. o Monn LC κύκλμα hp://www.grnndwhi.n/~chb/lc_oscillor.hm

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

4. Εισαγωγή στην Κυματική

4. Εισαγωγή στην Κυματική 4. Εισαγωγή στην Κυματική Σύνοψη Στο κεφάλαιο αυτό εισάγεται η έννοια του κύματος, και τα βασικά μεγέθη των κυματικών διαταραχών, όπως η περίοδος, η συχνότητα, το μήκος κύματος και ο κυματάριθμος. Παρουσιάζονται

Διαβάστε περισσότερα

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1 ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΖΕΥΓΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΖΕΥΓΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΖΕΥΓΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poiras.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

1 ον ΜΕΡΟΣ ΑΠΟ ΤΗ ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΣΤΗΝ ΤΑΧΥΤΗΤΑ ΟΜΑΔΟΣ 2 ον ΜΕΡΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΠΟ ΔΙΑΦΟΡΕΣ ΠΕΡΙΟΧΕΣ ΤΗΣ ΦΥΣΙΚΗΣ. Η ΑΝΤΑΓΩΝΙΣΜΟΣ ΜΕ ΤΑ ΜΗ ΓΡΑΜΜΙΚΑ

1 ον ΜΕΡΟΣ ΑΠΟ ΤΗ ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΣΤΗΝ ΤΑΧΥΤΗΤΑ ΟΜΑΔΟΣ 2 ον ΜΕΡΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΠΟ ΔΙΑΦΟΡΕΣ ΠΕΡΙΟΧΕΣ ΤΗΣ ΦΥΣΙΚΗΣ. Η ΑΝΤΑΓΩΝΙΣΜΟΣ ΜΕ ΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΜΕΡΟΣ 1 Κ. ΕΥΤΑΞΙΑΣ H TAXYTHTA OMAΔΟΣ! 1 ον ΜΕΡΟΣ ΑΠΟ ΤΗ ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΣΤΗΝ ΤΑΧΥΤΗΤΑ ΟΜΑΔΟΣ 2 ον ΜΕΡΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΠΟ ΔΙΑΦΟΡΕΣ ΠΕΡΙΟΧΕΣ ΤΗΣ ΦΥΣΙΚΗΣ. Η ΑΝΤΑΓΩΝΙΣΜΟΣ ΜΕ ΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΦΑΙΝΟΜΕΝΑ SOLITONS

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/17 Πρόβλημα 1 (βιβλίο σελίδα 93) Να αποδειχθεί ότι: α) Κάθε

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1 Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1 Χαρακτηριστικά Διάδοσης Κύματος Όλα τα κύματα μεταφέρουν ενέργεια.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ γ τάξη ενιαίου λυκείου (εξεταστέα ύλη: κρούσεις, ταλαντώσεις, εξίσωση κύματος) διάρκεια εξέτασης: 1.8sec ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΤΜΗΜΑ: ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να επιλέξετε

Διαβάστε περισσότερα

Είδη κυµάτων. Ηλεκτροµαγνητικά κύµατα. Σε κάποιο φυσικό µέσο προκαλείται µια διαταραχή. Το κύµα είναι η διάδοση της διαταραχής µέσα στο µέσο.

Είδη κυµάτων. Ηλεκτροµαγνητικά κύµατα. Σε κάποιο φυσικό µέσο προκαλείται µια διαταραχή. Το κύµα είναι η διάδοση της διαταραχής µέσα στο µέσο. Κεφάλαιο T2 Κύµατα Είδη κυµάτων Παραδείγµατα Ένα βότσαλο πέφτει στην επιφάνεια του νερού. Κυκλικά κύµατα ξεκινούν από το σηµείο που έπεσε το βότσαλο και αποµακρύνονται από αυτό. Ένα σώµα που επιπλέει στην

Διαβάστε περισσότερα

Ε.Μ.Π. Σχολή Πολιτικών Μηχανικών Μάθημα «Φυσική (Ταλαντώσεις και Κύματα)», ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (Διάρκεια 2 h 30 min)

Ε.Μ.Π. Σχολή Πολιτικών Μηχανικών Μάθημα «Φυσική (Ταλαντώσεις και Κύματα)», ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (Διάρκεια 2 h 30 min) Ε.Μ.Π. Σχολή Πολιτικών Μηχανικών Μάθημα «Φυσική (Ταλαντώσεις και Κύματα)», 4-5 ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (Διάρκεια h 3 min) Η. Σ. Ζουμπούλης, Γ. Σ. Ράπτης Αθήνα, /9/5 Θέμα. Το ελατήριο του καθίσματος αυτοκινήτου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: ΚΕΝΤΡΙΚΕΣ ΥΝΑΜΕΙΣ

ΚΕΦΑΛΑΙΟ 4: ΚΕΝΤΡΙΚΕΣ ΥΝΑΜΕΙΣ ΚΕΦΑΛΑΙΟ 4: ΚΕΝΤΡΙΚΕΣ ΥΝΑΜΕΙΣ Οι σηµαντικότερες αντιπρόσποι της κατηγορίας αυτής τν δυνάµεν είναι οι δυνάµεις βαρύτητος και οι ηλεκτροστατικές δυνάµεις, που είναι ανάλογες του αντιστρόφου τετραγώνου της

Διαβάστε περισσότερα

1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το

1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το Η φάση του αρμονικού κύματος 1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το οποίο ταυτίζεται με τον οριζόντιο ημιάξονα O, να εκτελεί απλή αρμονική ταλάντωση

Διαβάστε περισσότερα

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ Kεφ. (part, pages - Σχέση διασπράς Exυμε βρεί την εξίσωση κύματς: λν = υ, όπυ υ = Τ /μ στη περίπτωση της χρδς. Οπότε υ ν = = λ ω = Τ /μ Τ /μ λ k H σχέση αυτ πυ συνδέει την γωνιακ συχνότητα ω με τν κυματαριθμό

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα.

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα. 1ο Κριτήριο αξιολόγησης στα κεφ. 1-2 Θέμα 1 Ποια από τις παρακάτω προτάσεις είναι σωστή; 1. Ένα σώμα μάζας m είναι δεμένο στην ελεύθερη άκρη κατακόρυφου ιδανικού ελατηρίου σταθεράς k και ηρεμεί στη θέση

Διαβάστε περισσότερα

1. [Απ.: [Απ.: 3. [Απ.: [Απ.:

1. [Απ.: [Απ.: 3. [Απ.: [Απ.: 1. Η εξίσωση ενός αρμονικού κύματος, το οποίο διαδίδεται κατά μήκος ενός γραμμικού ελαστικού μέσου, που έχει τη διεύθυνση του άξονα x'x, είναι: γ=0,04ημπ(200t - 8x) (τα x και y είναι σε m και το t σε s).

Διαβάστε περισσότερα

Σχήμα 1 Μορφές κυμάτων (α) Μονοδιάστατο, (β) Διδιάστατο, (γ) και (δ) Τρισδιάστατα. [1]

Σχήμα 1 Μορφές κυμάτων (α) Μονοδιάστατο, (β) Διδιάστατο, (γ) και (δ) Τρισδιάστατα. [1] Άσκηση 3 - Κύματα Η δημιουργία κυμάτων είναι το αποτέλεσμα πολλών φυσικών διεργασιών. Κύματα εμφανίζονται στην επιφάνεια της θάλασσας, τα ηχητικά κύματα οφείλονται στις διαταραχές της πίεσης του αέρα,

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Ενότητα 2 η : Συμβολή κυμάτων Θεωρία Γ Λυκείου

Κεφάλαιο 2 ο Ενότητα 2 η : Συμβολή κυμάτων Θεωρία Γ Λυκείου Κεφάλαιο 2 ο Ενότητα 2 η : Συμβολή κυμάτων Θεωρία Γ Λυκείου Αρχή της επαλληλίας Όταν σε ένα μέσο διαδίδονται δύο ή περισσότερα κύματα η απομάκρυνση ενός σημείου του ελαστικού μέσου είναι ίση με τη συνισταμένη

Διαβάστε περισσότερα

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2 1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).

Διαβάστε περισσότερα

ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό : Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: ,

ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό : Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D., Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr

Διαβάστε περισσότερα

Κλινική χρήση των ήχων

Κλινική χρήση των ήχων Κλινική χρήση των ήχων Ήχοι και ακουστότητα Κύματα υπερήχων Ακουστικά κύματα, Ήχοι, Είδη ήχων Ήχους υπό την ευρεία έννοια καλούμε κάθε κύμα πίεσης που υπάρχει και διαδίδεται στο εσωτερικό των σωμάτων.

Διαβάστε περισσότερα

δ. Ο χρόνος ανάμεσα σε δυο διαδοχικούς μηδενισμούς του πλάτους είναι Τ =

δ. Ο χρόνος ανάμεσα σε δυο διαδοχικούς μηδενισμούς του πλάτους είναι Τ = ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 01/11/2015 ΘΕΜΑ 1 Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα.

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. ΕΙΣΑΓΩΓΗ ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ Τι ονομάζουμε κύμα; Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. Η διαταραχή μπορεί να είναι α. Η ταάντωση των μορίων του

Διαβάστε περισσότερα

Επαλληλία-Υπέρθεση Κυμάτων. Επαλληλία (υπέρθεση) Κυμάτων. Επαλληλία (Υπέρθεση) Κυμάτων. Επαλληλία: Συμβολή κυμάτων. Συμβολή αρμονικών κυμάτων

Επαλληλία-Υπέρθεση Κυμάτων. Επαλληλία (υπέρθεση) Κυμάτων. Επαλληλία (Υπέρθεση) Κυμάτων. Επαλληλία: Συμβολή κυμάτων. Συμβολή αρμονικών κυμάτων Γραμμικά φαινόμενα μηχανικών κυμάτων Επαηία-Υπέρθεση Κυμάτων Υπέρθεση (επαηία) κυμάτων (superpositio) Συμβοή (χωρική) κυμάτων (iterferece) (stadig waves) Κανονικοί τρόποι ταάντωσης (ormal modes) Διακροτήματα

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως

Διαβάστε περισσότερα

Μάθημα Ακουστικής. Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ

Μάθημα Ακουστικής. Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ Μάθημα Ακουστικής Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ Περιοδική Κίνηση Μία κίνηση χαρακτηρίζεται σαν περιοδική αν αναπαράγεται απαράλλακτα σε ίσα διαδοχικά χρονικά διαστήματα. Στο χρονικό αυτό

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΘΕΩΡΙΑΣ ΣΤΑ ΚΥΜΑΤΑ(μέχρι ΗΜ) Διάρκεια 90 min

ΔΙΑΓΩΝΙΣΜΑ ΘΕΩΡΙΑΣ ΣΤΑ ΚΥΜΑΤΑ(μέχρι ΗΜ) Διάρκεια 90 min ΔΙΑΓΩΝΙΣΜΑ ΘΕΩΡΙΑΣ ΣΤΑ ΚΥΜΑΤΑ(μέχρι ΗΜ) Διάρκεια 90 min Θέμα 1 Ερωτήσεις πολαλπλής επιλογής Σε κάθε ερώτηση υπάρχει μόνο μια σωστή απάντηση 1. Η περίοδος (Τ) του κύµατος είναι ίση µε (ποια πρόταση είναι

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ 1. ΕΓΚΑΡΣΙΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ Κύματα κατά μήκος τεντωμένου νήματος Στο τεντωμένο με δύναμη νήμα του Σχήματος 1.1α δημιουργούμε μια εγκάρσια διαταραχή (παράλληλη με τη διεύθυνση

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Τρέχοντα Κύματα Κύμα ονομάζεται η διάδοση μιας διαταραχής σε όλα τα σημεία του ελαστικού μέσου με ορισμένη ταχύτητα. Κατά τη διάδοση ενός κύματος

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ Άσκηση 1 Προσδιορίστε τη Σειρά Fourier (δηλαδή τους συντελεστές πλάτους A n και φάσης φ n ) του παρακάτω

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 11/11/08

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 11/11/08 //8 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 4 8-9 η ΕΡΓΑΣΙΑ Προθεσµία παράδοσης //8 Άσκηση Α) Έστω, οι µετατοπίσεις των µαζών από τη θέση ισορροπίας όπως στο Σχήµα. Στη µάζα ενεργούν µόνο οι δυνάµεις από τα

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ονοματεπώνυμο Μαθητή: Ημερομηνία: 13-11-2017 Επιδιωκόμενος Στόχος: Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το

Διαβάστε περισσότερα

ΔΙΑΔΟΣΗ ΥΠΕΡΗΧΩΝ ΣΤΟΝ ΑΕΡΑ. Εξοικείωση με πειραματικές συσκευές υπερήχων και μελέτη της διάδοσης του ήχου:

ΔΙΑΔΟΣΗ ΥΠΕΡΗΧΩΝ ΣΤΟΝ ΑΕΡΑ. Εξοικείωση με πειραματικές συσκευές υπερήχων και μελέτη της διάδοσης του ήχου: ΔΙΑΔΟΣΗ ΥΠΕΡΗΧΩΝ ΣΤΟΝ ΑΕΡΑ [1] ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Εξοικείωση με πειραματικές συσκευές υπερήχων και μελέτη της διάδοσης του ήχου: Σύστημα πομπού-δέκτη Διάδοση υπερήχων στον αέρα Ανάκλαση σε στερεά σώματα

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση Εξαναγκασμένη Ταλάντωση Αρμονική Φόρτιση Αρμονική Ταλάντωση Εξαναγκασμένη Ταλάντωση: Αρμονική Φόρτιση: Δ8- Η αρμονική διέγερση αποτελεί θεμελιώδη μορφή διέγερσης στη Δυναμική των Κατασκευών λόγω της μαθηματικής

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier 2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια του μετασχηματισμού Fourier συνίσταται στο ότι μία κυματομορφή

Διαβάστε περισσότερα

3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ

3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ 3. 3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ 3. Εισαγγή Στην μελέτη τν συστημάτν, μία από τις μεθόδους που χρησιμοποιούνται είναι η απόκριση κατά συχνότητα ή η συχνοτική απόκριση. Η μέθοδος αυτή μελετά την συμπεριφορά

Διαβάστε περισσότερα

EΞΑΝΑΓΚΑΣΜΕΝΕΣ TAΛANTΩΣEIΣ

EΞΑΝΑΓΚΑΣΜΕΝΕΣ TAΛANTΩΣEIΣ Kεφ. 3 EΞΑΝΑΓΚΑΣΕΝΕΣ TAΛANTΩΣEIΣ Θα εξετάσυμε τη περίπτση εφαρμγής σ ένα σύστημα μιάς δεδμένης εξτερικής δύναμης η πία να εξαρτάται από τ χρόν (δηλ. τ σύστημα υπβάλλεται σε εξτερική διέγερση. η περίπτση:

Διαβάστε περισσότερα

3 ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ

3 ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ 3 ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ OURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Στη πράξη πολλές φορές χρειάζεται να προσδιορίσουμε την έξοδο ενός συστήματος, όταν αυτό διεγείρεται από ένα σήμα. Στο προηγούμενο κεφάλαιο,

Διαβάστε περισσότερα

1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s.

1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s. 1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s. Να βρεθεί το μήκος κύματος. 2. Σε ένα σημείο του Ειρηνικού ωκεανού σχηματίζονται κύματα με μήκος κύματος 1 m και

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

2-1 ΕΙΣΑΓΩΓΗ 2-2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ

2-1 ΕΙΣΑΓΩΓΗ 2-2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΕΞΩΦΥΛΛΟ 43 Εικ. 2.1 Κύμα στην επιφάνεια της θάλασσας. 2-1 ΕΙΣΑΓΩΓΗ Η έννοια «κύμα», από τις πιο βασικές έννοιες της φυσικής, χρησιμοποιήθηκε για την περιγραφή φαινομένων που καλύπτουν ένα ευρύ φάσμα.

Διαβάστε περισσότερα

Τεστ Αρμονικό κύμα Φάση κύματος

Τεστ Αρμονικό κύμα Φάση κύματος Τεστ Αρμονικό κύμα Φάση κύματος ~Διάρκεια 90 min~ Θέμα Α 1) Όταν ένα κύμα αλλάζει μέσο διάδοσης, αλλάζουν i) η ταχύτητα διάδοσης του κύματος και η συχνότητά του ii) το μήκος κύματος και η συχνότητά του

Διαβάστε περισσότερα

ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ)

ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ) ΣΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ - ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ: ΦΥΣΙΚΗ-ΙΙΙ (ΚΥΜΑΤΙΚΗ Θέµα. Ένας αρµονικός ταλανττής µε ασθενή απόσβεση, (µάζα=, σταθερά ελατηρίου= s, συντελεστής τριβής= r διεγείρεται

Διαβάστε περισσότερα

Τρέχοντα κύματα. Ερωτήσεις με δικαιολόγηση.

Τρέχοντα κύματα. Ερωτήσεις με δικαιολόγηση. Τρέχοντα κύματα. Ερωτήσεις με δικαιολόγηση. Η φάση ενός σημείου κατά τη διάδοση κύματος Κατά μήκος ενός ελαστικού μέσου διαδίδεται ένα κύμα προς τα δεξιά του θετικού ημιάξονα, με μήκος κύματος λ=2m. Ένα

Διαβάστε περισσότερα

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΗΜΕΡΟΜΗΝΙΑ :.

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΗΜΕΡΟΜΗΝΙΑ :. ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΗΜΕΡΟΜΗΝΙΑ :. ΘΕΜΑ Α Α.1 Σε μια ελαστική χορδή ΟΓ, μήκους L δημιουργείται στάσιμο κύμα με 7 δεσμούς ως αποτέλεσμα της συμβολής δυο αρμονικών κυμάτων. Το

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ: ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΤΑΛΑΝΤΩΣΕΙΣ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ: ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΤΑΛΑΝΤΩΣΕΙΣ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ Σελίδα 1 από 6 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ: ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΤΑΛΑΝΤΩΣΕΙΣ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:... ΘΕΜΑ Α Στις παρακάτω προτάσεις 1-5 να γράψετε στο τετράδιο

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες:

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: ΔΙΑΓΩΝΙΣΜΑ ΚΥΜΑΤΩΝ (1) ΘΕΜΑ 1 ο Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: 1) Κατά τη διάδοση ενός κύματος μεταφέρεται ενέργεια και ορμή, αλλά όχι ύλη. 2) Σε

Διαβάστε περισσότερα

Κεφάλαιο 13. Περιοδική Κίνηση

Κεφάλαιο 13. Περιοδική Κίνηση Κεφάλαιο 13 Περιοδική Κίνηση Περιοδική Κίνηση Η ταλαντωτική κίνηση είναι σημαντική Είναι μια πάρα πολύ κοινή κίνηση. Βάση για κατανόηση της κυματικής κίνησης Κάθε σύστημα που βρίσκεται σε ευσταθή ισορροπία

Διαβάστε περισσότερα

H ENNOIA TΗΣ ΕΜΠΕΔΗΣΗΣ ΑΝΑΚΛΑΣΗ - ΔΙΑΘΛΑΣΗ ΜΕΡΟΣ I. Κωνσταντίνος Ευταξίας

H ENNOIA TΗΣ ΕΜΠΕΔΗΣΗΣ ΑΝΑΚΛΑΣΗ - ΔΙΑΘΛΑΣΗ ΜΕΡΟΣ I. Κωνσταντίνος Ευταξίας H ENNOI TΗΣ ΕΜΠΕΔΗΣΗΣ ΑΝΑΚΛΑΣΗ - ΔΙΑΘΛΑΣΗ ΜΕΡΟΣ I Κωνσταντίνος Ευταξίας H ΕΜΠΕΔΗΣΗ ΣΤΗΝ ΕΙΣΟΔΟ ΙΔΕΑΤΗΣ ΤΕΝΤΩΜΕΝΗΣ ΕΛΑΣΤΙΚΗΣ ΧΟΡΔΗΣ ΑΠΕΙΡΟΥ ΜΗΚΟΥΣ dm ή F dm έ F dm 0 0 0, y dm F F dm έ dm ή 0 dm έ y dm

Διαβάστε περισσότερα

papost/

papost/ Δρ. Παντελής Σ. Αποστολόπουλος Επίκουρος Καθηγητής http://users.uoa.gr/ papost/ papost@phys.uoa.gr ΤΕΙ Ιονίων Νήσων, Τμήμα Τεχνολόγων Περιβάλλοντος ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 Οπως είδαμε

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

Μονάδες Ταλαντωτής εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις που έχουν ίσες συχνότητες, πλάτη Α1 = 1 m και A2

Μονάδες Ταλαντωτής εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις που έχουν ίσες συχνότητες, πλάτη Α1 = 1 m και A2 Φυσική ΘΕΜΑ A κατεύθυνσης Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις -5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές

Διαβάστε περισσότερα

Το φαινόμενο Doppler

Το φαινόμενο Doppler Το φαινόμενο Doppler Η προσωπική μου άποψη είναι ότι και οι δύο αποδείξεις του σχολικού βιβλίου που αφορούν το φαινόμενο Doppler είναι λάθος. Ο κύριος λόγος για την ανωτέρω θέση μου είναι η χρήση της θεμελιώδους

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Εικόνα: Ναυαγοσώστες στην Αυστραλία εκπαιδεύονται στην αντιμετώπιση μεγάλων κυμάτων. Τα κύματα που κινούνται στην επιφάνεια του νερού αποτελούν ένα παράδειγμα μηχανικών κυμάτων. Φυσική για Μηχανικούς Κύματα

Διαβάστε περισσότερα

ΦΥΣ Διαλ.33 1 KYMATA

ΦΥΣ Διαλ.33 1 KYMATA ΦΥΣ 131 - Διαλ.33 1 KYMATA q Κύµατα εµφανίζονται σε συστήµατα µε καταστάσεις ισορροπίας. Τα κύµατα είναι διαταραχές από τη θέση ισορροπίας. q Τα κύµατα προκαλούν κίνηση σε πολλά διαφορετικά σηµεία σε ένα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι

Διαβάστε περισσότερα

2.1. Τρέχοντα Κύματα.

2.1. Τρέχοντα Κύματα. 2.1. Τρέχοντα Κύματα. 2.1.1. Στιγμιότυπο κύματος Στη θέση x=0 ενός γραμμικού ομογενούς ελαστικού μέσου υπάρχει πηγή κύματος η οποία αρχίζει να ταλαντώνεται σύμφωνα με την εξίσωση y= 0,2ημπt (μονάδες στο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Β ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να

Διαβάστε περισσότερα

6η Διάλεξη Οπτικές ίνες

6η Διάλεξη Οπτικές ίνες 6η Διάεξη Οπτικές ίνες Γ. Έηνας, Διάεξη 6, σε. Χρματική Διασπορά Γ. Έηνας, Διάεξη 6, σε. Pae Χρματική Διασπορά Οι οπτικές πηγές δεν είναι μονοχρματικές: Οπτική Ισχύς Μήκος κύματος Χρόνος Ώστε πρέπει να

Διαβάστε περισσότερα

Ηχητικά κύματα Διαμήκη κύματα

Ηχητικά κύματα Διαμήκη κύματα ΦΥΣ 131 - Διαλ.38 1 Ηχητικά κύματα Διαμήκη κύματα Τα ηχητικά κύματα χρειάζονται ένα μέσο για να μεταδοθούν π.χ. αέρας Δεν υπάρχει ήχος στο κενό Ηχητικές συχνότητες 20Ηz 20ΚΗz Τα ηχητικά κύματα διαδίδονται

Διαβάστε περισσότερα

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε ηλεκτροµαγνητικό κύµα κυκλ. Συχνότητας ω. Παρατηρούµε ότι η πολωσιµότητα του µέσου εξαρτάται µε την εκφραση 2.42

Διαβάστε περισσότερα

ΣΤΑΣΙΜΟ ΚΥΜΑ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ

ΣΤΑΣΙΜΟ ΚΥΜΑ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ ΣΤΑΣΙΜΟ ΚΥΜΑ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ TO ΣTAΣIMO KYMA: AΠΟΤΕΛΕΣΜΑ ΜΙΑΣ ΙΔΙΑΖΟΥΣΑΣ ΑΡΧΙΚΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ y y =0 = φ. T Σε χορδή έχει δοθεί το περίγραμμα y =0 = φ. O μηχανισμός που δίνει το περίγραμμα αποσύρεται

Διαβάστε περισσότερα

5.15 Εφαρμογές της ομογενούς Δ.Ε. 2ης τάξης με σταθερούς συντελεστές

5.15 Εφαρμογές της ομογενούς Δ.Ε. 2ης τάξης με σταθερούς συντελεστές 4 ΚΕΦΑΛΑΙΟ 5 α) y -y +y e x /x 5 Aπ. u(/)x -3 e x β) y +ysecx Aπ. u[csx]ln csx +xsinx γ) y +4ysin x Aπ. u[cs (x)+]/ ) Γενικεύοντας την παραπάν πορεία για n>, δείξτε ότι τα v i (x) ικανοποιούν το σύστημα

Διαβάστε περισσότερα

Παρατηρήσεις σε Θέματα Α. Επιλεγμένα θέματα από το study4exams, για τα οποία δίδονται επεξηγήσεις

Παρατηρήσεις σε Θέματα Α. Επιλεγμένα θέματα από το study4exams, για τα οποία δίδονται επεξηγήσεις Παρατηρήσεις σε Θέματα Α Επιλεγμένα θέματα από το study4exams, για τα οποία δίδονται επεξηγήσεις 1. Αν μεταβληθεί η σταθερά αυτεπαγωγής του πηνίου σε ένα κύκλωμα L με αντιστάτη και πηγή εναλλασσόμενης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ 6/11/004 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 34 004-05 η ΕΡΓΑΣΙΑ ΑΣΚΗΣΕΙΣ Προθεσμία παράδοσης 0/1/004 1) Εκκρεμές μήκους L και μάζας m 1 εκτελεί μικρές ταλαντώσεις γύρω από τη θέση ισορροπίας, έχοντας συνδεθεί

Διαβάστε περισσότερα

d = 5 λ / 4 λ = 4 d / 5 λ = 4 0,5 / 5 λ = 0,4 m. H βασική κυματική εξίσωση : υ = λ f υ = 0,4 850 υ = 340 m / s.

d = 5 λ / 4 λ = 4 d / 5 λ = 4 0,5 / 5 λ = 0,4 m. H βασική κυματική εξίσωση : υ = λ f υ = 0,4 850 υ = 340 m / s. 1) Ένα κύμα συχνότητας f = 500 Hz διαδίδεται με ταχύτητα υ = 360 m / s. α. Πόσο απέχουν δύο σημεία κατά μήκος μιας ακτίνας διάδοσης του κύματος, τα οποία παρουσιάζουν διαφορά φάσης Δφ = π / 3 ; β. Αν το

Διαβάστε περισσότερα

Η απόσταση του σημείου Ρ από τη δεύτερη πηγή είναι: β) Από την εξίσωση απομάκρυνσης των πηγών y = 0,2.ημ10πt (S.I.) έχουμε:

Η απόσταση του σημείου Ρ από τη δεύτερη πηγή είναι: β) Από την εξίσωση απομάκρυνσης των πηγών y = 0,2.ημ10πt (S.I.) έχουμε: Γενική άσκηση στη συμβολή κυμάτων (Λύση) α) Η χρονική στιγμή t 1 που το κύμα από την πρώτη πηγή φτάνει στο σημείο Ρ είναι: r1 r1 6 u = => t1 = => t1 = s => t1 = 0, 6s t u 10 1 Τα κύματα φτάνουν στο σημείο

Διαβάστε περισσότερα

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 ΚίνησηΚυµάτων ΠεριεχόµεναΚεφαλαίου 15 Χαρακτηριστικά Κυµατικής Είδη κυµάτων: ιαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της ιάδοσης κυµάτων ΗΕξίσωσητουΚύµατος Κανόνας

Διαβάστε περισσότερα

ΠΟΜΠΟΣ ΕΚΤΗΣ ΑΝΙΧΝΕΥΤΗΣ

ΠΟΜΠΟΣ ΕΚΤΗΣ ΑΝΙΧΝΕΥΤΗΣ Σαν ήχος χαρακτηρίζεται οποιοδήποτε μηχανικό ελαστικό κύμα ή γενικότερα μία μηχανική διαταραχή που διαδίδεται σε ένα υλικό μέσο και είναι δυνατό να ανιχνευθεί από τον άνθρωπο μέσω της αίσθησης της ακοής.

Διαβάστε περισσότερα

Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος

Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος Γιατί Διαμόρφωση; Μετάδοση ενός σήματος χαμηλών συχνοτήτων μέσω ενός ζωνοπερατού καναλιού Παράλληλη μετάδοση πολλαπλών σημάτων πάνω από το ίδιο κανάλι - Διαχωρισμός συχνότητας (Frequency Division Multiplexing)

Διαβάστε περισσότερα

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β ΕΠΑΝΑΛΗΨΗ ΚΥΜΑΤΑ 1. Κατά μήκος μιας ελαστικής χορδής μεγάλου μήκους που το ένα άκρο της είναι ακλόνητα στερεωμένο, διαδίδονται δύο κύματα, των οποίων οι εξισώσεις είναι αντίστοιχα: και, όπου και είναι

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για

Διαβάστε περισσότερα

( )! cos (" t + # ) Στάσιμα κύματα. y(x,t) = A[ cos( kx!" t)! cos( kx + " t) [ ( ) + cos (" t + # + $ )] = 0. y(0,t) = A cos!

( )! cos ( t + # ) Στάσιμα κύματα. y(x,t) = A[ cos( kx! t)! cos( kx +  t) [ ( ) + cos ( t + # + $ )] = 0. y(0,t) = A cos! ΦΥΣ 131 - Διαλ.35 1 Στάσιμα κύματα Θεωρήστε μια χορδή, μήκους L με τα άκρα της ακλόνητα. x=0 x=l Χτυπήσετε την! Μετά από κάποιο χρονικό διάστημα θα έχετε προσπίπτοντα κύματα και ανακλώμενα κύματα. Τα κύματα

Διαβάστε περισσότερα

Εξισώσεις για αρμονικά μεταβαλλόμενες ακουστικές ποσότητες

Εξισώσεις για αρμονικά μεταβαλλόμενες ακουστικές ποσότητες Εξισώσεις για αρμονικά μεταβαλλόμενες ακουστικές ποσότητες 1. Τοπική μορφή νόμου Newton για μιγαδικές ακουστικές ποσότητες Η τοπική μορφή του νόμου Newton που συσχετίζει την ταχύτητα σωματιδίων με την

Διαβάστε περισσότερα

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση:

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση: Αρμονικό κύμα ΚΕΦΑΛΑΙΟ 2 51 Κατά τη διάδοση ενός κύματος σε ένα ελαστικό μέσο: α μεταφέρεται ύλη, β μεταφέρεται ενέργεια και ύλη, γ όλα τα σημεία του ελαστικού μέσου έχουν την ίδια φάση την ίδια χρονική

Διαβάστε περισσότερα

1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα

1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ 1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα δύο αρμονικά κύματα που έχουν εξισώσεις y 1 = 0,1ημπ(5t,5x) (S.I.) και y = 0,1ημπ(5t

Διαβάστε περισσότερα

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής Κεφάλαιο 2 Κίνηση κατά μήκος ευθείας γραμμής Στόχοι 1 ου Κεφαλαίου Περιγραφή κίνησης σε ευθεία γραμμή όσον αφορά την ταχύτητα και την επιτάχυνση. Διαφορά μεταξύ της μέσης και στιγμιαίας ταχύτητας καθώς

Διαβάστε περισσότερα

2.6 Κύματα που παράγονται από δύο σύγχρονες. 2.7 Κύματα που παράγονται από δύο σύγχρονες. 2.8 Κύματα παράγονται από δύο σύγχρονες

2.6 Κύματα που παράγονται από δύο σύγχρονες. 2.7 Κύματα που παράγονται από δύο σύγχρονες. 2.8 Κύματα παράγονται από δύο σύγχρονες ΚΕΦΑΛΑΙΟ 2 Συμβολή κυμάτων 2.1 Το φαινόμενο της συμβολής των κυμάτων, ισχύει: α. μόνο στα μηχανικά κύματα, β. σε όλα τα είδη των κυμάτων, γ. μόνο στα ηλεκτρομαγνητικά. 2.2 Δύο σημεία Π, Π της ήρεμης επιφάνειας

Διαβάστε περισσότερα

HMY 333 Φωτονική Διάλεξη 07. Ταχύτητα φάσης, ταχύτητα ομάδας και διασπορά. n 2 n O

HMY 333 Φωτονική Διάλεξη 07. Ταχύτητα φάσης, ταχύτητα ομάδας και διασπορά. n 2 n O Uiersiy of Cyrus Πανεπιστήμιο Κύπρου Uiersiy of Cyrus Πανεπιστήμιο Κύπρου HMY 333 Φωτονική Διάλεξη 7 Ταχύτητα φάσης, ταχύτητα ομάδας και διασπορά Σε ένα μέσο διασποράς, όπως οι οπτικές ίνες, η μορφή του

Διαβάστε περισσότερα

D b < 2mω0 (εκτός ύλης) m

D b < 2mω0 (εκτός ύλης) m Φθίνουσες - Εξαναγκασμένες Ταλαντώσεις Τι μπορούμε να διδάξουμε στους μαθητές τελικά, εκτός από αυτά που γράφει το σχολικό βιβλίο; Α) Φθίνουσες ταλαντώσεις Μελετάμε την περίπτση όπου η σταθερά απόσβεσης

Διαβάστε περισσότερα